1932

Abstract

is a destructive oomycete pathogen of vegetable, ornamental, and tropical crops. First described by L.H. Leonian in 1922 as a pathogen of pepper in New Mexico, USA, is now widespread in temperate and tropical countries alike. is notorious for its capability to evade disease management strategies. High genetic diversity allows populations to overcome fungicides and host resistance, the formation of oospores results in long-term persistence in soils, zoospore differentiation in the presence of water increases epidemic potential, and a broad host range maximizes economic losses and limits the effectiveness of crop rotation. The severity of disease caused by and management challenges have led to numerous research efforts in the past 100 years. Here, we discuss recent findings regarding the biology, genetic diversity, disease management, fungicide resistance, host resistance, genomics, and effector biology of .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-103801
2023-09-05
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021622-103801.html?itemId=/content/journals/10.1146/annurev-phyto-021622-103801&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adachi H, Derevnina L, Kamoun S. 2019. NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Curr. Opin. Plant Biol. 50:121–31
    [Google Scholar]
  2. 2.
    Ali M, Luo D-X, Khan A, Haq SU, Gai W-X et al. 2018. Classification and genome-wide analysis of chitin-binding proteins gene family in pepper (Capsicum annuum L.) and transcriptional regulation to Phytophthora capsici, abiotic stresses and hormonal applications. Int. J. Mol. Sci. 19:82216
    [Google Scholar]
  3. 3.
    Ali M, Muhammad I, ul Haq S, Alam M, Khattak AM et al. 2020. The CaChiVI2 gene of Capsicum annuum L. confers resistance against heat stress and infection of Phytophthora capsici. Front. Plant Sci. 11:219
    [Google Scholar]
  4. 4.
    Alzohairy SA, Hammerschmidt R, Hausbeck MK. 2020. Changes in winter squash fruit exocarp structure associated with age-related resistance to Phytophthora capsici. Phytopathology 110:2447–55
    [Google Scholar]
  5. 5.
    Alzohairy SA, Hammerschmidt R, Hausbeck MK. 2021. Antifungal activity in winter squash fruit peel in relation to age related resistance to Phytophthora capsici. Physiol. Mol. Plant Pathol. 114:101603
    [Google Scholar]
  6. 6.
    Anderson RG, Deb D, Fedkenheuer K, McDowell JM. 2015. Recent progress in RXLR effector research. Mol. Plant-Microbe Interact. 28:101063–72
    [Google Scholar]
  7. 7.
    Ando K, Carr KM, Colle M, Mansfeld BN, Grumet R. 2015. Exocarp properties and transcriptomic analysis of cucumber (Cucumis sativus) fruit expressing age-related resistance to Phytophthora capsici. PLOS ONE 10:11e0142133
    [Google Scholar]
  8. 8.
    Ando K, Hammar S, Grumet R. 2009. Age-related resistance of diverse cucurbit fruit to infection by Phytophthora capsici. J. Am. Soc. Hortic. Sci. 134:2176–82
    [Google Scholar]
  9. 9.
    Babadoost M, Pavon C. 2013. Survival of oospores of Phytophthora capsici in soil. Plant Dis. 97:111478–83
    [Google Scholar]
  10. 10.
    Barboza EA, Fonseca MEN, Boiteux LS, Reis A. 2017. First worldwide report of a strawberry fruit rot disease caused by Phytophthora capsici isolates. Plant Dis. 101:1259
    [Google Scholar]
  11. 11.
    Barchenger DW, Lamour KH, Bosland PW. 2018. Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Front. Plant Sci. 9:628
    [Google Scholar]
  12. 12.
    Barchenger DW, Lamour KH, Sheu Z-M, Shrestha S, Kumar S et al. 2017. Intra- and intergenomic variation of ploidy and clonality characterize Phytophthora capsici on Capsicum sp. in Taiwan. Mycol. Prog. 16:10955–63
    [Google Scholar]
  13. 13.
    Barchenger DW, Sheu Z-M, Kumar S, Lin S-W, Burlakoti RR, Bosland PW. 2018. Race characterization of Phytophthora root rot on Capsicum in Taiwan as a basis for anticipatory resistance breeding. Phytopathology 108:8964–71
    [Google Scholar]
  14. 14.
    Bellini A, Pugliese M, Guarnaccia V, Meloni GR, Gullino LM. 2021. Calcium oxide, potassium phosphite and a Trichoderma enriched compost water suspension protect Capsicum annuum against Phytophthora capsici by priming the immune system. Pest Manag. Sci. 77:73484–90
    [Google Scholar]
  15. 15.
