1932

Abstract

Apple and citrus are perennial tree fruit crops that are vital for nutritional security and agricultural economy and to achieve the Sustainable Development Goals of the United Nations. Apple scab and fire blight, along with Huanglongbing, canker, and tristeza virus, stand out as their most notorious diseases and annually destabilize fruit supply. An environmentally sound approach to managing these diseases is improving tree resistance through breeding and biotechnology. Perennial fruit tree germplasm collections are distributed globally and offer untapped potential as sources of resistance. However, long juvenility, specific pollination and flowering habits, and extensive outcrossing hinder apple and citrus breeding. Advances in breeding approaches include - and genesis, genome editing, and rapid-cycle breeding, which, in addition to conventional crossbreeding, can all facilitate accelerated integration of resistance into elite germplasm. In addition, the global pool of available sources of resistance can be characterized by the existing genetic mapping and gene expression studies for accurate discovery of associated loci, genes, and markers to efficiently include these sources in breeding efforts. We discuss and propose a multitude of approaches to overcome the challenges of breeding for resistance in woody perennials and outline a technical path to reduce the time required for the ultimate deployment of disease-resistant cultivars.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-120124
2024-09-09
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-021622-120124.html?itemId=/content/journals/10.1146/annurev-phyto-021622-120124&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alvarez D, Cerda-Bennasser P, Stowe E, Ramirez-Torres F, Capell T, et al. 2021.. Fruit crops in the era of genome editing: closing the regulatory gap. . Plant Cell Rep. 40:(6):91530
    [Crossref] [Google Scholar]
  2. 2.
    Asins MJ, Bernet GP, Ruiz C, Cambra M, Guerri J, Carbonell EA. 2004.. QTL analysis of Citrus tristeza virus-Citradia interaction. . Theor. Appl. Genet. 108:(4):60311
    [Crossref] [Google Scholar]
  3. 3.
    Asins MJ, Fernández-Ribacoba J, Bernet GP, Gadea J, Cambra M, et al. 2012.. The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. . Mol. Breed. 29:(3):57587
    [Crossref] [Google Scholar]
  4. 4.
    Awan SI, Svara A, Streb N, Feulner H, Thapa R, Khan A. 2023.. Evaluation of Malus germplasm identifies genetic sources of powdery mildew and frogeye leaf spot resistance for apple breeding. . Phytopathology 113:(7):12891300
    [Crossref] [Google Scholar]
  5. 5.
    Bakır M, Dumanoglu H, Aygun A, Erdogan V, Dost SE, et al. 2022.. Genetic diversity and population structure of apple germplasm from Eastern Black Sea region of Turkey by SSRs. . Sci. Hortic. 294::110793
    [Crossref] [Google Scholar]
  6. 6.
    Balan B, Ibáñez AM, Dandekar AM, Caruso T, Martinelli F. 2018.. Identifying host molecular features strongly linked with responses to Huanglongbing disease in Citrus leaves. . Front. Plant Sci. 9::277
    [Crossref] [Google Scholar]
  7. 7.
    Barkley NA, Roose ML, Krueger RR, Federici CT. 2006.. Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). . Theor. Appl. Genet. 112:(8):151931
    [Crossref] [Google Scholar]
  8. 8.
    Barrett HC. 1994.. US 145 Citrus breeding line. . HortScience 29:(6):702
    [Crossref] [Google Scholar]
  9. 9.
    Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M. 2014.. Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of “Président Roulin” against Venturia inaequalis. . BMC Genom. 15:(1):1043
    [Crossref] [Google Scholar]
  10. 10.
    Bastianel M, Cristofani-Yaly M, de Oliveira AC, Freitas-Astúa J, Garcia AAF, et al. 2009.. Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Citrus reticulata Blanco × C. sinensis L. Osbeck) × C. sinensis L. Osb. . Euphytica 169:(1):10111
    [Crossref] [Google Scholar]
  11. 11.
    Bénéjam J, Ravon E, Gaucher M, Brisset M-N, Durel C-E, et al. 2020.. Acibenzolar-S-methyl and resistance quantitative trait loci complement each other to control apple scab and fire blight. . Plant Dis. 105:(6):170210
    [Crossref] [Google Scholar]
  12. 12.
    Biswas MK, Bagchi M, Deng X, Chai L. 2020.. Genetic resources of Citrus and related genera. . In The Citrus Genome, ed. A Gentile, S La Malfa, Z Deng , pp. 2331. Cham, Switz.:: Springer
    [Google Scholar]
  13. 13.
    Brown S, Maloney K. 2018.. Update on new apple varieties, managed varieties and clubs. . NY Fruit Q. 26:(2):510
    [Google Scholar]
  14. 14.
