1932

Abstract

Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-103440
2023-09-05
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021622-103440.html?itemId=/content/journals/10.1146/annurev-phyto-021622-103440&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ah-Fong AM, Boyd AM, Matson ME, Judelson HS. 2021. A Cas12a-based gene editing system for Phytophthora infestans reveals monoallelic expression of an elicitor. Mol. Plant Pathol. 22:737–52
    [Google Scholar]
  2. 2.
    Badet T, Oggenfuss U, Abraham L, McDonald BA, Croll D. 2020. A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici. BMC Biol. 18:12
    [Google Scholar]
  3. 3.
    Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A et al. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:60101549–51
    [Google Scholar]
  4. 4.
    Belser C, Baurens F-C, Noel B, Martin G, Cruaud C et al. 2021. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 4:1047
    [Google Scholar]
  5. 5.
    Bertier L, Leus L, D'hondt L, de Cock AWAM, Höfte M 2013. Host adaptation and speciation through hybridization and polyploidy in Phytophthora. PLOS ONE 8:e85385
    [Google Scholar]
  6. 6.
    Bilir Ö, Telli O, Norman C, Budak H, Hong Y, Tör M. 2019. Small RNA inhibits infection by downy mildew pathogen Hyaloperonospora arabidopsidis. Mol. Plant Pathol. 20:1523–34
    [Google Scholar]
  7. 7.
    Bourret TB, Choudhury RA, Mehl HK, Blomquist CL, McRoberts N, Rizzo DM. 2018. Multiple origins of downy mildews and mito-nuclear discordance within the paraphyletic genus Phytophthora. PLOS ONE 13:e0192502
    [Google Scholar]
  8. 8.
    Boutemy LS, King SR, Win J, Hughes RK, Clarke TA et al. 2011. Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. J. Biol. Chem. 286:35834–42
    [Google Scholar]
  9. 9.
    Bozkurt TO, Schornack S, Banfield MJ, Kamoun S. 2012. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15:483–92
    [Google Scholar]
  10. 10.
    Branco S, Carpentier F, Rodríguez de la Vega RC, Badouin H, Snirc A et al. 2018. Multiple convergent supergene evolution events in mating-type chromosomes. Nat. Commun. 9:2000
    [Google Scholar]
  11. 11.
    Brasier C, Scanu B, Cooke D, Jung T. 2022. Phytophthora: an ancient, historic, biologically and structurally cohesive and evolutionarily successful generic concept in need of preservation. IMA Fungus 13:12
    [Google Scholar]
  12. 12.
    Burki F, Roger AJ, Brown MW, Simpson AGB. 2020. The new tree of eukaryotes. Trends Ecol. Evol. 35:43–55
    [Google Scholar]
  13. 13.
    Camargo MP, Hong CF, Amorim L, Scherm H. 2019. Cryptic species and population genetic structure of Plasmopara viticola in São Paulo State, Brazil. Plant Pathol. 68:719–26
    [Google Scholar]
  14. 14.
    Catal M, King L, Tumbalam P, Wiriyajitsomboon P, Kirk WW, Adams GC. 2010. Heterokaryotic nuclear conditions and a heterogeneous nuclear population are observed by flow cytometry in Phytophthora infestans. Cytom. A 77:769–75
    [Google Scholar]
  15. 15.
    Chaloner TM, Gurr SJ, Bebber DP. 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11:710–15
    [Google Scholar]
  16. 16.
    Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18:170–75
    [Google Scholar]
  17. 17.
    Choi Y-J, Thines M. 2015. Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PLOS ONE 10:e0133655
    [Google Scholar]
  18. 18.
    Cohen Y, Rubin AE. 2012. Mating type and sexual reproduction of Pseudoperonospora cubensis, the downy mildew agent of cucurbits. Eur. J. Plant Pathol. 132:577–92
    [Google Scholar]
  19. 19.
    Crouch J, Davis W, Shishkoff N, Castroagudín V, Martin F et al. 2022. Peronosporaceae species causing downy mildew diseases of Poaceae, including nomenclature revisions and diagnostic resources. Fungal Syst. Evol. 9:43–86
    [Google Scholar]
  20. 20.
