1932

Abstract

The group of strains constituting the species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-104551
2023-09-05
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021622-104551.html?itemId=/content/journals/10.1146/annurev-phyto-021622-104551&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahmad S, Lee SY, Kong HG, Jo EJ, Choi HK et al. 2016. Genetic determinants for pyomelanin production and its protective effect against oxidative stress in Ralstonia solanacearum. PLOS ONE 11:e0160845
    [Google Scholar]
  2. 2.
    Ahmed W, Dai Z, Zhang J, Li S, Ahmed A et al. 2022. Plant-microbe interaction: mining the impact of native Bacillus amyloliquefaciens WS-10 on tobacco bacterial wilt disease and rhizosphere microbial communities. Microbiol. Spectr. 10:e0147122
    [Google Scholar]
  3. 3.
    Ailloud F, Lowe T, Cellier G, Roche D, Allen C, Prior P 2015. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genom. 16:270
    [Google Scholar]
  4. 4.
    Alonso-Díaz A, Satbhai SB, de Pedro-Jové R, Berry HM, Göschl C et al. 2021. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum. J. Exp. Bot. 72:2727–40
    [Google Scholar]
  5. 5.
    Alvarez B, Biosca EG. 2017. Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture. Front. Plant Sci. 8:1218
    [Google Scholar]
  6. 6.
    Angot A, Peeters N, Lechner E, Vailleau F, Baud C et al. 2006. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. PNAS 103:14620–25
    [Google Scholar]
  7. 7.
    Aoun N, Desaint H, Boyrie L, Bonhomme M, Deslandes L et al. 2020. A complex network of additive and epistatic quantitative trait loci underlies natural variation of Arabidopsis thaliana quantitative disease resistance to Ralstonia solanacearum under heat stress. Mol. Plant Pathol. 21:1405–20
    [Google Scholar]
  8. 8.
    Aoun N, Tauleigne L, Lonjon F, Deslandes L, Vailleau F et al. 2017. Quantitative disease resistance under elevated temperature: genetic basis of new resistance mechanisms to R. solanacearum. Front. Plant Sci. 8:1387
    [Google Scholar]
  9. 9.
    Badawy MEI, Rabea EI, Eid AR, Badr MM, Marei GIK. 2021. Structure and antimicrobial comparison between N-(benzyl) chitosan derivatives and N-(benzyl) chitosan tripolyphosphate nanoparticles against bacteria, fungi, and yeast. Int. J. Biol. Macromol. 186:724–34
    [Google Scholar]
  10. 10.
    Barchenger DW, Hsu YM, Ou JY, Lin YP, Lin YC et al. 2022. Whole genome resequencing and complementation tests reveal candidate loci contributing to bacterial wilt (Ralstonia sp.) resistance in tomato. Sci. Rep. 12:8374
    [Google Scholar]
  11. 11.
    Baroukh C, Zemouri M, Genin S 2022. Trophic preferences of the pathogen Ralstonia solanacearum and consequences on its growth in xylem sap. MicrobiologyOpen 11:e1240
    [Google Scholar]
  12. 12.
    Berendsen RL, Pieterse CM, Bakker PA. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–86
    [Google Scholar]
  13. 13.
    Bocsanczy AM, Huguet-Tapia JC, Norman DJ. 2017. Comparative genomics of Ralstonia solanacearum identifies candidate genes associated with cool virulence. Front. Plant Sci. 8:1565
    [Google Scholar]
  14. 14.
    Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jaques Miret JA et al. 2019. Pest categorisation of the Ralstonia solanacearum species complex. EFSA J. 17:e05618
    [Google Scholar]
  15. 15.
    Buttimer C, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A 2017. Bacteriophages and bacterial plant diseases. Front. Microbiol. 8:34
    [Google Scholar]
  16. 16.
    Caldwell D, Kim BS, Iyer-Pascuzzi AS. 2017. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology 107:528–36
    [Google Scholar]
  17. 17.
    Castillo JA, Agathos SN. 2019. A genome-wide scan for genes under balancing selection in the plant pathogen Ralstonia solanacearum. BMC Evol. Biol. 19:123
    [Google Scholar]
  18. 18.
    Castillo JA, Secaira-Morocho H, Maldonado S, Sarmiento KN. 2020. Diversity and evolutionary dynamics of antiphage defense systems in Ralstonia solanacearum species complex. Front. Microbiol. 11:961
    [Google Scholar]
  19. 19.