    Bowers JH, Martin FN, Tooley PW, Luz EDMN. 2007. Genetic and morphological diversity of temperate and tropical isolates of Phytophthora capsici. Phytopathology 97:4492–503
    [Google Scholar]
  16. 16.
    Carlson MO, Gazave E, Gore MA, Smart CD. 2017. Temporal genetic dynamics of an experimental, biparental field population of Phytophthora capsici. Front. Genet. 8:26
    [Google Scholar]
  17. 17.
    Castro-Rocha A, Hulvey JP, Wick R, Shrestha SK, Lamour K. 2017. Genetic diversity of Phytophthora capsici recovered from Massachusetts between 1997 and 2014. Mycol. Prog. 16:10999–1006
    [Google Scholar]
  18. 18.
    Castro-Rocha A, Shrestha S, Lyon B, Grimaldo-Pantoja GL, Flores-Marges JP et al. 2016. An initial assessment of genetic diversity for Phytophthora capsici in northern and central Mexico. Mycol. Prog. 15:215
    [Google Scholar]
  19. 19.
    Chavez DJ, Kabelka EA, Chaparro JX. 2011. Screening of Cucurbita moschata Duchesne germplasm for crown rot resistance to Floridian isolates of Phytophthora capsici Leonian. HortScience 46:4536–40
    [Google Scholar]
  20. 20.
    Chen X-R, Huang S-X, Zhang Y, Sheng G-L, Li Y-P, Zhu F. 2018. Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Mol. Genet. Genom. 293:4931–43
    [Google Scholar]
  21. 21.
    Chen X-R, Zhang Y, Li H-Y, Zhang Z-H, Sheng G-L et al. 2019. The RXLR effector PcAvh1 is required for full virulence of Phytophthora capsici. Mol. Plant-Microbe Interact. 32:8986–1000
    [Google Scholar]
  22. 22.
    Cheng BP, Lu LM, Peng AT, Song XB, Ling JF, Chen X. 2014. First report of foliar blight caused by Phytophthora capsici on Citrus reticulata Blanco cv. Nian Ju in Guangdong, China. Plant Dis. 98:6845
    [Google Scholar]
  23. 23.
    Cheng W, Jiang Y, Peng J, Guo J, Lin M et al. 2020. The transcriptional reprogramming and functional identification of WRKY family members in pepper's response to Phytophthora capsici infection. BMC Plant Biol. 20:1256
    [Google Scholar]
  24. 24.
    Chunthawodtiporn J, Hill T, Stoffel K, Deynze AV. 2019. Genetic analysis of resistance to multiple isolates of Phytophthora capsici and linkage to horticultural traits in bell pepper. HortScience 54:71143–48
    [Google Scholar]
  25. 25.
    Colle M, Straley EN, Makela SB, Hammar SA, Grumet R. 2014. Screening the cucumber plant introduction collection for young fruit resistance to Phytophthora capsici. HortScience 49:3244–49
    [Google Scholar]
  26. 26.
    Couto D, Zipfel C. 2016. Regulation of pattern recognition receptor signaling in plants. Nat. Rev. Immunol. 16:9537–52
    [Google Scholar]
  27. 27.
    Donahoo RS, Lamour KH. 2008. Interspecific hybridization and apomixis between Phytophthora capsici and Phytophthora tropicalis. Mycologia 100:6911–20
    [Google Scholar]
  28. 28.
    Donahoo RS, Turechek WW, Thies JA, Kousik CS. 2013. Potential sources of resistance in U.S. Cucumis melo PIs to crown rot caused by Phytophthora capsici. HortScience 48:2164–70
    [Google Scholar]
  29. 29.
    Du J-S, Hang L-F, Hao Q, Yang H-T, Ali S et al. 2021. The dissection of R genes and locus Pc5.1 in Phytophthora capsici infection provides a novel view of disease resistance in peppers. BMC Genom. 22:1372
    [Google Scholar]
  30. 30.
    Dunn AR, Bruening SR, Grünwald NJ, Smart CD. 2014. Evolution of an experimental population of Phytophthora capsici in the field. Phytopathology 104:101107–17
    [Google Scholar]
  31. 31.
    Dunn AR, Milgroom MG, Meitz JC, McLeod A, Fry WE et al. 2010. Population structure and resistance to mefenoxam of Phytophthora capsici in New York State. Plant Dis. 94:121461–68
    [Google Scholar]
  32. 32.
    Dunn AR, Smart CD. 2015. Interactions of Phytophthora capsici with resistant and susceptible pepper roots and stems. Phytopathology 105:101355–61
    [Google Scholar]
  33. 33.
    Fan G, Yang Y, Li T, Lu W, Du Y et al. 2018. A Phytophthora capsici RXLR effector targets and inhibits a plant PPIase to suppress endoplasmic reticulum-mediated immunity. Mol. Plant 11:81067–83
    [Google Scholar]
  34. 34.