    Bühlmann A, Gassmann J, Ingenfeld A, Hunziker K, Kellerhals M, Frey JE. 2015.. Molecular characterisation of the Swiss fruit genetic resources. . Erwerbs-Obstbau 57:(1):2934
    [Crossref] [Google Scholar]
  15. 15.
    Calenge F, Durel C-E. 2006.. Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. . Mol. Breed. 17:(4):32939
    [Crossref] [Google Scholar]
  16. 16.
    Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, et al. 2004.. Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. . Phytopathology 94:(4):37079
    [Crossref] [Google Scholar]
  17. 17.
    Campa M, Piazza S, Righetti L, Oh C, Conterno L, et al. 2018.. HIPM is a susceptibility gene of Malus spp.: reduced expression reduces susceptibility to Erwinia amylovora. . Mol. Plant-Microbe Interact. 32:(2):16775
    [Crossref] [Google Scholar]
  18. 18.
    Chen P-S, Wang L-Y, Chen Y-J, Tzeng K-C, Chang S-C, et al. 2012.. Understanding cellular defence in kumquat and calamondin to citrus canker caused by Xanthomonascitri subsp. citri. . Physiol. Mol. Plant Pathol. 79::112
    [Crossref] [Google Scholar]
  19. 19.
    Cornille A, Giraud T, Smulders MJM, Roldán-Ruiz I, Gladieux P. 2014.. The domestication and evolutionary ecology of apples. . Trends Genet. 30:(2):5765
    [Crossref] [Google Scholar]
  20. 20.
    Corwin JA, Kliebenstein DJ. 2017.. Quantitative resistance: more than just perception of a pathogen. . Plant Cell 29::65565
    [Crossref] [Google Scholar]
  21. 21.
    de Oliveira MLP, de Lima Silva CC, Abe VY, Costa MGC, Cernadas RA, Benedetti CE. 2013.. Increased resistance against Citrus canker mediated by a Citrus mitogen-activated protein kinase. . Mol. Plant-Microbe Interact. 26:(10):119099
    [Crossref] [Google Scholar]
  22. 22.
    de Souza-Neto RR, Carvalho IGB, Martins PMM, Picchi SC, Tomaz JP, et al. 2022.. MqsR toxin as a biotechnological tool for plant pathogen bacterial control. . Sci. Rep. 12:(1):2794
    [Crossref] [Google Scholar]
  23. 23.
    Deng ZN, Xu L, Li DZ, Long GY, Liu LP, et al. 2010.. Screening citrus genotypes for resistance to canker disease (Xanthomonas axonopodis pv. citri). . Plant Breed. 129:(3):34145
    [Crossref] [Google Scholar]
  24. 24.
    Dougherty L, Wallis A, Cox K, Zhong G-Y, Gutierrez B. 2021.. Phenotypic evaluation of fire blight outbreak in the USDA Malus collection. . Agronomy 11:(1):144
    [Crossref] [Google Scholar]
  25. 25.
    Duan N, Bai Y, Sun H, Wang N, Ma Y, et al. 2017.. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. . Nat. Commun. 8:(1):249
    [Crossref] [Google Scholar]
  26. 26.
    Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E. 2003.. Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. . Phytopathology 93:(12):1496504
    [Crossref] [Google Scholar]
  27. 27.
    Fan J, Chen C, Yu Q, Khalaf A, Achor DS, et al. 2012.. Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘Candidatus Liberibacter asiaticus’ infection. . Mol. Plant-Microbe Interact. 25:(11):1396407
    [Crossref] [Google Scholar]
  28. 28.
    FAOSTAT. 2021.. Food and agriculture data. . FAO. https://www.fao.org/faostat/
    [Google Scholar]
  29. 29.
    Flachowsky H, Le Roux P-M, Peil A, Patocchi A, Richter K, Hanke M-V. 2011.. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. . New Phytol. 192:(2):36477
    [Crossref] [Google Scholar]
  30. 30.
    Flachowsky H, Szankowski I, Fischer TC, Richter K, Peil A, et al. 2010.. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight. . Planta 231:(3):62335
    [Crossref] [Google Scholar]
  31. 31.
    Furr JR, Cooper WC, Reece PC. 1947.. An investigation of flower formation in adult and juvenile Citrus trees. . Am. J. Bot. 34:(1):18
    [Crossref] [Google Scholar]
  32. 32.
    Gao Y, Xu J, Li Z, Zhang Y, Riera N, et al. 2023.. Citrus genomic resources unravel putative genetic determinants of Huanglongbing pathogenicity. . iScience 26:(2):106024
    [Crossref] [Google Scholar]
  33. 33.
    García-Lor A, Luro F, Navarro L, Ollitrault P. 2012.. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. . Mol. Genet. Genom. 287:(1):7794
    [Crossref] [Google Scholar]
  34. 34.