    Chandrasekaran M, Subramanian D, Yoon E, Kwon T, Chun SC. 2016. Meta-analysis reveals that the genus Pseudomonas can be a better choice of biological control agent against bacterial wilt disease caused by Ralstonia solanacearum. Plant Pathol. J. 32:216–27
    [Google Scholar]
  20. 20.
    Clough SE, Jousset A, Elphinstone JG, Friman VP 2022. Combining in vitro and in vivo screening to identify efficient Pseudomonas biocontrol strains against the phytopathogenic bacterium Ralstonia solanacearum. MicrobiologyOpen 11:e1283
    [Google Scholar]
  21. 21.
    Corral J, Sebastià P, Coll NS, Barbé J, Aranda J, Valls M 2020. Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. mSphere 5:e00740–19
    [Google Scholar]
  22. 22.
    Dalsing BL, Truchon AN, Gonzalez-Orta ET, Milling AS, Allen C 2015. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 6:e02471
    [Google Scholar]
  23. 23.
    Dang FF, Wang YN, Yu L, Eulgem T, Lai Y et al. 2013. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ. 36:757–74
    [Google Scholar]
  24. 24.
    de Pedro-Jové R, Puigvert M, Sebastià P, Macho AP, Monteiro JS et al. 2021. Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genom. 22:170
    [Google Scholar]
  25. 25.
    Deberdt P, Davezies I, Coranson-Beaudu R, Jestin A. 2018. Efficacy of leaf oil from Pimenta racemosa var. racemosa in controlling bacterial wilt of tomato. Plant Dis. 102:124–31
    [Google Scholar]
  26. 26.
    Demirjian C, Razavi N, Desaint H, Lonjon F, Genin S et al. 2022. Study of natural diversity in response to a key pathogenicity regulator of Ralstonia solanacearum reveals new susceptibility genes in Arabidopsis thaliana. Mol. Plant Pathol. 23:321–38
    [Google Scholar]
  27. 27.
    Demirjian C, Razavi N, Yu G, Mayjonade B, Zhang L et al. 2023. An atypical NLR gene confers bacterial wilt susceptibility in Arabidopsis. Plant Commun https://doi.org/10.1016/j.xplc.2023.100607
    [Crossref] [Google Scholar]
  28. 28.
    Demirjian C, Vailleau F, Berthomé R, Roux F. 2023. Genome-wide association studies in plant pathosystems: success or failure?. Trends Plant Sci. 4:471–85
    [Google Scholar]
  29. 29.
    Deng X, Zhang N, Li Y, Zhu C, Qu B et al. 2022. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytol. 235:1558–74
    [Google Scholar]
  30. 30.
    Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R. 2021. Fight hard or die trying: when plants face pathogens under heat stress. New Phytol. 229:712–34
    [Google Scholar]
  31. 31.
    Du H, Wen C, Zhang X, Xu X, Yang J et al. 2019. Identification of a major QTL (qRRs-10.1) that confers resistance to Ralstonia solanacearum in pepper (Capsicum annuum) using SLAF-BSA and QTL mapping. Int. J. Mol. Sci. 20:5887
    [Google Scholar]
  32. 32.
    Eckshtain-Levi N, Weisberg AJ, Vinatzer BA. 2018. The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. Mol. Plant Pathol. 19:2187–92
    [Google Scholar]
  33. 33.
    Elmer W, White JC. 2018. The future of nanotechnology in plant pathology. Annu. Rev. Phytopathol. 56:111–33
    [Google Scholar]
  34. 34.
    Elphinstone J 2005. The current bacterial wilt situation: a global view. Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex C Allen, P Prior, AC Hayward 9–28. St. Paul, MN: APS Press
    [Google Scholar]
  35. 35.
    French E, Kim BS, Rivera-Zuluaga K, Iyer-Pascuzzi AS. 2018. Whole root transcriptomic analysis suggests a role for auxin pathways in resistance to Ralstonia solanacearum in tomato. Mol. Plant-Microbe Interact. 31:432–44
    [Google Scholar]
  36. 36.
    Genin S, Denny TP. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 50:67–89
    [Google Scholar]
  37. 37.
    Georgoulis SJ, Shalvarjian KE, Helmann TC, Hamilton CD, Carlson HK et al. 2021. Genome-wide identification of tomato xylem sap fitness factors for three plant-pathogenic Ralstonia species. mSystems 6:e0122921
    [Google Scholar]
  38. 38.