    Foster JM, Hausbeck MK. 2010. Managing Phytophthora crown and root rot in bell pepper using fungicides and host resistance. Plant Dis. 94:6697–702
    [Google Scholar]
  35. 35.
    Foster JM, Naegele RP, Hausbeck MK. 2013. Evaluation of eggplant rootstocks and pepper varieties for potential resistance to isolates of Phytophthora capsici from Michigan and New York. Plant Dis. 97:81037–41
    [Google Scholar]
  36. 36.
    Fungic. Resist. Action Comm. 2022. Fungal control agents sorted by cross-resistance pattern and mode of action Rep. FRAC https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2022–final.pdf?sfvrsn=b6024e9a_2
  37. 37.
    Gevens AJ, Ando K, Lamour KH, Grumet R, Hausbeck MK. 2006. A detached cucumber fruit method to screen for resistance to Phytophthora capsici and effect of fruit age on susceptibility to infection. Plant Dis. 90:101276–82
    [Google Scholar]
  38. 38.
    Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK. 2007. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology 97:4421–28
    [Google Scholar]
  39. 39.
    Gobena D, McGrath MT, Lamour K. 2012. Survival and spread of Phytophthora capsici on Long Island, New York. Mycol. Prog. 11:3761–68
    [Google Scholar]
  40. 40.
    Gobena D, Roig J, Galmarini C, Hulvey J, Lamour K. 2012. Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia 104:1102–7
    [Google Scholar]
  41. 41.
    Granke LL, Quesada-Ocampo L, Lamour K, Hausbeck MK. 2012. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Dis. 96:111588–600
    [Google Scholar]
  42. 42.
    Granke LL, Windstam ST, Hoch HC, Smart CD, Hausbeck MK. 2009. Dispersal and movement mechanisms of Phytophthora capsici sporangia. Phytopathology 99:111258–64
    [Google Scholar]
  43. 43.
    Grumet R, Colle M. 2017. Cucumber (Cucumis sativus) breeding line with young fruit resistance to infection by Phytophthora capsici. HortScience 52:6922–24
    [Google Scholar]
  44. 44.
    Hausbeck MK, Lamour KH. 2004. Phytophthora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88:121292–303
    [Google Scholar]
  45. 45.
    He Y-M, Luo D-X, Khan A, Liu K-K, Arisha MH et al. 2018. CanTF, a novel transcription factor in pepper, is involved in resistance to Phytophthora capsici as well as abiotic stresses. Plant Mol. Biol. Rep. 36:5776–89
    [Google Scholar]
  46. 46.
    Hou Y, Zhai Y, Feng L, Karimi HZ, Rutter BD et al. 2019. A Phytophthora effector suppresses trans-kingdom RNAi to promote disease susceptibility. Cell Host Microbe 25:1153–65.e5
    [Google Scholar]
  47. 47.
    Hu J, Diao Y, Zhou Y, Lin D, Bi Y et al. 2013. Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China. PLOS ONE 8:12e82691
    [Google Scholar]
  48. 48.
    Hu J, Pang Z, Bi Y, Shao J, Diao Y et al. 2013. Genetically diverse long-lived clonal lineages of Phytophthora capsici from pepper in Gansu, China. Phytopathology 103:9920–26
    [Google Scholar]
  49. 49.
    Hu J, Shrestha S, Zhou Y, Mudge J, Liu X, Lamour K. 2020. Dynamic extreme aneuploidy (DEA) in the vegetable pathogen Phytophthora capsici and the potential for rapid asexual evolution. PLOS ONE 15:1e0227250
    [Google Scholar]
  50. 50.
    Hudson O, Waliullah S, Ji P, Hand J, Price J et al. 2021. Detection of Phytophthora capsici from irrigation ponds in south Georgia. Plant Health Prog. 22:3380–83
    [Google Scholar]
  51. 51.
    Hulvey J, Young J, Finley L, Lamour K. 2010. Loss of heterozygosity in Phytophthora capsici after N-ethyl-nitrosourea mutagenesis. Mycologia 102:127–32
    [Google Scholar]
  52. 52.
    Hurtado-Gonzáles O, Aragon-Caballero L, Apaza-Tapia W, Donahoo R, Lamour K. 2008. Survival and spread of Phytophthora capsici in coastal Peru. Phytopathology 98:6688–94
    [Google Scholar]
  53. 53.
    Hurtado-Gonzáles OP, Lamour KH. 2009. Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici. Plant Pathol. 58:4715–22
    [Google Scholar]
  54. 54.