    Crute I. 1987. The occurrence, characteristics, distribution, genetics, and control of a metalaxyl-resistant pathotype of Bremia lactucae in the United Kingdom. Plant Dis. 71:763–67
    [Google Scholar]
  21. 21.
    Cvitanich C, Judelson HS. 2003. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr. Genet. 42:228–35
    [Google Scholar]
  22. 22.
    Dale AL, Feau N, Everhart Sydney E, Dhillon B, Wong B et al. 2019. Mitotic recombination and rapid genome evolution in the invasive forest pathogen Phytophthora ramorum. mBio 10:e02452–18
    [Google Scholar]
  23. 23.
    de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A. 2015. Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLOS Pathog. 11:e1005228
    [Google Scholar]
  24. 24.
    Dhillon B, Feng C, Villarroel-Zeballos MI, Castroagudin VL, Bhattarai G et al. 2020. Sporangiospore viability and oospore production in the spinach downy mildew pathogen, Peronospora effusa. Plant Dis. 104:2634–41
    [Google Scholar]
  25. 25.
    Dickinson CH, Crute IR. 1974. The influence of seedling age and development on the infection of lettuce by Bremia lactucae. Ann. Appl. Biol. 76:49–61
    [Google Scholar]
  26. 26.
    Dussert Y, Legrand L, Mazet ID, Couture C, Piron M-C et al. 2020. Identification of the first oomycete mating-type locus sequence in the grapevine downy mildew pathogen, Plasmopara viticola. Curr. Biol. 30:3897–907
    [Google Scholar]
  27. 27.
    Dussert Y, Mazet ID, Couture C, Gouzy J, Piron M-C et al. 2019. A high-quality grapevine downy mildew genome assembly reveals rapidly evolving and lineage-specific putative host adaptation genes. Genome Biol. Evol. 11:954–69
    [Google Scholar]
  28. 28.
    Eschenbrenner CJ, Feurtey A, Stukenbrock EH. 2020. Population genomics of fungal plant pathogens and the analyses of rapidly evolving genome compartments. Methods Mol. Biol. 2090:337–55
    [Google Scholar]
  29. 29.
    EuroBlight 2022. Results of the EuroBlight potato late blight monitoring in 2021 Press Release, April 9. https://agro.au.dk/forskning/internationale-platforme/euroblight/currently/news/nyhed/artikel/results-of-the-euroblight-potato-late-blight-monitoring-in-2020
  30. 30.
    Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC et al. 2020. Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLOS Genet. 16:e1008646
    [Google Scholar]
  31. 31.
    Fang Y, Cui L, Gu B, Arredondo F, Tyler BM. 2017. Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9. Curr. Protoc. Microbiol. 44:21A.1.1–21A.1.26
    [Google Scholar]
  32. 32.
    Feng C, Lamour KH, Bluhm BH, Sharma S, Shrestha S et al. 2018. Genome sequences of three races of Peronospora effusa: a resource for studying the evolution of the spinach downy mildew pathogen. Mol. Plant-Microbe Interact. 31:1230–31
    [Google Scholar]
  33. 33.
    Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39:W29–37
    [Google Scholar]
  34. 34.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  35. 35.
    Fletcher K, Gil J, Bertier LD, Kenefick A, Wood KJ et al. 2019. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Nat. Commun. 10:2645
    [Google Scholar]
  36. 36.
    Fletcher K, Han R, Smilde D, Michelmore R. 2021. Variance of allele balance calculated from low coverage sequencing data infers departure from a diploid state. BMC Bioinform. 23:150
    [Google Scholar]
  37. 37.
    Fletcher K, Klosterman SJ, Derevnina L, Martin F, Bertier LD et al. 2018. Comparative genomics of downy mildews reveals potential adaptations to biotrophy. BMC Genom. 19:851
    [Google Scholar]
  38. 38.
    Fletcher K, Martin F, Isakeit T, Cavanaugh K, Magill C, Michelmore R. 2023. The genome of the oomycete Peronosclerospora sorghi, a cosmopolitan pathogen of maize and sorghum, is inflated with dispersed pseudogenes. G3 13:3jkac340
    [Google Scholar]
  39. 39.
    Fletcher K, Michelmore R 2018. From short reads to chromosome-scale genome assemblies. Plant Pathogenic Fungi and Oomycetes: Methods and Protocols W Ma, T Wolpert 151–97. New York: Springer
    [Google Scholar]
  40. 40.