    Gerlin L, Baroukh C, Genin S. 2021. Polyamines: double agents in disease and plant immunity. Trends Plant Sci. 26:1061–71
    [Google Scholar]
  39. 39.
    Gerlin L, Escourrou A, Cassan C, Maviane Macia F, Peeters N et al. 2021. Unravelling physiological signatures of tomato bacterial wilt and xylem metabolites exploited by Ralstonia solanacearum. Environ. Microbiol. 23:5962–78
    [Google Scholar]
  40. 40.
    González-Fuente M, Carrère S, Monachello D, Marsella BG, Cazalé AC et al. 2020. EffectorK, a comprehensive resource to mine for Ralstonia, Xanthomonas, and other published effector interactors in the Arabidopsis proteome. Mol. Plant Pathol. 21:1257–70
    [Google Scholar]
  41. 41.
    Gopalan-Nair R, Jardinaud MF, Legrand L, Landry D, Barlet X et al. 2021. Convergent rewiring of the virulence regulatory network promotes adaptation of Ralstonia solanacearum on resistant tomato. Mol. Biol. Evol. 38:1792–808
    [Google Scholar]
  42. 42.
    Greenrod STE, Stoycheva M, Elphinstone J, Friman VP 2022. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genom. 23:689
    [Google Scholar]
  43. 43.
    Gu S, Wei Z, Shao Z, Friman VP, Cao K et al. 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5:1002–10
    [Google Scholar]
  44. 44.
    Gu Y, Banerjee S, Dini-Andreote F, Xu Y, Shen Q et al. 2022. Small changes in rhizosphere microbiome composition predict disease outcomes earlier than pathogen density variations. ISME J. 16:2448–56
    [Google Scholar]
  45. 45.
    Guidot A, Jiang W, Ferdy JB, Thébaud C, Barberis P et al. 2014. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants. Mol. Biol. Evol. 31:2913–28
    [Google Scholar]
  46. 46.
    Habe I, Miyatake K, Nunome T, Yamasaki M, Hayashi T. 2019. QTL analysis of resistance to bacterial wilt caused by Ralstonia solanacearum in potato. Breed. Sci. 69:592–600
    [Google Scholar]
  47. 47.
    Hamilton CD, Steidl OR, MacIntyre AM, Hendrich CG, Allen C. 2021. Ralstonia solanacearum depends on catabolism of myo-inositol, sucrose, and trehalose for virulence in an infection stage-dependent manner. Mol. Plant-Microbe Interact. 34:669–79
    [Google Scholar]
  48. 48.
    Han S, Yang L, Wang Y, Ran Y, Li S, Ding W. 2021. Preliminary studies on the antibacterial mechanism of a new plant-derived compound, 7-methoxycoumarin, against Ralstonia solanacearum. Front. Microbiol. 12:697911
    [Google Scholar]
  49. 49.
    Hanemian M, Barlet X, Sorin C, Yadeta KA, Keller H et al. 2016. Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway. New Phytol. 211:502–15
    [Google Scholar]
  50. 50.
    Hayashi K, Kai K, Mori Y, Ishikawa S, Ujita Y et al. 2019. Contribution of a lectin, LecM, to the quorum sensing signalling pathway of Ralstonia solanacearum strain OE1-1. Mol. Plant Pathol. 20:334–45
    [Google Scholar]
  51. 51.
    Hida A, Oku S, Kawasaki T, Nakashimada Y, Tajima T, Kato J. 2015. Identification of the mcpA and mcpM genes, encoding methyl-accepting proteins involved in amino acid and l-malate chemotaxis, and involvement of McpM-mediated chemotaxis in plant infection by Ralstonia pseudosolanacearum (formerly Ralstonia solanacearum phylotypes I and III). Appl. Environ. Microbiol. 81:7420–30
    [Google Scholar]
  52. 52.
    Hikichi Y, Mori Y, Ishikawa S, Hayashi K, Ohnishi K et al. 2017. Regulation involved in colonization of intercellular spaces of host plants in Ralstonia solanacearum. Front. Plant Sci. 8:967
    [Google Scholar]
  53. 53.
    Holtappels D, Fortuna K, Lavigne R, Wagemans J. 2021. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol. 68:60–71
    [Google Scholar]
  54. 54.
    Huet G. 2014. Breeding for resistances to Ralstonia solanacearum. Front. Plant Sci. 5:715
    [Google Scholar]
  55. 55.