    Jackson KL, Yin J, Csinos AS, Ji P. 2010. Fungicidal activity of fluopicolide for suppression of Phytophthora capsici on squash. Crop Prot. 29:121421–27
    [Google Scholar]
  55. 55.
    Jackson KL, Yin J, Ji P 2012. Sensitivity of Phytophthora capsici on vegetable crops in Georgia to mandipropamid, dimethomorph, and cyazofamid. Plant Dis. 96:91337–42
    [Google Scholar]
  56. 56.
    Jin J-H, Zhang H-X, Tan J-Y, Yan M-J, Li D-W et al. 2016. A new ethylene-responsive factor CaPTI1 gene of pepper (Capsicum annuum L.) involved in the regulation of defense response to Phytophthora capsici. Front. Plant Sci. 6:1217
    [Google Scholar]
  57. 57.
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  58. 58.
    Jupe J, Stam R, Howden AJ, Morris JA, Zhang R et al. 2013. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biol. 14:6R63
    [Google Scholar]
  59. 59.
    Kamoun S, Furzer O, Jones JDG, Judelson HS, Ali GS et al. 2015. The top 10 oomycete pathogens in molecular plant pathology. Mol. Plant Pathol. 16:4413–34
    [Google Scholar]
  60. 60.
    Keinath AP. 2007. Sensitivity of populations of Phytophthora capsici from South Carolina to mefenoxam, dimethomorph, zoxamide, and cymoxanil. Plant Dis. 91:6743–48
    [Google Scholar]
  61. 61.
    Kousik CS, Adams ML, Jester WR, Hassell R, Harrison HF, Holmes GJ. 2011. Effect of cultural practices and fungicides on Phytophthora fruit rot of watermelon in the Carolinas. Crop Prot. 30:7888–94
    [Google Scholar]
  62. 62.
    Kousik CS, Ji P, Egel DS, Quesada-Ocampo LM. 2017. Fungicide rotation programs for managing Phytophthora fruit rot of watermelon in southeastern United States. Plant Health Prog. 18:128–34
    [Google Scholar]
  63. 63.
    Kousik CS, Ikerd JL, Harrison HF. 2014. Development of pre- and postharvest Phytophthora fruit rot on watermelons treated with fungicides in the field. Plant Health Prog. 15:3145–50
    [Google Scholar]
  64. 64.
    Kousik CS, Ikerd JL, Turechek WW. 2018. Development of Phytophthora fruit rot caused by Phytophthora capsici on resistant and susceptible watermelon fruit of different ages. Plant Dis. 102:2370–74
    [Google Scholar]
  65. 65.
    Kousik CS, Ikerd JL, Wechter WP, Branham S, Turechek W. 2022. Broad resistance to post-harvest fruit rot in USVL watermelon germplasm lines to isolates of Phytophthora capsici across the United States. Plant Dis. 106:2711–19
    [Google Scholar]
  66. 66.
    Kousik CS, Ikerd JL, Wechter P, Harrison H, Levi A. 2012. Resistance to Phytophthora fruit rot of watermelon caused by Phytophthora capsici in U.S. plant introductions. HortScience 47:121682–89
    [Google Scholar]
  67. 67.
    Kousik CS, Keinath AP. 2008. First report of insensitivity to cyazofamid among isolates of Phytophthora capsici from the southeastern United States. Plant Dis. 92:6979
    [Google Scholar]
  68. 68.
    Kousik CS, Vogel G, Ikerd JL, Mandal MK, Mazourek M et al. 2021. New sources of resistance in winter squash (Cucurbita moschata) to Phytophthora crown rot and their relationship to cultivated squash. Plant Health Prog. 22:3323–31
    [Google Scholar]
  69. 69.
    Krasnow CS, Hausbeck MK. 2015. Pathogenicity of Phytophthora capsici to Brassica vegetable crops and biofumigation cover crops (Brassica spp.). Plant Dis. 99:121721–26
    [Google Scholar]
  70. 70.
    Krasnow CS, Hausbeck MK. 2016. Evaluation of winter squash and pumpkin cultivars for age-related resistance to Phytophthora capsici fruit rot. HortScience 51:101251–55
    [Google Scholar]
  71. 71.
    Krasnow CS, Naegele RP, Hausbeck MK. 2014. Evaluation of fruit rot resistance in Cucurbita germplasm resistant to Phytophthora capsici crown rot. HortScience 49:3285–88
    [Google Scholar]
  72. 72.
    Lamour KH, Finley L, Hurtado-Gonzáles O, Gobena D, Tierney M, Meijer HJG. 2006. Targeted gene mutation in Phytophthora spp. Mol. Plant-Microbe Interact. 19:121359–67
    [Google Scholar]
  73. 73.