    Fletcher K, Shin O-H, Clark KJ, Feng C, Putman AI et al. 2022. Ancestral chromosomes for the Peronosporaceae inferred from a telomere-to-telomere genome assembly of Peronospora effusa. Mol. Plant-Microbe Interact. 35:450–63
    [Google Scholar]
  41. 41.
    Fletcher K, Zhang L, Gil J, Han R, Cavanaugh K, Michelmore R. 2021. AFLAP: assembly-free linkage analysis pipeline using k-mers from genome sequencing data. Genome Biol. 22:115
    [Google Scholar]
  42. 42.
    Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7:461–65
    [Google Scholar]
  43. 43.
    Fontaine MC, Labbé F, Dussert Y, Delière L, Richart-Cervera S et al. 2021. Europe as a bridgehead in the worldwide invasion history of grapevine downy mildew, Plasmopara viticola. Curr. Biol. 31:2155–66.e4
    [Google Scholar]
  44. 44.
    Frederiksen R, Renfro B. 1977. Global status of maize downy mildew. Annu. Rev. Phytopathol. 15:249–71
    [Google Scholar]
  45. 45.
    Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. 2006. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44:489–509
    [Google Scholar]
  46. 46.
    Gessler C, Pertot I, Perazzolli M. 2011. Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr. 50:3–44
    [Google Scholar]
  47. 47.
    Ghimire B, Saraiva M, Andersen CB, Gogoi A, Saleh M et al. 2022. Transformation systems, gene silencing and gene editing technologies in oomycetes. Fungal Biol. Rev. 40:37–52
    [Google Scholar]
  48. 48.
    Govindarajulu M, Epstein L, Wroblewski T, Michelmore RW. 2015. Host-induced gene silencing inhibits the biotrophic pathogen causing downy mildew of lettuce. Plant Biotechnol. J. 13:875–83
    [Google Scholar]
  49. 49.
    Grandaubert J, Dutheil JY, Stukenbrock EH. 2019. The genomic determinants of adaptive evolution in a fungal pathogen. Evol. Lett. 3:299–312
    [Google Scholar]
  50. 50.
    Guo Y, Betzen B, Salcedo A, He F, Bowden RL et al. 2022. Population genomics of Puccinia graminis f.sp. tritici highlights the role of admixture in the origin of virulent wheat rust races. Nat. Commun. 13:6287
    [Google Scholar]
  51. 51.
    Hamelin RC, Bilodeau GJ, Heinzelmann R, Hrywkiw K, Capron A et al. 2022. Genomic biosurveillance detects a sexual hybrid in the sudden oak death pathogen. Commun. Biol. 5:477
    [Google Scholar]
  52. 52.
    Hardham AR, Blackman LM. 2018. Phytophthora cinnamomi. Mol. Plant Pathol. 19:260–85
    [Google Scholar]
  53. 53.
    He J, Ye W, Choi DS, Wu B, Zhai Y et al. 2019. Structural analysis of Phytophthora suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. PNAS 116:168054–59
    [Google Scholar]
  54. 54.
    Hessenauer P, Feau N, Gill U, Schwessinger B, Brar GS, Hamelin RC. 2020. Evolution and adaptation of forest and crop pathogens in the Anthropocene. Phytopathology 111:49–67
    [Google Scholar]
  55. 55.
    Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW. 1988. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–58
    [Google Scholar]
  56. 56.
    Ilott T, Durgan M, Michelmore R. 1987. Genetics of virulence in Californian populations of Bremia lactucae (lettuce downy mildew). Phytopathology 77:1381–86
    [Google Scholar]
  57. 57.
    Isakeit T, Jaster J. 2005. Texas has a new pathotype of Peronosclerospora sorghi, the cause of sorghum downy mildew. Plant Dis. 89:529
    [Google Scholar]
  58. 58.
    Judelson HS. 1996. Genetic and physical variability at the mating type locus of the oomycete. Phytophthora infestans. Genetics 144:1005–13
    [Google Scholar]
  59. 59.
    Judelson HS, Tani S. 2007. Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot. Cell 6:1200–9
    [Google Scholar]
  60. 60.