    Ingel B, Caldwell D, Duong F, Parkinson D, McCulloh K et al. 2022. Revisiting the source of wilt symptoms: x-ray microcomputed tomography provides direct evidence that Ralstonia biomass clogs xylem vessels. PhytoFrontiers 2:41–51
    [Google Scholar]
  56. 56.
    Jacobs JM, Babujee L, Meng F, Milling A, Allen C. 2012. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 3:e00114–12
    [Google Scholar]
  57. 57.
    Jiang H, Lv L, Ahmed T, Jin S, Shahid M et al. 2021. Effect of the nanoparticle exposures on the tomato bacterial wilt disease control by modulating the rhizosphere bacterial community. Int. J. Mol. Sci. 23:414
    [Google Scholar]
  58. 58.
    Kai K, Ohnishi H, Shimatani M, Ishikawa S, Mori Y et al. 2015. Methyl 3-hydroxymyristate, a diffusible signal mediating phc quorum sensing in Ralstonia solanacearum. ChemBioChem 16:2309–18
    [Google Scholar]
  59. 59.
    Kemboi VJ, Kipkoech C, Njire M, Were S, Lagat MK et al. 2022. Biocontrol potential of chitin and chitosan extracted from black soldier fly pupal exuviae against bacterial wilt of tomato. Microorganisms 10:165
    [Google Scholar]
  60. 60.
    Khan RAA, Tang Y, Naz I, Alam SS, Wang W et al. 2021. Management of Ralstonia solanacearum in tomato using ZnO nanoparticles synthesized through Matricaria chamomilla. Plant Dis. 105:3224–30
    [Google Scholar]
  61. 61.
    Khokhani D, Lowe-Power TM, Tran TM, Allen C 2017. A single regulator mediates strategic switching between attachment/spread and growth/virulence in the plant pathogen Ralstonia solanacearum. mBio 8:e00895–17
    [Google Scholar]
  62. 62.
    Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front. Plant Sci. 10:845
    [Google Scholar]
  63. 63.
    Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L et al. 2018. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology 108:1402–11
    [Google Scholar]
  64. 64.
    Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY et al. 2018. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36:1100–9
    [Google Scholar]
  65. 65.
    Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D et al. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28:365–69
    [Google Scholar]
  66. 66.
    Landry D, González-Fuente M, Deslandes L, Peeters N. 2020. The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Mol. Plant Pathol. 21:1377–88
    [Google Scholar]
  67. 67.
    Le KD, Yu NH, Park AR, Park DJ, Kim CJ, Kim JC 2022. Streptomyces sp. AN090126 as a biocontrol agent against bacterial and fungal plant diseases. Microorganisms 10:791
    [Google Scholar]
  68. 68.
    Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–88
    [Google Scholar]
  69. 69.
    Lee S, Chakma N, Joung S, Lee JM, Lee J 2022. QTL mapping for resistance to bacterial wilt caused by two isolates of Ralstonia solanacearum in chili pepper (Capsicum annuum L.). Plants 11:1551
    [Google Scholar]
  70. 70.
    Li S, Pi J, Zhu H, Yang L, Zhang X, Ding W. 2021. Caffeic acid in tobacco root exudate defends tobacco plants from infection by Ralstonia solanacearum. Front. Plant Sci. 12:690586
    [Google Scholar]
  71. 71.
    Lonjon F, Lohou D, Cazalé AC, Büttner D, Ribeiro BG et al. 2017. HpaB-dependent secretion of type III effectors in the plant pathogens Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria. Sci. Rep. 7:4879
    [Google Scholar]
  72. 72.
    Lonjon F, Rengel D, Roux F, Henry C, Turner M et al. 2020. HpaP sequesters HrpJ, an essential component of Ralstonia solanacearum virulence that triggers necrosis in Arabidopsis. Mol. Plant-Microbe Interact. 33:200–11
    [Google Scholar]
  73. 73.
    Lonjon F, Turner M, Henry C, Rengel D, Lohou D et al. 2016. Comparative secretome analysis of Ralstonia solanacearum type 3 secretion-associated mutants reveals a fine control of effector delivery, essential for bacterial pathogenicity. Mol. Cell. Proteom. 15:598–613
    [Google Scholar]
  74. 74.
    Lowe TM, Ailloud F, Allen C. 2015. Hydroxycinnamic acid degradation, a broadly conserved trait, protects Ralstonia solanacearum from chemical plant defenses and contributes to root colonization and virulence. Mol. Plant-Microbe Interact. 28:286–97
    [Google Scholar]
  75. 75.
    Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D et al. 2018. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ. Microbiol. 20:1330–49
    [Google Scholar]
  76. 76.
    Lowe-Power TM, Jacobs JM, Ailloud F, Fochs B, Prior P, Allen C 2016. Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on tobacco. mBio 7:e00656–16
    [Google Scholar]
  77. 77.
    Lowe-Power TM, Khokhani D, Allen C. 2018. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol. 26:929–42
    [Google Scholar]
  78. 78.
    MacIntyre AM, Barth JX, Pellitteri Hahn MC, Scarlett CO, Genin S, Allen C 2020. Trehalose synthesis contributes to osmotic stress tolerance and virulence of the bacterial wilt pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact. 33:462–73
    [Google Scholar]
  79. 79.
    MacIntyre AM, Meline V, Gorman Z, Augustine SP, Dye CJ et al. 2022. Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLOS ONE 17:e0266254
    [Google Scholar]
  80. 80.
    Manriquez B, Muller D, Prigent-Combaret C. 2021. Experimental evolution in plant-microbe systems: a tool for deciphering the functioning and evolution of plant-associated microbial communities. Front. Microbiol. 12:619122
    [Google Scholar]
  81. 81.
    Miljaković D, Marinković J, Balešević-Tubić S 2020. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8:1037
    [Google Scholar]
  82. 82.
    Moon H, Pandey A, Yoon H, Choi S, Jeon H et al. 2021. Identification of RipAZ1 as an avirulence determinant of Ralstonia solanacearum in Solanum americanum. Mol. Plant Pathol. 22:317–33
    [Google Scholar]
  83. 83.
    Morel A, Guinard J, Lonjon F, Sujeeun L, Barberis P et al. 2018. The eggplant AG91–25 recognizes the type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex). Mol. Plant Pathol. 19:2459–72
    [Google Scholar]
  84. 84.
    Mori Y, Hosoi Y, Ishikawa S, Hayashi K, Asai Y et al. 2018. Ralfuranones contribute to mushroom-type biofilm formation by Ralstonia solanacearum strain OE1–1. Mol. Plant Pathol. 19:975–85
    [Google Scholar]
  85. 85.
    Mori Y, Inoue K, Ikeda K, Nakayashiki H, Higashimoto C et al. 2016. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. Mol. Plant Pathol. 17:890–902
    [Google Scholar]
  86. 86.
    Mori Y, Ishikawa S, Ohnishi H, Shimatani M, Morikawa Y et al. 2018. Involvement of ralfuranones in the quorum sensing signalling pathway and virulence of Ralstonia solanacearum strain OE1–1. Mol. Plant Pathol. 19:454–63
    [Google Scholar]
  87. 87.
    Müller DB, Vogel C, Bai Y, Vorholt JA. 2016. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50:211–34
    [Google Scholar]
  88. 88.
    Nahar K, Matsumoto I, Taguchi F, Inagaki Y, Yamamoto M et al. 2014. Ralstonia solanacearum type III secretion system effector Rip36 induces a hypersensitive response in the nonhost wild eggplant Solanum torvum. Mol. Plant Pathol. 15:297–303
    [Google Scholar]
  89. 89.
    Narusaka M, Hatakeyama K, Shirasu K, Narusaka Y. 2014. Arabidopsis dual resistance proteins, both RPS4 and RRS1, are required for resistance to bacterial wilt in transgenic Brassica crops. Plant Signal. Behav. 9:e29130
    [Google Scholar]
  90. 90.
    Olanrewaju OS, Babalola OO. 2019. Streptomyces: implications and interactions in plant growth promotion. Appl. Microbiol. Biotechnol. 103:1179–88
    [Google Scholar]
  91. 91.
    Paudel S, Dobhal S, Alvarez AM, Arif M 2020. Taxonomy and phylogenetic research on Ralstonia solanacearum species complex: a complex pathogen with extraordinary economic consequences. Pathogens 9:886
    [Google Scholar]
  92. 92.
    Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. 2013. Repertoire, unified nomenclature and evolution of the type III effector gene set in the Ralstonia solanacearum species complex. BMC Genom. 14:859
    [Google Scholar]
  93. 93.
    Peeters N, Guidot A, Vailleau F, Valls M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:651–62
    [Google Scholar]
  94. 94.