    Gardner KM, Schwaninger HR, Dann S, Baldo AM, Chao CT, et al. 2013.. Genome-wide survey of genetic diversity in apple using genotyping-by-sequencing. Abstract presented at the 21st Annual International Plant & Animal Genome Conference, San Diego:
    [Google Scholar]
  35. 35.
    Geibel M, Hohlfeld B. 2003.. Malus germplasm from Asia and its evaluation at the German fruit genebank. . Acta Hortic. 623::27582
    [Crossref] [Google Scholar]
  36. 36.
    Gerlach C. 2022.. Industry outlook 2022. Rep., USApple, Falls Church, VA:. https://usapple.org/wp-content/uploads/2022/08/USAPPLE-INDUSTRYOUTLOOK-2022.pdf
    [Google Scholar]
  37. 37.
    Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, et al. 2009.. Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. . Genet. Resour. Crop Evol. 56:(6):82942
    [Crossref] [Google Scholar]
  38. 38.
    Gottwald TR, Graham JH, Schubert TS. 2002.. Citrus canker: the pathogen and its impact. . Plant Health Progr. https://doi.org/10.1094/PHP-2002-0812-01-RV
    [Google Scholar]
  39. 39.
    Gross BL, Henk AD, Richards CM, Fazio G, Volk GM. 2014.. Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. . Am. J. Bot. 101:(10):177079
    [Crossref] [Google Scholar]
  40. 40.
    Gross BL, Volk GM, Richards CM, Reeves PA, Henk AD, et al. 2013.. Diversity captured in the USDA-ARS national plant germplasm system apple core collection. . J. Am. Soc. Hortic. Sci. 138:(5):37581
    [Crossref] [Google Scholar]
  41. 41.
    Gutierrez B, Volk G, Meakem V, Dellefave D, Keeton J, et al. 2021.. The United States Department of Agriculture National Plant Germplasm System apple collection: program and impact—DRAFT. Rep. , Plant Genet. Resour. Unit, Geneva, NY:. https://www.ars.usda.gov/northeast-area/geneva-ny/plant-genetic-resources-unit-pgru/apple-collection/apple-impact/
    [Google Scholar]
  42. 42.
    Hanke M-V, Flachowsky H, Peil A, Hättasch C. 2007.. No flower no fruit—genetic potentials to trigger flowering in fruit trees. . Genes Genomes Genom. 1:(1):120
    [Google Scholar]
  43. 43.
    Hiraoka Y. 2020.. Application of high-density SNP genotyping array in citrus germplasm characterization and genetic dissection of traits. PhD Diss. , Univ. Calif. Riverside, Riverside, CA:
    [Google Scholar]
  44. 44.
    Hisada S, Akihama T, Endo T, Moriguchi T, Omura M. 1997.. Expressed sequence tags of Citrus fruit during rapid cell development phase. . J. Am. Soc. Hortic. Sci. 122:(6):80812
    [Crossref] [Google Scholar]
  45. 45.
    Höfer M, Flachowsky H, Hanke M-V. 2019.. German Fruit Genebank—looking back 10 years after launching a national network for sustainable preservation of fruit genetic resources. . J. Cultiv. Plants 71:(2–3):4151
    [Google Scholar]
  46. 46.
    Höfer M, Flachowsky H, Schröpfer S, Peil A. 2021.. Evaluation of scab and mildew resistance in the gene bank collection of apples in Dresden-Pillnitz. . Plants 10:(6):1227
    [Crossref] [Google Scholar]
  47. 47.
    Huang M, Roose ML, Yu Q, Du D, Yu Y, et al. 2018.. Construction of high-density genetic maps and detection of QTLs associated with Huanglongbing tolerance in Citrus. . Front. Plant Sci. 9::1694
    [Crossref] [Google Scholar]
  48. 48.
    Huang M, Roose ML, Yu Q, Stover E, Hall DG, et al. 2022.. Mapping of QTLs and candidate genes associated with multiple phenotypic traits for Huanglongbing tolerance in citrus. . Hortic. Plant J. 9::70519
    [Crossref] [Google Scholar]
  49. 49.
    Huang X, Jia H, Xu J, Wang Y, Wen J, Wang N. 2023.. Transgene-free genome editing of vegetatively propagated and perennial plant species in the T0 generation via a co-editing strategy. . Nat. Plants 9::159197
    [Crossref] [Google Scholar]
  50. 50.
    Huang X, Wang Y, Wang N. 2022.. Highly efficient generation of canker-resistant sweet orange enabled by an improved CRISPR/Cas9 system. . Front. Plant Sci. 12::769907
    [Crossref] [Google Scholar]
  51. 51.
    Huang X, Wang Y, Xu J, Wang N. 2020.. Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations. . Plant Mol. Biol. 104:(3):297307
    [Crossref] [Google Scholar]
  52. 52.