    Judelson HS, Tyler BM, Michelmore RW. 1991. Transformation of the oomycete pathogen. Phytophthora infestans. Mol. Plant-Microbe Interact. 4:6602–7
    [Google Scholar]
  61. 61.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  62. 62.
    Kim KS, Judelson HS. 2003. Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot. Cell 2:1376–85
    [Google Scholar]
  63. 63.
    Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. 2020. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. PLOS ONE 15:e0225808
    [Google Scholar]
  64. 64.
    Klosterman SJ, Anchieta A, McRoberts N, Koike ST, Subbarao KV et al. 2014. Coupling spore traps and quantitative PCR assays for detection of the downy mildew pathogens of spinach (Peronospora effusa) and beet (P. schachtii). Phytopathology 104:1349–59
    [Google Scholar]
  65. 65.
    Knaus BJ, Tabima JF, Shakya SK, Judelson HS, Grünwald NJ. 2020. Genome-wide increased copy number is associated with emergence of dominant clones of the Irish potato famine pathogen Phytophthora infestans. mBio 11:e00326–20
    [Google Scholar]
  66. 66.
    Kobayashi M, Hiraka Y, Abe A, Yaegashi H, Natsume S et al. 2017. Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews. BMC Genom. 18:897
    [Google Scholar]
  67. 67.
    Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM et al. 2018. De novo assembly of haplotype-resolved genomes with trio binning. Nat. Biotechnol. 36:1174–82
    [Google Scholar]
  68. 68.
    Krasileva KV, Zheng C, Leonelli L, Goritschnig S, Dahlbeck D, Staskawicz BJ. 2011. Global analysis of Arabidopsis/downy mildew interactions reveals prevalence of incomplete resistance and rapid evolution of pathogen recognition. PLOS ONE 6:e28765
    [Google Scholar]
  69. 69.
    Kunjeti SG, Anchieta A, Martin FN, Choi Y-J, Thines M et al. 2016. Detection and quantification of Bremia lactucae by spore trapping and quantitative PCR. Phytopathology 106:1426–37
    [Google Scholar]
  70. 70.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  71. 71.
    Latijnhouwers M, de Wit PJGM, Govers F. 2003. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol. 11:462–69
    [Google Scholar]
  72. 72.
    Lazzarano S, Kučka M, Castro JPL, Naumann R, Medina P et al. 2018. Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells. PNAS 115:3680–85
    [Google Scholar]
  73. 73.
    Lebeda A, Zinkernagel V. 2003. Evolution and distribution of virulence in the German population of Bremia lactucae. Plant Pathol. 52:41–51
    [Google Scholar]
  74. 74.
    Lee JS, Shin HD, Lee HB, Choi YJ. 2017. Taxonomy and phylogeny of Peronospora species (Oomycota) parasitic to Stellaria and Pseudostellaria in Korea, with the introduction of Peronospora casparyi sp. nov. Mycobiology 45:263–69
    [Google Scholar]
  75. 75.
    Leger A, Amaral PP, Pandolfini L, Capitanchik C, Capraro F et al. 2021. RNA modifications detection by comparative nanopore direct RNA sequencing. Nat. Commun. 12:7198
    [Google Scholar]
  76. 76.
    Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM et al. 2022. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 11:e75115
    [Google Scholar]
  77. 77.
    Li C, Qiao L, Lu Y, Xing G, Wang X et al. 2023. Gapless genome assembly of Puccinia triticina provides insights into chromosome evolution in Pucciniales. Microbiol. Spectr. 11:e02828–22
    [Google Scholar]
  78. 78.
    Li Y, Shen H, Zhou Q, Qian K, van der Lee T, Huang S. 2016. Changing ploidy as a strategy: the Irish potato famine pathogen shifts ploidy in relation to its sexuality. Mol. Plant-Microbe Interact. 30:45–52
    [Google Scholar]
  79. 79.
    Lindqvist-Kreuze H, Gamboa S, Izarra M, Pérez W, Correa MY et al. 2020. Population structure and host range of the potato late blight pathogen Phytophthora infestans in Peru spanning two decades. Plant Pathol. 69:334–46
    [Google Scholar]
  80. 80.