    Perrier A, Barlet X, Peyraud R, Rengel D, Guidot A, Genin S. 2018. Comparative transcriptomic studies identify specific expression patterns of virulence factors under the control of the master regulator PhcA in the Ralstonia solanacearum species complex. Microb. Pathog. 116:273–78
    [Google Scholar]
  95. 95.
    Perrier A, Barlet X, Rengel D, Prior P, Poussier S et al. 2019. Spontaneous mutations in a regulatory gene induce phenotypic heterogeneity and adaptation of Ralstonia solanacearum to changing environments. Environ. Microbiol. 21:3140–52
    [Google Scholar]
  96. 96.
    Perrier A, Peyraud R, Rengel D, Barlet X, Lucasson E et al. 2016. Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum. PLOS Pathog. 12:e1006044
    [Google Scholar]
  97. 97.
    Peyraud R, Cottret L, Marmiesse L, Genin S. 2018. Control of primary metabolism by a virulence regulatory network promotes robustness in a plant pathogen. Nat. Commun. 9:418
    [Google Scholar]
  98. 98.
    Peyraud R, Cottret L, Marmiesse L, Gouzy J, Genin S. 2016. A resource allocation trade-off between virulence and proliferation drives metabolic versatility in the plant pathogen Ralstonia solanacearum. PLOS Pathog. 12:e1005939
    [Google Scholar]
  99. 99.
    Pfeilmeier S, George J, Morel A, Roy S, Smoker M et al. 2019. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis. Plant Biotechnol. J. 17:569–79
    [Google Scholar]
  100. 100.
    Pilet-Nayel ML, Moury B, Caffier V, Montarry J, Kerlan MC et al. 2017. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front. Plant Sci. 8:1838
    [Google Scholar]
  101. 101.
    Planas-Marquès M, Kressin JP, Kashyap A, Panthee DR, Louws FJ et al. 2020. Four bottlenecks restrict colonization and invasion by the pathogen Ralstonia solanacearum in resistant tomato. J. Exp. Bot. 71:2157–71
    [Google Scholar]
  102. 102.
    Plener L, Boistard P, González A, Boucher C, Genin S. 2012. Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study. PLOS ONE 7:e36877
    [Google Scholar]
  103. 103.
    Pradhanang PM, Momol MT, Olson SM, Jones JB. 2003. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 87:423–27
    [Google Scholar]
  104. 104.
    Prokchorchik M, Pandey A, Moon H, Kim W, Jeon H et al. 2020. Host adaptation and microbial competition drive Ralstonia solanacearum phylotype I evolution in the Republic of Korea. Microb. Genom. 6:000461
    [Google Scholar]
  105. 105.
    Puigvert M, Solé M, López-Garcia B, Coll NS, Beattie KD et al. 2019. Type III secretion inhibitors for the management of bacterial plant diseases. Mol. Plant Pathol. 20:20–32
    [Google Scholar]
  106. 106.
    Qi F, Sun Z, Liu H, Zheng Z, Qin L et al. 2022. QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt. Theor. Appl. Genet. 135:1319–30
    [Google Scholar]
  107. 107.
    Qi P, Huang M, Hu X, Zhang Y, Wang Y et al. 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. Plant Cell 34:1666–83
    [Google Scholar]
  108. 108.
    Raveau R, Fontaine J, Lounès-Hadj Sahraoui A 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods 9:365
    [Google Scholar]
  109. 109.
    Sabbagh CRR, Carrere S, Lonjon F, Vailleau F, Macho AP et al. 2019. Pangenomic type III effector database of the plant pathogenic Ralstonia spp. PeerJ 7:e7346
    [Google Scholar]
  110. 110.
    Sacristán S, García-Arenal F. 2008. The evolution of virulence and pathogenicity in plant pathogen populations. Mol. Plant Pathol. 9:369–84
    [Google Scholar]
  111. 111.
    Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 64:3087–103
    [Google Scholar]
  112. 112.
    Safni I, Subandiyah S, Fegan M. 2018. Epidemiology and disease management of Ralstonia syzygii in Indonesia. Front. Microbiol. 9:419
    [Google Scholar]
  113. 113.
    Salgado-Cruz MP, Salgado-Cruz J, García-Hernández AB, Calderón-Domínguez G, Gómez-Viquez H et al. 2021. Chitosan as a coating for biocontrol in postharvest products: a bibliometric review. Membranes 11:421
    [Google Scholar]
  114. 114.