    Lamour KH, Hausbeck MK. 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90:4396–400
    [Google Scholar]
  74. 74.
    Lamour KH, Hausbeck MK. 2001. Investigating the spatiotemporal genetic structure of Phytophthora capsici in Michigan. Phytopathology 91:10973–80
    [Google Scholar]
  75. 75.
    Lamour KH, Hausbeck MK. 2003. Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Dis. 87:7841–45
    [Google Scholar]
  76. 76.
    Lamour KH, Mudge J, Gobena D, Hurtado-Gonzáles OP, Schmutz J et al. 2012. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol. Plant-Microbe Interact. 25:101350–60
    [Google Scholar]
  77. 77.
    Lamour KH, Stam R, Jupe J, Huitema E. 2012. The oomycete broad-host-range pathogen Phytophthora capsici. Mol. Plant Pathol. 13:4329–37
    [Google Scholar]
  78. 78.
    LaPlant KE, Vogel G, Reeves E, Smart CD, Mazourek M. 2020. Performance and resistance to Phytophthora crown and root rot in squash lines. HortTechnology 30:5608–18
    [Google Scholar]
  79. 79.
    Larroque M, Barriot R, Bottin A, Barre A, Rougé P et al. 2012. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genom. 13:1605
    [Google Scholar]
  80. 80.
    Lee J-H, Siddique MI, Kwon J-K, Kang B-C. 2021. Comparative genomic analysis reveals genetic variation and adaptive evolution in the pathogenicity-related genes of Phytophthora capsici. Front. Microbiol. 12:694136
    [Google Scholar]
  81. 81.
    Leonian LH. 1922. Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology 12:9401–8
    [Google Scholar]
  82. 82.
    Li Q, Ai G, Shen D, Zou F, Wang J et al. 2019. A Phytophthora capsici effector targets ACD11 binding partners that regulate ROS-mediated defense response in Arabidopsis. Mol. Plant 12:4565–81
    [Google Scholar]
  83. 83.
    Li Q, Chen Y, Wang J, Zou F, Jia Y et al. 2019. A Phytophthora capsici virulence effector associates with NPR1 and suppresses plant immune responses. Phytopathol. Res. 1:16
    [Google Scholar]
  84. 84.
    Li Q, Wang J, Bai T, Zhang M, Jia Y et al. 2020. A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1. Mol. Plant Pathol. 21:4502–11
    [Google Scholar]
  85. 85.
    Li Y-F, Zhang S-C, Yang X-M, Wang C-P, Huang Q-Z, Huang R-Z 2021. Generation of a high-density genetic map of pepper (Capsicum annuum L.) by SLAF-seq and QTL analysis of Phytophthora capsici resistance. Horticulturae 7:592
    [Google Scholar]
  86. 86.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42:D1D490–95
    [Google Scholar]
  87. 87.
    Lu XH, Zhu SS, Bi Y, Liu XL, Hao JJ. 2010. Baseline sensitivity and resistance-risk assessment of Phytophthora capsici to iprovalicarb. Phytopathology 100:111162–68
    [Google Scholar]
  88. 88.
    Ma D, Jiang J, He L, Cui K, Mu W, Liu F. 2018. Detection and characterization of QoI-resistant Phytophthora capsici causing pepper Phytophthora blight in China. Plant Dis. 102:91725–32
    [Google Scholar]
  89. 89.
    Mafurah JJ, Ma H, Zhang M, Xu J, He F et al. 2015. A virulence essential CRN effector of Phytophthora capsici suppresses host defense and induces cell death in plant nucleus. PLOS ONE 10:5e0127965
    [Google Scholar]
  90. 90.
    Mansfeld BN, Colle M, Kang Y, Jones AD, Grumet R. 2017. Transcriptomic and metabolomic analyses of cucumber fruit peels reveal a developmental increase in terpenoid glycosides associated with age-related resistance to Phytophthora capsici. Hortic. Res. 4:17022
    [Google Scholar]
  91. 91.
    Matheron ME, Porchas M. 2014. Effectiveness of 14 fungicides for suppressing lesions caused by Phytophthora capsici on inoculated stems of chile pepper seedlings. Plant Health Prog. 15:4166–71
    [Google Scholar]
  92. 92.
    Matheron ME, Porchas M. 2015. Effectiveness of nine different fungicides for management of crown and root rot of chile pepper plants caused by Phytophthora capsici. Plant Health Prog. 16:4218–22
    [Google Scholar]
  93. 93.
    Meitz JC, Linde CC, Thompson A, Langenhoven S, McLeod A. 2010. Phytophthora capsici on vegetable hosts in South Africa: distribution, host range and genetic diversity. Australas. Plant Pathol. 39:5431–39
    [Google Scholar]
  94. 94.