    Liu Y, Rosikiewicz W, Pan Z, Jillette N, Wang P et al. 2021. DNA methylation-calling tools for Oxford Nanopore sequencing: a survey and human epigenome-wide evaluation. Genome Biol. 22:295
    [Google Scholar]
  81. 81.
    Lyon R, Correll J, Feng C, Bluhm B, Shrestha S et al. 2016. Population structure of Peronospora effusa in the southwestern United States. PLOS ONE 11:e0148385
    [Google Scholar]
  82. 82.
    Maloney DH, Fogel S. 1987. Gene conversion, unequal crossing-over and mispairing at a non-tandem duplication during meiosis of Saccharomyces cerevisiae. Curr. Genet. 12:1–7
    [Google Scholar]
  83. 83.
    Marlatt R, Lewis R, Mckitrick R. 1962. Systemic infection of lettuce by Bremia lactucae. Phytopathology 52:888–90
    [Google Scholar]
  84. 84.
    Matson MEH, Liang Q, Lonardi S, Judelson HS. 2022. Karyotype variation, spontaneous genome rearrangements affecting chemical insensitivity, and expression level polymorphisms in the plant pathogen Phytophthora infestans revealed using its first chromosome-scale assembly. PLOS Pathog. 18:e1010869
    [Google Scholar]
  85. 85.
    McCarthy CGP, Fitzpatrick DA. 2019. Pan-genome analyses of model fungal species. Microb. Genom. 5:2e000243
    [Google Scholar]
  86. 86.
    McDowell JM. 2014. Hyaloperonospora arabidopsidis: a model pathogen of Arabidopsis. Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens RA Dean, A Lichens-Park, C Kole 209–34. Berlin: Springer
    [Google Scholar]
  87. 87.
    Michelmore R, Ingram D. 1982. Secondary homothallism in Bremia lactucae. Trans. Br. Mycol. Soc. 78:1–9
    [Google Scholar]
  88. 88.
    Michelmore R, Ochoa O, Wong J 2008. Bremia lactucae and lettuce downy mildew. Oomycete Genetics and Genomics: Diversity, Plant and Animal Interactions and Tools S Kamoun, K Lamour 241–62. Hoboken, NJ: Wiley
    [Google Scholar]
  89. 89.
    Michelmore RW, Ingram DS. 1981. Recovery of progeny following sexual reproduction of Bremia lactucae. Trans. Br. Mycol. Soc. 77:131–37
    [Google Scholar]
  90. 90.
    Möller M, Stukenbrock EH. 2017. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15:756–71
    [Google Scholar]
  91. 91.
    Morales-Cruz A, Ali SS, Minio A, Figueroa-Balderas R, García JF et al. 2020. Independent whole-genome duplications define the architecture of the genomes of the devastating West African cacao black pod pathogen Phytophthora megakarya and its close relative Phytophthora palmivora. G3 10:2241–55
    [Google Scholar]
  92. 92.
    Nur M, Wood K, Michelmore R. 2021. EffectorO: motif-independent prediction of effectors in oomycete genomes using machine learning and lineage specificity. bioRxiv 436227. https://doi.org/10.1101/2021.03.19.436227
  93. 93.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV et al. 2022. The complete sequence of a human genome. Science 376:44–53
    [Google Scholar]
  94. 94.
    Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA et al. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30:91291–305
    [Google Scholar]
  95. 95.
    O'Connor M, Peifer M, Bender W. 1989. Construction of large DNA segments in Escherichia coli. Science 244:1307–12
    [Google Scholar]
  96. 96.
    O'Keefe C, McDevitt MA, Maciejewski JP. 2010. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood 115:2731–39
    [Google Scholar]
  97. 97.
    Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R et al. 2002. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32:650–54
    [Google Scholar]
  98. 98.
    Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M et al. 2016. Rationalization of genes for resistance to Bremia lactucae in lettuce. Euphytica 210:309–26
    [Google Scholar]
  99. 99.
    Plantum 2021. A new race of Bremia lactucae, Bl: 37EU identified and denominated in Europe Press Release, June 1. https://plantum.nl/press-release-ibeb-eu-a-new-race-of-bremia-lactucae-bl-37eu-identified-and-denominated-in-europe/
    [Google Scholar]
  100. 100.