    Salgon S, Raynal M, Lebon S, Baptiste JM, Daunay MC et al. 2018. Genotyping by sequencing highlights a polygenic resistance to Ralstonia pseudosolanacearum in eggplant (Solanum melongena L.). Int. J. Mol. Sci. 19:357
    [Google Scholar]
  115. 115.
    Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–100
    [Google Scholar]
  116. 116.
    Sebastià P, de Pedro-Jové R, Daubech B, Kashyap A, Coll NS, Valls M 2021. The bacterial wilt reservoir host Solanum dulcamara shows resistance to Ralstonia solanacearum infection. Front. Plant Sci. 12:755708
    [Google Scholar]
  117. 117.
    Sharma A, Abrahamian P, Carvalho R, Choudhary M, Paret ML et al. 2022. Future of bacterial disease management in crop production. Annu. Rev. Phytopathol. 60:259–82
    [Google Scholar]
  118. 118.
    Sharma P, Johnson MA, Mazloom R, Allen C, Heath LS et al. 2022. Meta-analysis of the Ralstonia solanacearum species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Microb. Genom. 8:000791
    [Google Scholar]
  119. 119.
    Song S, Yin W, Sun X, Cui B, Huang L et al. 2020. Anthranilic acid from Ralstonia solanacearum plays dual roles in intraspecies signalling and inter-kingdom communication. ISME J. 14:2248–60
    [Google Scholar]
  120. 120.
    Stulberg MJ, Cai X, Ahmad AA, Huang Q. 2018. Identification of a DNA region associated with the cool virulence of Ralstonia solancearum strain UW551 and its utilization for specific detection of the bacterium's race 3 biovar 2 strains. PLOS ONE 13:e0207280
    [Google Scholar]
  121. 121.
    Su Y, Xu Y, Liang H, Yuan G, Wu X, Zheng D 2021. Genome-wide identification of Ralstonia solanacearum genes required for survival in tomato plants. mSystems 6:e0083821
    [Google Scholar]
  122. 122.
    Suresh P, Shanmugaiah V, Rajagopal R, Muthusamy K, Ramamoorthy V. 2022. Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 119:101836
    [Google Scholar]
  123. 123.
    Tjou-Tam-Sin NNA, van de Bilt JLJ, Westenberg M, Gorkink-Smits PPMA, Landman NM, Bergsma-Vlami M. 2017. Assessing the pathogenic ability of Ralstonia pseudosolanacearum (Ralstonia solanacearum phylotype I) from ornamental Rosa spp. plants. Front Plant Sci. 8:1895
    [Google Scholar]
  124. 124.
    Tondo ML, de Pedro-Jové R, Vandecaveye A, Piskulic L, Orellano EG, Valls M 2020. KatE from the bacterial plant pathogen Ralstonia solanacearum is a monofunctional catalase controlled by HrpG that plays a major role in bacterial survival to hydrogen peroxide. Front. Plant Sci. 11:1156
    [Google Scholar]
  125. 125.
    Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P et al. 2021. Bactericidal and virucidal activities of biogenic metal-based nanoparticles: advances and perspectives. Antibiotics 10:783
    [Google Scholar]
  126. 126.
    Tran TM, MacIntyre A, Hawes M, Allen C. 2016. Escaping underground nets: extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum. PLOS Pathog. 12:e1005686
    [Google Scholar]
  127. 127.
    Tran TM, MacIntyre A, Khokhani D, Hawes M, Allen C. 2016. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Environ. Microbiol. 18:4103–17
    [Google Scholar]
  128. 128.
    Truchon AN, Hendrich CG, Bigott AF, Dalsing BL, Allen C. 2022. NorA, HmpX, and NorB cooperate to reduce NO toxicity during denitrification and plant pathogenesis in Ralstonia solanacearum. Microbiol. Spectr. 10:e0026422
    [Google Scholar]
  129. 129.
    Ujita Y, Sakata M, Yoshihara A, Hikichi Y, Kai K. 2019. Signal production and response specificity in the phc quorum sensing systems of Ralstonia solanacearum species complex. ACS Chem. Biol. 14:2243–51
    [Google Scholar]
  130. 130.
    van Schie CC, Takken FL. 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81
    [Google Scholar]
  131. 131.
    Wang L, Pan T, Gao X, An J, Ning C et al. 2022. Silica nanoparticles activate defense responses by reducing reactive oxygen species under Ralstonia solanacearum infection in tomato plants. NanoImpact 28:100418
    [Google Scholar]
  132. 132.