    Hutabarat OS, Flachowsky H, Regos I, Miosic S, Kaufmann C, et al. 2016.. Transgenic apple plants overexpressing the chalcone 3-hydroxylase gene of Cosmos sulphureus show increased levels of 3-hydroxyphloridzin and reduced susceptibility to apple scab and fire blight. . Planta 243:(5):121324
    [Crossref] [Google Scholar]
  53. 53.
    Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, et al. 2020.. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. . Hortic. Res. 7::177
    [Crossref] [Google Scholar]
  54. 54.
    Imai A, Kuniga T, Yoshioka T, Nonaka K, Mitani N, et al. 2017.. Genetic background, inbreeding, and genetic uniformity in the national Citrus breeding program, Japan. . Hortic. J. 86:(2):2007
    [Crossref] [Google Scholar]
  55. 55.
    Imai A, Kuniga T, Yoshioka T, Nonaka K, Mitani N, et al. 2019.. Single-step genomic prediction of fruit-quality traits using phenotypic records of non-genotyped relatives in citrus. . PLOS ONE 14:(8):e0221880
    [Crossref] [Google Scholar]
  56. 56.
    Imai A, Kuniga T, Yoshioka T, Nonaka K, Mitani N. 2023.. Genetic dissection of complex traits in citrus: additive and non-additive genetic variances, inbreeding depression, and single-chromosome heritability. . Sci. Hortic. 315::111985
    [Crossref] [Google Scholar]
  57. 57.
    Inst. Health Metrics Eval. 2019.. Global burden of disease (GBD). Rep. , IHME, Seattle, WA:. https://www.healthdata.org/research-analysis/gbd
    [Google Scholar]
  58. 58.
    Janick J. 2002.. History of the PRI apple breeding program. . Acta Hortic. 595::5560
    [Crossref] [Google Scholar]
  59. 59.
    Jia H, Wang N. 2014.. Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. . Plant Cell Rep. 33:(12):19932001
    [Crossref] [Google Scholar]
  60. 60.
    Jia H, Zhang Y, Orbović V, Xu J, White FF, et al. 2017.. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. . Plant Biotechnol. J. 15:(7):81723
    [Crossref] [Google Scholar]
  61. 61.
    Jung M, Roth M, Aranzana MJ, Auwerkerken A, Bink M, et al. 2020.. The apple REFPOP—a reference population for genomics-assisted breeding in apple. . Hortic. Res. 7::189
    [Crossref] [Google Scholar]
  62. 62.
    Kahn TL, Krueger RR, Gumpf DJ, Roose ML, Arpaia ML, et al. 2001.. Citrus genetic resources in California: analysis and recommendations for long-term conservation. Rep. 22 , Citrus Genet. Resour. Assess. Task Force, Davis, CA:
    [Google Scholar]
  63. 63.
    Karp D. 2023.. The citron in the United States. . In The Citron Compendium, ed. EE Goldschmidt, M Bar-Joseph , pp. 32969. Cham, Switz:.: Springer
    [Google Scholar]
  64. 64.
    Khan A, Korban SS. 2022.. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. . Theor. Appl. Genet. 135:(11):396185
    [Crossref] [Google Scholar]
  65. 65.
    Khan MA, Korban SS. 2012.. Association mapping in forest trees and fruit crops. . J. Exp. Bot. 63:(11):404560
    [Crossref] [Google Scholar]
  66. 66.
    Kim J-H, Oh Y, Lee G-A, Soon Kwon Y, Ae Kim S, et al. 2019.. Genetic diversity, structure, and core collection of Korean apple germplasm using simple sequence repeat markers. . Hortic. J. 88:(3):32937
    [Crossref] [Google Scholar]
  67. 67.
    Korban SS, Ries SM, Klopmayer MJ, Morrisey JF, Hattermann DR. 1988.. Genotypic responses of scab-resistant apple cultivars/selections to two strains of Erwinia amylovora and the inheritance of resistance to fire blight. . Ann. Appl. Biol. 113:(1):1015
    [Crossref] [Google Scholar]
  68. 68.
    Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GAL. 2015.. Development of the first cisgenic apple with increased resistance to fire blight. . PLOS ONE 10:(12):e0143980
    [Crossref] [Google Scholar]
  69. 69.
    Kotoda N. 2021.. Flowering and juvenility in apple. . In The Apple Genome, ed. SS Korban , pp. 22746. Cham, Switz:.: Springer
    [Google Scholar]
  70. 70.
    Labuschagné IF, Louw JH, Schmidt K, Sadie A. 2002.. Genetic variation in chilling requirement in apple progeny. . J. Am. Soc. Hortic. Sci. 127:(4):66372
    [Crossref] [Google Scholar]
  71. 71.