    Ploch S, Kruse J, Choi Y-J, Thiel H, Thines M. 2022. Ancestral state reconstruction in Peronospora provides further evidence for host jumping as a key element in the diversification of obligate parasites. Mol. Phylogenet. Evol. 166:107321
    [Google Scholar]
  101. 101.
    Qiao L, Lan C, Capriotti L, Ah-Fong A, Nino Sanchez J et al. 2021. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake. Plant Biotechnol. J. 19:1756–68
    [Google Scholar]
  102. 102.
    Radhakrishnan GV, Cook NM, Bueno-Sancho V, Lewis CM, Persoons A et al. 2019. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. BMC Biol. 17:65
    [Google Scholar]
  103. 103.
    Rahman A, Standish JR, D'Arcangelo KN, Quesada-Ocampo LM 2021. Clade-specific biosurveillance of Pseudoperonospora cubensis using spore traps for precision disease management of cucurbit downy mildew. Phytopathology 111:312–20
    [Google Scholar]
  104. 104.
    Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G et al. 2011. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. PNAS 108:15258–63
    [Google Scholar]
  105. 105.
    Runge F, Telle S, Ploch S, Savory E, Day B et al. 2011. The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora. IMA Fungus 2:163–71
    [Google Scholar]
  106. 106.
    Runge F, Thines M. 2011. Host matrix has major impact on the morphology of Pseudoperonospora cubensis. Eur. J. Plant Pathol. 129:147–56
    [Google Scholar]
  107. 107.
    Sadhu MJ, Bloom JS, Day L, Kruglyak L. 2016. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352:1113–16
    [Google Scholar]
  108. 108.
    Salcedo AF, Purayannur S, Standish JR, Miles T, Thiessen L, Quesada-Ocampo LM. 2021. Fantastic downy mildew pathogens and how to find them: advances in detection and diagnostics. Plants 10:3435
    [Google Scholar]
  109. 109.
    Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. PNAS 74:5463–67
    [Google Scholar]
  110. 110.
    Saraiva M, Ściślak ME, Ascurra YT, Ferrando TM, Zic N et al. 2022. The molecular dialog between oomycete effectors and their plant and animal hosts. Fungal Biol. Rev. 43:100289
    [Google Scholar]
  111. 111.
    Savory EA, Granke LL, Quesada-Ocampo LM, Varbanova M, Hausbeck MK, Day B. 2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol. 12:217–26
    [Google Scholar]
  112. 112.
    Savory F, Leonard G, Richards TA. 2015. The role of horizontal gene transfer in the evolution of the oomycetes. PLOS Pathog. 11:e1004805
    [Google Scholar]
  113. 113.
    Seong K, Krasileva KV. 2022. Comparative computational structural genomics highlights divergent evolution of fungal effectors. bioRxiv 490317. https://doi.org/10.1101/2022.05.02.490317
  114. 114.
    Sicard D, Legg E, Brown S, Babu NK, Ochoa O et al. 2003. A genetic map of the lettuce downy mildew pathogen, Bremia lactucae, constructed from molecular markers and avirulence genes. Fungal Genet. Biol. 39:16–30
    [Google Scholar]
  115. 115.
    Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM et al. 2021. Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science 374:abg8871
    [Google Scholar]
  116. 116.
    Skiadas P, Klein J, Quiroz-Monnens T, Elberse J, de Jonge R et al. 2022. Sexual reproduction contributes to the evolution of resistance-breaking isolates of the spinach pathogen Peronospora effusa. Environ. Microbiol. 24:1622–37
    [Google Scholar]
  117. 117.
    Smith R, Cahn M, Daugovish O, Koike S. 2011. Leaf lettuce production in California Rep. UC Veg. Res. Inf. Cent. Davis, CA:
  118. 118.
    Sperschneider J, Dodds PN. 2021. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. Mol. Plant-Microbe Interact. 35:146–56
    [Google Scholar]
  119. 119.
    Spring O, Zipper R. 2016. Asexual recombinants of Plasmopara halstedii pathotypes from dual infection of sunflower. PLOS ONE 11:e0167015
    [Google Scholar]
  120. 120.
    Stanghellini M, Adaskaveg J, Rasmussen S. 1990. Pathogenesis of Plasmopara lactucae-radicis, a systemic root pathogen of cultivated lettuce. Plant Dis. 74:173–78
    [Google Scholar]
  121. 121.