    Wang X, Wei Z, Yang K, Wang J, Jousset A et al. 2019. Phage combination therapies for bacterial wilt disease in tomato. Nat. Biotechnol. 37:1513–20
    [Google Scholar]
  133. 133.
    Wei Y, Caceres-Moreno C, Jimenez-Gongora T, Wang K, Sang Y et al. 2018. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnol. J. 16:1349–62
    [Google Scholar]
  134. 134.
    Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. 2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6:8413
    [Google Scholar]
  135. 135.
    Wu D, von Roepenack-Lahaye E, Buntru M, de Lange O, Schandry N et al. 2019. A plant pathogen type III effector protein subverts translational regulation to boost host polyamine levels. Cell Host Microbe 26:638–49.e5
    [Google Scholar]
  136. 136.
    Xia Y, Zou R, Escouboué M, Zhong L, Zhu C et al. 2021. Secondary-structure switch regulates the substrate binding of a YopJ family acetyltransferase. Nat. Commun. 12:5969
    [Google Scholar]
  137. 137.
    Xian L, Yu G, Wei Y, Rufian JS, Li Y et al. 2020. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition. Cell Host Microbe 28:548–57.e7
    [Google Scholar]
  138. 138.
    Xue H, Lozano-Durán R, Macho AP 2020. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plants 9:516
    [Google Scholar]
  139. 139.
    Yahiaoui N, Chéron JJ, Ravelomanantsoa S, Hamza AA, Petrousse B et al. 2017. Genetic diversity of the Ralstonia solanacearum species complex in the southwest Indian Ocean islands. Front. Plant Sci. 8:2139
    [Google Scholar]
  140. 140.
    Yan J, Li P, Wang X, Zhu M, Shi H et al. 2022. RasI/R quorum sensing system controls the virulence of Ralstonia solanacearum strain EP1. Appl. Environ. Microbiol. 88:e0032522
    [Google Scholar]
  141. 141.
    Yang L, Ding W, Xu Y, Wu D, Li S et al. 2016. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules 21:468
    [Google Scholar]
  142. 142.
    Yang S, Cai W, Shen L, Cao J, Liu C et al. 2022. A CaCDPK29-CaWRKY27b module promotes CaWRKY40-mediated thermotolerance and immunity to Ralstonia solanacearum in pepper. New Phytol. 233:1843–63
    [Google Scholar]
  143. 143.
    Yao J, Allen C. 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188:3697–708
    [Google Scholar]
  144. 144.
    Ye P, Li X, Cui B, Song S, Shen F et al. 2022. Proline utilization A controls bacterial pathogenicity by sensing its substrate and cofactors. Commun. Biol. 5:496
    [Google Scholar]
  145. 145.
    Yeon J, Le NT, Sim SC. 2022. Assessment of temperature-independent resistance against bacterial wilt using major QTL in cultivated tomato (Solanum lycopersicum L.). Plants 11:2233
    [Google Scholar]
  146. 146.
    Yin J, Zhang Z, Guo Y, Chen Y, Xu Y et al. 2022. Precision probiotics in agroecosystems: multiple strategies of native soil microbiotas for conquering the competitor Ralstonia solanacearum. mSystems 7:e0115921
    [Google Scholar]
  147. 147.
    Yuliar, Nion YA, Toyota K 2015. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ. 30:1–11
    [Google Scholar]
  148. 148.
    Zhang S, Liu X, Zhou L, Deng L, Zhao W et al. 2022. Alleviating soil acidification could increase disease suppression of bacterial wilt by recruiting potentially beneficial rhizobacteria. Microbiol. Spectr. 10:e0233321
    [Google Scholar]
  149. 149.
    Zhao C, Wang H, Lu Y, Hu J, Qu L et al. 2019. Deep sequencing reveals early reprogramming of Arabidopsis root transcriptomes upon Ralstonia solanacearum infection. Mol. Plant-Microbe Interact. 32:813–27
    [Google Scholar]
  150. 150.
    Zhao Y, Zhang C, Chen H, Yuan M, Nipper R et al. 2016. QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Mol. Breed. 36:13
    [Google Scholar]
  151. 151.
    Zheng X, Li X, Wang B, Cheng D, Li Y et al. 2019. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclear-localized effector that suppresses immune responses in potato. Mol. Plant Pathol. 20:547–61
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-104551
Loading
/content/journals/10.1146/annurev-phyto-021622-104551
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error