    Lacis G, Kota I, Ikase L, Rungis D. 2011.. Molecular characterization of the Latvian apple (Malus) genetic resource collection based on SSR markers and scab resistance gene Vf analysis. . Plant Genet. Resour. 9:(2):18992
    [Crossref] [Google Scholar]
  72. 72.
    Lander ES, Botstein D. 1989.. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. . Genetics 121:(1):18599
    [Crossref] [Google Scholar]
  73. 73.
    Larsen AS, Asmussen CB, Coart E, Olrik DC, Kjær ED. 2006.. Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). . Tree Genet. Genomes 2:(2):8697
    [Crossref] [Google Scholar]
  74. 74.
    Larsen B, Gardner K, Pedersen C, Ørgaard M, Migicovsky Z, et al. 2018.. Population structure, relatedness and ploidy levels in an apple gene bank revealed through genotyping-by-sequencing. . PLOS ONE 13:(8):e0201889
    [Crossref] [Google Scholar]
  75. 75.
    Lassois L, Denancé C, Ravon E, Guyader A. 2016.. Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. . Plant Mol. Biol. Rep. 34::82744
    [Crossref] [Google Scholar]
  76. 76.
    Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, et al. 2018.. An integrated approach for increasing breeding efficiency in apple and peach in Europe. . Hortic. Res. 5::11
    [Crossref] [Google Scholar]
  77. 77.
    Liang M, Cao Z, Zhu A, Liu Y, Tao M, et al. 2020.. Evolution of self-compatibility by a mutant Sm-RNase in citrus. . Nat. Plants 6:(2):13142
    [Crossref] [Google Scholar]
  78. 78.
    Liang W, Dondini L, De Franceschi P, Paris R, Sansavini S, Tartarini S. 2015.. Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. . Plant Mol. Biol. Rep. 33:(3):45873
    [Crossref] [Google Scholar]
  79. 79.
    Lima RPM, Curtolo M, Merfa MV, Cristofani-Yaly M, Machado MA. 2018.. QTLs and eQTLs mapping related to citrandarins’ resistance to citrus gummosis disease. . BMC Genom. 19:(1):516
    [Crossref] [Google Scholar]
  80. 80.
    Ma W, Pang Z, Huang X, Xu J, Pandey SS, et al. 2022.. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. . Nat. Commun. 13:(1):529
    [Crossref] [Google Scholar]
  81. 81.
    MacHardy WE. 1996.. Apple Scab: Biology, Epidemiology and Management. St. Paul, MN:: APS Press
    [Google Scholar]
  82. 82.
    Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, et al. 2016.. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. . Front. Plant Sci. 7::1904
    [Crossref] [Google Scholar]
  83. 83.
    Mazeikienė I, Siksnianienė JB, Baniulis D, Gelvonauskienė D, Frercks B, et al. 2019.. SSR analysis based on molecular characterisation of apple germplasm in Lithuania. . Zemdirbyste 106:(2):15966
    [Crossref] [Google Scholar]
  84. 84.
    Meland M, Aksic MF, Frøynes O, Konjic A, Lasic L, et al. 2022.. Genetic identity and diversity of apple accessions within a candidate collection for the Norwegian national clonal germplasm repository. . Horticulturae 8:(7):630
    [Crossref] [Google Scholar]
  85. 85.
    Migicovsky Z, Douglas GM, Myles S. 2022.. Genotyping-by-sequencing of Canada's apple biodiversity collection. . Front. Genet. 13::934712
    [Crossref] [Google Scholar]
  86. 86.
    Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L. 2008.. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. . Mol. Plant Pathol. 9:(2):25168
    [Crossref] [Google Scholar]
  87. 87.
    Mustafa G, Usman M, Joyia FA, Khan MS. 2021.. Citrus biotechnology : current innovations and future prospects. . In Citrus—Research, Development and Biotechnology, ed. MS Khan, IA Khan , p. 330. London:: IntechOpen
    [Google Scholar]
  88. 88.
    Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P. 2018.. Navigating complexity to breed disease-resistant crops. . Nat. Rev. Genet. 19:(1):2133
    [Crossref] [Google Scholar]
  89. 89.
    Nishitani C, Hirai N, Komori S, Wada M, Okada K, et al. 2016.. Efficient genome editing in apple using a CRISPR/Cas9 system. . Sci. Rep. 6::31481
    [Crossref] [Google Scholar]
  90. 90.
    Papp D, Gao L, Thapa R, Olmstead D, Khan A. 2020.. Field apple scab susceptibility of a diverse Malus germplasm collection identifies potential sources of resistance for apple breeding. . CABI Agric. Biosci. 1:(1):16
    [Crossref] [Google Scholar]
  91. 91.
    Papp D, Singh J, Gadoury DM, Khan A. 2019.. New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. . Plant Dis. 104::64955
    [Crossref] [Google Scholar]
  92. 92.