    Strom NB, Bushley KE. 2016. Two genomes are better than one: history, genetics, and biotechnological applications of fungal heterokaryons. Fungal Biol. Biotechnol. 3:4
    [Google Scholar]
  122. 122.
    Suharjo R, Swibawa IG, Prasetyo J, Fitriana Y, Danaatmadja Y et al. 2020. Peronosclerospora australiensis is a synonym of P. maydis, which is widespread on Sumatra, and distinct from the most prevalent Java maize downy mildew pathogen. Mycol. Prog. 19:1309–15
    [Google Scholar]
  123. 123.
    Tabima JF, Grünwald NJ. 2019. effectR: an expandable R package to predict candidate RxLR and CRN effectors in oomycetes using motif searches. Mol. Plant-Microbe Interact. 32:1067–76
    [Google Scholar]
  124. 124.
    Taylor AS, Knaus BJ, Grünwald NJ, Burgess T. 2019. Population genetic structure and cryptic species of Plasmopara viticola in Australia. Phytopathology 109:1975–83
    [Google Scholar]
  125. 125.
    Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI et al. 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40:1023–25
    [Google Scholar]
  126. 126.
    Thines M, Buaya A, Ploch S, Naim YB, Cohen Y. 2020. Downy mildew of lavender caused by Peronospora belbahrii in Israel. Mycol. Prog. 19:1537–43
    [Google Scholar]
  127. 127.
    Thines M, Choi YJ. 2016. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology 106:6–18
    [Google Scholar]
  128. 128.
    Thines M, Telle S, Choi Y-J, Tan YP, Shivas RG. 2015. Baobabopsis, a new genus of graminicolous downy mildews from tropical Australia, with an updated key to the genera of downy mildews. IMA Fungus 6:483–91
    [Google Scholar]
  129. 129.
    Tims B. 1950. Onion and shallot downy mildew in Louisiana. Plant Dis. Rep. 34:12380–82
    [Google Scholar]
  130. 130.
    Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:57911261–66
    [Google Scholar]
  131. 131.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al. 2001. The sequence of the human genome. Science 291:1304–51
    [Google Scholar]
  132. 132.
    Verhoeff K. 1960. On the parasitism of Bremia lactucae REGEL on lettuce. Tijdschrift Over Plantenziekten 66:133–203
    [Google Scholar]
  133. 133.
    Vijn I, Govers F. 2003. Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol. Plant Pathol. 4:459–67
    [Google Scholar]
  134. 134.
    Vogel G, Gore MA, Smart CD. 2020. Genome-wide association study in New York Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity. Phytopathology 111:204–16
    [Google Scholar]
  135. 135.
    Wang L, Chen H, Li J, Shu H, Zhang X et al. 2020. Effector gene silencing mediated by histone methylation underpins host adaptation in an oomycete plant pathogen. Nucleic Acids Res. 48:1790–99
    [Google Scholar]
  136. 136.
    Wang M, Jin H. 2017. Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends Microbiol. 25:4–6
    [Google Scholar]
  137. 137.
    Wang M, Weiberg A, Lin F-M, Thomma BPHJ, Huang H-D, Jin H 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat. Plants 2:16151
    [Google Scholar]
  138. 138.
    Weiland JJ. 2003. Transformation of Pythium aphanidermatum to geneticin resistance. Curr. Genet. 42:344–52
    [Google Scholar]
  139. 139.
    Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG et al. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–18
    [Google Scholar]
  140. 140.
    Williams M, Magarey P, Sivasithamparam K. 2007. Influence of environmental factors on germination of Plasmopara viticola sporangia sourced from Mediterranean Western Australia. Phytopathol. Mediterr. 46:2225–29
    [Google Scholar]
  141. 141.
    Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K et al. 2020. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. PLOS Pathog. 16:e1009012
    [Google Scholar]
  142. 142.
    Yeung CCS, McElhone S, Chen XY, Ng D, Storer BE et al. 2018. Impact of copy neutral loss of heterozygosity and total genome aberrations on survival in myelodysplastic syndrome. Mod. Pathol. 31:569–80
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-103440
Loading
/content/journals/10.1146/annurev-phyto-021622-103440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error