    Meyer MD, Hausbeck MK. 2012. Using cultural practices and cultivar resistance to manage Phytophthora crown rot on summer squash. HortScience 47:81080–84
    [Google Scholar]
  95. 95.
    Meyer MD, Hausbeck MK. 2013. Age-related resistance to Phytophthora fruit rot in ‘Dickenson Field’ processing pumpkin and ‘Golden Delicious’ winter squash fruit. Plant Dis. 97:4446–552
    [Google Scholar]
  96. 96.
    Miao J, Cai M, Dong X, Liu L, Lin D et al. 2016. Resistance assessment for oxathiapiprolin in Phytophthora capsici and the detection of a point mutation (G769W) in PcORP1 that confers resistance. Front. Microbiol. 7:615
    [Google Scholar]
  97. 97.
    Mo H, Kim S, Wai KPP, Siddique MI, Yoo H, Kim B-S. 2014. New sources of resistance to Phytophthora capsici in Capsicum spp. Hortic. Environ. Biotechnol. 55:150–55
    [Google Scholar]
  98. 98.
    Naegele RP, Ashrafi H, Hill TA, Chin-Wo SR, Van Deynze AE, Hausbeck MK. 2014. QTL mapping of fruit rot resistance to the plant pathogen Phytophthora capsici in a recombinant inbred line Capsicum annuum population. Phytopathology 104:5479–83
    [Google Scholar]
  99. 99.
    Naegele RP, Boyle S, Quesada-Ocampo LM, Hausbeck MK. 2014. Genetic diversity, population structure, and resistance to Phytophthora capsici of a worldwide collection of eggplant germplasm. PLOS ONE 9:5e95930
    [Google Scholar]
  100. 100.
    Naegele RP, Hausbeck MK. 2020. Phytophthora root rot resistance and its correlation with fruit rot resistance in Capsicum annuum. HortScience 55:121931–37
    [Google Scholar]
  101. 101.
    Naegele RP, Tomlinson AJ, Hausbeck MK. 2015. Evaluation of a diverse, worldwide collection of wild, cultivated, and landrace pepper (Capsicum annuum) for resistance to Phytophthora fruit rot, genetic diversity, and population structure. Phytopathology 105:1110–18
    [Google Scholar]
  102. 102.
    Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G et al. 2005. Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:4698–711
    [Google Scholar]
  103. 103.
    Padley LD, Kabelka EA, Roberts PD. 2009. Inheritance of resistance to crown rot caused by Phytophthora capsici in Cucurbita. HortScience 44:1211–13
    [Google Scholar]
  104. 104.
    Pang Z, Shao J, Chen L, Lu X, Hu J et al. 2013. Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance. PLOS ONE 8:2e56513
    [Google Scholar]
  105. 105.
    Parada-Rojas CH, Granke LL, Naegele RP, Hansen Z, Hausbeck MK et al. 2021. A diagnostic guide for Phytophthora capsici infecting vegetable crops. Plant Health Prog. 22:3404–14
    [Google Scholar]
  106. 106.
    Parada-Rojas CH, Quesada-Ocampo LM. 2018. Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies. Sci. Rep. 8:15194
    [Google Scholar]
  107. 107.
    Parada-Rojas CH, Quesada-Ocampo LM. 2019. Characterizing sources of resistance to Phytophthora blight of pepper caused by Phytophthora capsici in North Carolina. Plant Health Prog. 20:2112–19
    [Google Scholar]
  108. 108.
    Parada-Rojas CH, Quesada-Ocampo LM. 2022. Phytophthora capsici populations are structured by host, geography, and fluopicolide sensitivity. Phytopathology 112:71559–67
    [Google Scholar]
  109. 109.
    Parra G, Ristaino J. 1998. Insensitivity to Ridomil Gold (mefenoxam) found among field isolates of Phytophthora capsici causing Phytophthora blight on bell pepper in North Carolina and New Jersey. Plant Dis. 82:6711
    [Google Scholar]
  110. 110.
    Parra G, Ristaino JB. 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85:101069–75
    [Google Scholar]
  111. 111.
    Pavón CF, Babadoost M, Lambert KN. 2008. Quantification of Phytophthora capsici oospores in soil by sieving-centrifugation and real-time polymerase chain reaction. Plant Dis. 92:1143–49
    [Google Scholar]
  112. 112.
    Pemberton CL, Salmond GPC. 2004. The Nep1-like proteins—a growing family of microbial elicitors of plant necrosis. Mol. Plant Pathol. 5:4353–59
    [Google Scholar]
  113. 113.