    Patocchi A, Wehrli A, Dubuis P-H, Auwerkerken A, Leida C, et al. 2020.. Ten years of VINQUEST: first insight for breeding new apple cultivars with durable apple scab resistance. . Plant Dis. 104::207481
    [Crossref] [Google Scholar]
  93. 93.
    Patzak J, Paprštein F, Henychová A, Sedlák J. 2012.. Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus × domestica) genetic resources. . Genome 55:(9):64765
    [Crossref] [Google Scholar]
  94. 94.
    Peil A, Emeriewen OF, Khan A, Kostick S, Malnoy M. 2021.. Status of fire blight resistance breeding in Malus. . J. Plant Pathol. 103:(1):312
    [Crossref] [Google Scholar]
  95. 95.
    Peña L, Martín-Trillo M, Juárez J, Pina JA, Navarro L, Martínez-Zapater JM. 2001.. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. . Nat. Biotechnol. 19:(3):26367
    [Crossref] [Google Scholar]
  96. 96.
    Perchepied L, Chevreau E, Ravon E, Gaillard S, Pelletier S, et al. 2021.. Successful intergeneric transfer of a major apple scab resistance gene (Rvi6) from apple to pear and precise comparison of the downstream molecular mechanisms of this resistance in both species. . BMC Genom. 22:(1):843
    [Crossref] [Google Scholar]
  97. 97.
    Poland J, Rutkoski J. 2016.. Advances and challenges in genomic selection for disease resistance. . Annu. Rev. Phytopathol. 54::7998
    [Crossref] [Google Scholar]
  98. 98.
    Pompili V, Dalla Costa L, Piazza S, Pindo M, Malnoy M. 2020.. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system. . Plant Biotechnol. J. 18:(3):84558
    [Crossref] [Google Scholar]
  99. 99.
    Rai M. 2006.. Refinement of the citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. . Plant Mol. Biol. 61:(3):399414
    [Crossref] [Google Scholar]
  100. 100.
    Ramadugu C, Keremane ML, Halbert SE, Duan YP, Roose ML, et al. 2016.. Long-term field evaluation reveals Huanglongbing resistance in Citrus relatives. . Plant Dis. 100:(9):185869
    [Crossref] [Google Scholar]
  101. 101.
    Rao MJ, Zuo H, Xu Q. 2021.. Genomic insights into citrus domestication and its important agronomic traits. . Plant Commun. 2:(1):100138
    [Crossref] [Google Scholar]
  102. 102.
    Ribeiro C, Xu J, Hendrich C, Pandey SS, Yu Q, et al. 2023.. Seasonal transcriptome profiling of susceptible and tolerant Citrus cultivars to citrus Huanglongbing. . Phytopathology 113:(2):28698
    [Crossref] [Google Scholar]
  103. 103.
    Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood DR, et al. 2009.. Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. . Tree Genet. Genomes 5:(2):33947
    [Crossref] [Google Scholar]
  104. 104.
    Ríos G, Naranjo MA, Iglesias DJ, Ruiz-Rivero O, Geraud M, et al. 2008.. Characterization of hemizygous deletions in Citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome. . BMC Genom. 9:(1):381
    [Crossref] [Google Scholar]
  105. 105.
    Robinson T, Aldwinckle H, Fazio G, Holleran T. 2003.. The Geneva series of apple rootstocks from Cornell: performance, disease resistance, and commercialization. . Acta Hortic. 622::51320
    [Crossref] [Google Scholar]
  106. 106.
    Samarina LS, Kulyan RV, Koninskaya NG, Gorshkov VM, Ryndin AV, et al. 2021.. Genetic diversity and phylogenetic relationships among citrus germplasm in the Western Caucasus assessed with SSR and organelle DNA markers. . Sci. Hortic. 288::110355
    [Crossref] [Google Scholar]
  107. 107.
    Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke M-V, Patocchi A. 2018.. Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. . Planta 247:(6):147588
    [Crossref] [Google Scholar]
  108. 108.
    Schmidt H. 1988.. Criteria and procedures for evaluating apomictic rootstocks for apple. . HortScience 23:(1):1047
    [Crossref] [Google Scholar]
  109. 109.
    Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, et al. 2014.. Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. . Tree Genet. Genomes 10:(2):25160
    [Crossref] [Google Scholar]
  110. 110.
    Sendín LN, Orce IG, Gómez RL, Enrique R, Grellet Bournonville CF, et al. 2017.. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease. . Plant Mol. Biol. 93::60721
    [Crossref] [Google Scholar]
  111. 111.
    Shi Q, Febres VJ, Jones JB, Moore GA. 2016.. A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance to Xanthomonas citri ssp. . citri. Hortic. Res. 3:(1):16022
    [Crossref] [Google Scholar]
  112. 112.