    Qu T, Grey TL, Csinos AS, Ji P. 2016. Translocation of oxathiapiprolin in bell pepper plants and systemic protection of plants against Phytophthora blight. Plant Dis. 100:91931–36
    [Google Scholar]
  114. 114.
    Quesada-Ocampo LM, Fulbright DW, Hausbeck MK. 2009. Susceptibility of Fraser fir to Phytophthora capsici. Plant Dis. 93:2135–41
    [Google Scholar]
  115. 115.
    Quesada-Ocampo LM, Granke LL, Hausbeck MK. 2011. Temporal genetic structure of Phytophthora capsici populations from a creek used for irrigation in Michigan. Plant Dis. 95:111358–69
    [Google Scholar]
  116. 116.
    Quesada-Ocampo LM, Granke LL, Mercier MR, Olsen J, Hausbeck MK. 2011. Investigating the genetic structure of Phytophthora capsici populations. Phytopathology 101:91061–73
    [Google Scholar]
  117. 117.
    Quesada-Ocampo LM, Hausbeck MK. 2010. Resistance in tomato and wild relatives to crown and root rot caused by Phytophthora capsici. Phytopathology 100:6619–27
    [Google Scholar]
  118. 118.
    Quesada-Ocampo LM, Vargas AM, Naegele RP, Francis DM, Hausbeck MK. 2016. Resistance to crown and root rot caused by Phytophthora capsici in a tomato advanced backcross of Solanum habrochaites and Solanum lycopersicum. Plant Dis. 100:4829–35
    [Google Scholar]
  119. 119.
    Rabuma T, Gupta OP, Chhokar V. 2020. Phenotypic characterization of chili pepper (Capsicum annuum L.) under Phytophthora capsici infection and analysis of genetic diversity among identified resistance accessions using SSR markers. Physiol. Mol. Plant Pathol. 112:101539
    [Google Scholar]
  120. 120.
    Ramos A, Fu Y, Michael V, Meru G. 2020. QTL-seq for identification of loci associated with resistance to Phytophthora crown rot in squash. Sci. Rep. 10:15326
    [Google Scholar]
  121. 121.
    Rehrig WZ, Ashrafi H, Hill T, Prince J, Van Deynze A. 2014. CaDMR1 cosegregates with QTL Pc5.1 for resistance to Phytophthora capsici in pepper (Capsicum annuum). Plant Genome 7:2plantgenome2014.03.0011
    [Google Scholar]
  122. 122.
    Retes-Manjarrez JE, Rubio-Aragón WA, Márques-Zequera I, Cruz-Lachica I, García-Estrada RS, Sy O. 2020. Novel sources of resistance to Phytophthora capsici on pepper (Capsicum sp.) landraces from Mexico. Plant Pathol. J. 36:6600–7
    [Google Scholar]
  123. 123.
    Ristaino JB, Johnston SA. 1999. Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis. 83:121080–89
    [Google Scholar]
  124. 124.
    Ro N, Haile M, Hur O, Geum B, Rhee J et al. 2022. Genome-wide association study of resistance to Phytophthora capsici in the pepper (Capsicum spp.) collection. Front. Plant Sci. 13:902464
    [Google Scholar]
  125. 125.
    Saltos LA, Corozo-Quiñones L, Pacheco-Coello R, Santos-Ordóñez E, Monteros-Altamirano Á, Garcés-Fiallos FR. 2021. Tissue specific colonization of Phytophthora capsici in Capsicum spp.: molecular insights over plant-pathogen interaction. Phytoparasitica 49:1113–22
    [Google Scholar]
  126. 126.
    Sanogo S, Ji P 2012. Integrated management of Phytophthora capsici on solanaceous and cucurbitaceous crops: current status, gaps in knowledge and research needs. Can. J. Plant Pathol. 34:4479–92
    [Google Scholar]
  127. 127.
    Sanogo S, Lamour KH, Kousik CS, Lozada DN, Parada-Rojas CH et al. 2022. Phytophthora capsici, 100 years later: research mile markers from 1922 to 2022. Phytopathology. In press
    [Google Scholar]
  128. 128.
    Schornack S, van Damme M, Bozkurt TO, Cano LM, Smoker M et al. 2010. Ancient class of translocated oomycete effectors targets the host nucleus. PNAS 107:4017421–26
    [Google Scholar]
  129. 129.
    Siddique MI, Lee H-Y, Ro N-Y, Han K, Venkatesh J et al. 2019. Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci. Rep. 9:19962
    [Google Scholar]
  130. 130.
    Siegenthaler T, Hansen Z. 2021. Fungicide recommendations for Phytophthora blight management in Tennessee in light of newly discovered fungicide resistance Rep. W 1003 Univ. Tenn. Knoxville: https://extension.tennessee.edu/publications/Documents/W1003.pdf
  131. 131.
    Siegenthaler TB, Hansen ZR. 2021. Sensitivity of Phytophthora capsici from Tennessee to mefenoxam, fluopicolide, oxathiapiprolin, dimethomorph, mandipropamid, and cyazofamid. Plant Dis. 105:103000–7
    [Google Scholar]
  132. 132.
    Siegenthaler TB, Lamour K, Hansen ZR. 2022. Population structure of Phytophthora capsici in the state of Tennessee. Mycol. Prog. 21:1159–66
    [Google Scholar]
  133. 133.
    Stajich JE, Vu AL, Judelson HS, Vogel GM, Gore MA et al. 2021. High-quality reference genome sequence for the oomycete vegetable pathogen Phytophthora capsici strain LT1534. Microbiol. Resour. Announc. 10:21e0029521
    [Google Scholar]
  134. 134.
    Stam R, Jupe J, Howden AJM, Morris JA, Boevink PC et al. 2013. Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity. PLOS ONE 8:3e59517
    [Google Scholar]
  135. 135.
    Torto TA, Li S, Styer A, Huitema E, Testa A et al. 2003. EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res. 13:71675–85
    [Google Scholar]
  136. 136.
    Upson JL, Zess EK, Białas A, Wu C, Kamoun S. 2018. The coming of age of EvoMPMI: evolutionary molecular plant-microbe interactions across multiple timescales. Curr. Opin. Plant Biol. 44:108–16
    [Google Scholar]
  137. 137.
    Vogel G, Giles G, Robbins KR, Gore MA, Smart C. 2022. Quantitative genetic analysis of interactions in the pepper-Phytophthora capsici pathosystem. Mol. Plant-Microbe Interact. 75:175467–73
    [Google Scholar]
  138. 138.
    Vogel G, Gore MA, Smart CD. 2021. Genome-wide association study in New York Phytophthora capsici isolates reveals loci involved in mating type and mefenoxam sensitivity. Phytopathology 111:1204–16
    [Google Scholar]
  139. 139.
    Vogel G, LaPlant KE, Mazourek M, Gore MA, Smart CD. 2021. A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theor. Appl. Genet. 134:41015–31
    [Google Scholar]
  140. 140.
    Wang L, Ji P 2021. Fitness and competitive ability of field isolates of Phytophthora capsici resistant or sensitive to fluopicolide. Plant Dis. 105:4873–78
    [Google Scholar]
  141. 141.
    Wang Z, Langston DB, Csinos AS, Gitaitis RD, Walcott RR, Ji P 2009. Development of an improved isolation approach and simple sequence repeat markers to characterize Phytophthora capsici populations in irrigation ponds in southern Georgia. Appl. Environ. Microbiol. 75:175467–73
    [Google Scholar]
  142. 142.
    Wawra S, Belmonte R, Löbach L, Saraiva M, Willems A, van West P. 2012. Secretion, delivery and function of oomycete effector proteins. Curr. Opin. Microbiol. 15:6685–91
    [Google Scholar]
  143. 143.
    Wiant JS, Tucker CM. 1940. A rot of winter queen watermelons caused by Phytophthora capsici. J. Agric. Res. 60:273–88
    [Google Scholar]
  144. 144.
    Xu X, Chao J, Cheng X, Wang R, Sun B et al. 2016. Mapping of a novel race specific resistance gene to Phytophthora root rot of pepper (Capsicum annuum) using bulked segregant analysis combined with specific length amplified fragment sequencing strategy. PLOS ONE 11:3e0151401
    [Google Scholar]
  145. 145.
    Yang X, Tyler BM, Hong C. 2017. An expanded phylogeny for the genus Phytophthora. IMA Fungus 8:2355–84
    [Google Scholar]
  146. 146.
    Yin Z, Wang N, Duan W, Pi L, Shen D, Dou D. 2021. Phytophthora capsici CBM1-containing protein CBP3 is an apoplastic effector with plant immunity-inducing activity. Mol. Plant Pathol. 22:111358–69
    [Google Scholar]
  147. 147.
    Zhang H-X, Feng X-H, Ali M, Jin J-H, Wei A-M et al. 2020. Identification of pepper CaSBP08 gene in defense response against Phytophthora capsici infection. Front. Plant Sci. 11:183
    [Google Scholar]
  148. 148.
    Zhang Z-H, Jin J-H, Sheng G-L, Xing Y-P, Liu W et al. 2021. A small cysteine-rich phytotoxic protein of Phytophthora capsici functions as both plant defense elicitor and virulence factor. Mol. Plant-Microbe Interact. 34:8891–903
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-103801
Loading
/content/journals/10.1146/annurev-phyto-021622-103801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error