    Shlyavas AV, Trifonova AA, Shamshin IN, Boris KV, Kudryavtsev AM. 2021.. Genetic diversity of apple landraces from VIR collection based on SSR markers. . Acta Hortic. 1307::1058
    [Crossref] [Google Scholar]
  113. 113.
    Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, et al. 2008.. Multiple models for Rosaceae genomics. . Plant Physiol. 147:(3):9851003
    [Crossref] [Google Scholar]
  114. 114.
    Silva PJK, Singh J, Bednarek R, Fei Z. 2019.. Differential gene regulatory pathways and co-expression networks associated with fire blight infection in apple (Malus × domestica). . Hortic. Res. 6::35
    [Crossref] [Google Scholar]
  115. 115.
    Sinn JP, Held JB, Vosburg C, Klee SM, Orbovic V, et al. 2021.. Flowering Locus T chimeric protein induces floral precocity in edible citrus. . Plant Biotechnol. J. 19:(2):21517
    [Crossref] [Google Scholar]
  116. 116.
    Siviero A, Cristofani M, Furtado EL, Garcia AAF, Coelho ASG, Machado MA. 2006.. Identification of QTLs associated with citrus resistance to Phytophthora gummosis. . J. Appl. Genet. 47:(1):2328
    [Crossref] [Google Scholar]
  117. 117.
    Skytte af Sätra J, Troggio M, Odilbekov F, Sehic J, Mattisson H, et al. 2020.. Genetic status of the Swedish central collection of heirloom apple cultivars. . Sci. Hortic. 272::109599
    [Crossref] [Google Scholar]
  118. 118.
    Soares JM, Weber KC, Qiu W, Stanton D, Mahmoud LM, et al. 2020.. The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. . Sci. Rep. 10:(1):21404
    [Crossref] [Google Scholar]
  119. 119.
    Srivastava JN, Singh AK. 2022.. Major diseases of Citrus and their management. . In Diseases of Horticultural Crops: Diagnosis and Management, Vol. 1: Fruit Crops, ed. JN Srivastava, AK Singh , p. 480. Boca Raton, FL:: CRC Press
    [Google Scholar]
  120. 120.
    Stankiewicz-Kosyl M, Pitera E, Gawronski SW. 2005.. Mapping QTL involved in powdery mildew resistance of the apple clone U 211. . Plant Breed. 124:(1):6366
    [Crossref] [Google Scholar]
  121. 121.
    Su H, Wang Y, Xu J, Omar AA, Grosser JW, et al. 2023.. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation. . Nat. Commun. 14:(1):3957
    [Crossref] [Google Scholar]
  122. 122.
    Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, et al. 2020.. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. . Nat. Genet. 52::142332
    [Crossref] [Google Scholar]
  123. 123.
    Thapa R, Singh J, Gutierrez B, Arro J, Khan A. 2021.. Genome-wide association mapping identifies novel loci underlying fire blight resistance in apple. . Plant Genome 14:(2):e20087
    [Crossref] [Google Scholar]
  124. 124.
    Thomma BPHJ, Nu T, Joosten MHAJ. 2011.. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. . Plant Cell 23::415
    [Crossref] [Google Scholar]
  125. 125.
    Turechek WW. 2004.. Apple diseases and their management. . In Diseases of Fruits and Vegetables, Vol. 1: Diagnosis and Management, ed. SAMH Naqvi , pp. 1108. Dordrecht, Neth:.: Springer
    [Google Scholar]
  126. 126.
    Turner JA. 2020.. Recent trends in the EU status of pesticides. . BCPC. https://www.bcpc.org/latest-news/recent-trends-in-the-eu-status-of-pesticides
    [Google Scholar]
  127. 127.
    UN. 2023.. The sustainable development goals report: special edition. Rep. , UN, New York:. https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf
    [Google Scholar]
  128. 128.
    Urrestarazu J, Denancé C, Ravon E, Guyader A, Guisnel R, et al. 2016.. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. . BMC Plant Biol. 16:(1):130
    [Crossref] [Google Scholar]
  129. 129.
    Urrestarazu J, Miranda C, Santesteban LG, Royo JB. 2012.. Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. . Tree Genet. Genomes 8::116380
    [Crossref] [Google Scholar]
  130. 130.
    Van Treuren R, Kemp H, Ernsting G, Jongejans B, Houtman H, Visser L. 2010.. Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. . Genet. Resour. Crop Evol. 57::85365
    [Crossref] [Google Scholar]
  131. 131.
    Vanderzande S, Micheletti D, Troggio M, Davey MW, Keulemans J. 2017.. Genetic diversity, population structure, and linkage disequilibrium of elite and local apple accessions from Belgium using the IRSC array. . Tree Genet. Genomes 13:(6):125
    [Crossref] [Google Scholar]
  132. 132.
    Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010.. The genome of the domesticated apple (Malus × domestica Borkh. .). Nat. Genet. 42:(10):83339
    [Crossref] [Google Scholar]
  133. 133.
    Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, et al. 2016.. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. . Plant Biotechnol. J. 14:(10):197685
    [Crossref] [Google Scholar]
  134. 134.
    Venison EP, Litthauer S, Laws P, Denancé C, Fernández-Fernández F, et al. 2022.. Microsatellite markers as a tool for active germplasm management and bridging the gap between national and local collections of apple. . Genet. Resour. Crop Evol. 69:(5):181732
    [Crossref] [Google Scholar]
  135. 135.
    Vitale A, Aiello D, Azzaro A, Guarnaccia V, Polizzi G. 2021.. An eleven-year survey on field disease susceptibility of Citrus accessions to Colletotrichum and Alternaria species. . Agriculture 11::536
    [Crossref] [Google Scholar]
  136. 136.
    Volk GM, Richards CM. 2008.. Availability of genotypic data for USDA-ARS national plant germplasm system accessions using the genetic resources information network (GRIN) database. . HortScience 43:(5):136566
    [Crossref] [Google Scholar]
  137. 137.
    Voorrips RE, Bink MCAM, Kruisselbrink JW, Koehorst-van Putten HJJ, van de Weg WE. 2016.. PediHaplotyper: software for consistent assignment of marker haplotypes in pedigrees. . Mol. Breed. 36:(8):119
    [Crossref] [Google Scholar]
  138. 138.
    Wang FS, Jiang D. 2010.. Studies on genetic background of important germplasm resources among Citrus based on cpSSR and EST-SSR marker. . Acta Hortic. Sin. 37:(3):46574
    [Google Scholar]
  139. 139.
    Wang X, Xu Y, Zhang S, Cao L, Huang Y, et al. 2017.. Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. . Nat. Genet. 49:(5):76572
    [Crossref] [Google Scholar]
  140. 140.
    Weise S, Lohwasser U, Oppermann M. 2020.. Document or lose it—on the importance of information management for genetic resources conservation in genebanks. . Plants 9:(8):1050
    [Crossref] [Google Scholar]
  141. 141.
    Westwood MN. 1988.. Temperate-Zone Pomology. Portland, OR:: Timber Press
    [Google Scholar]
  142. 142.
    Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, et al. 2014.. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. . Nat. Biotechnol. 32:(7):65662
    [Crossref] [Google Scholar]
  143. 143.
    Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, et al. 2018.. Genomics of the origin and evolution of Citrus. . Nature 554:(7692):31116
    [Crossref] [Google Scholar]
  144. 144.
    Würdig J, Flachowsky H, Saß A, Peil A, Hanke M-V, et al. 2015.. Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. . Mol. Breed. 35:(3):95
    [Crossref] [Google Scholar]
  145. 145.
    Xu Y, Jia H, Wu X, Koltunow AMG, Deng X, Xu Q. 2021.. Regulation of nucellar embryony, a mode of sporophytic apomixis in Citrus resembling somatic embryogenesis. . Curr. Opin. Plant Biol. 59::101984
    [Crossref] [Google Scholar]
  146. 146.
    Yoshida T, Nesumi H, Nakajima N, Kuniga T. 2005.. New citrus parental lines ‘Kankitsu Chukanbohon Nou 7 Gou’ and ‘Kankitsu Chukanbohon Nou 8 Gou’ for breeding new cultivars with immunity to citrus tristeza virus. . Jpn. J. Hortic. Res. 74::323
    [Google Scholar]
  147. 147.
    Young ND. 1996.. QTL mapping and quantitative disease resistance in plants. . Annu. Rev. Phytopathol. 34::479501
    [Crossref] [Google Scholar]
  148. 148.
    Yu H, Yang X, Guo F, Jiang X, Deng X, Xu Q. 2017.. Genetic diversity and population structure of pummelo (Citrus maxima) germplasm in China. . Tree Genet. Genomes 13:(3):58
    [Crossref] [Google Scholar]
  149. 149.
    Yuen CMC, Tridjaja NO, Wills RBH, Wild BL. 1995.. Chilling injury development of ‘Tahitian’ lime, ‘Emperor’ mandarin, ‘Marsh’ grapefruit and ‘Valencia’ orange. . J. Sci. Food Agric. 67:(3):33539
    [Crossref] [Google Scholar]
  150. 150.
    Zhou H, Bai S, Wang N, Sun X, Zhang Y, et al. 2020.. CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-mediated silencing of MdCNGC2 in fruits improve resistance to Botryosphaeria dothidea. . Front. Plant Sci. 11::575477
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-021622-120124
Loading
/content/journals/10.1146/annurev-phyto-021622-120124
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error