1932

Abstract

is a family of plant-infecting viruses that have multiple positive-sense, single-stranded RNA genomic segments. Kitaviruses are assigned into the genera , , and , mainly on the basis of the diversity of their genomic organization. Cell-to-cell movement of most kitaviruses is provided by the 30K family of proteins or the binary movement block, considered an alternative movement module among plant viruses. Kitaviruses stand out for producing conspicuously unusual locally restricted infections and showing deficient or nonsystemic movement likely resulting from incompatible or suboptimal interactions with their hosts. Transmission of kitaviruses is mediated by mites of many species of the genus and at least one species of eriophyids. Kitavirus genomes encode numerous orphan open reading frames but RNA-dependent RNA polymerase and the transmembrane helix-containing protein, generically called SP24, typify a close phylogenetic link with arthropod viruses. Kitaviruses infect a large range of host plants and cause diseases of economic concern in crops such as citrus, tomato, passion fruit, tea, and blueberry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021622-121351
2023-09-05
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021622-121351.html?itemId=/content/journals/10.1146/annurev-phyto-021622-121351&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguilar E, Brosseau C, Moffett P, Tenllado F. 2019. Cell death triggered by the P25 protein in Potato virus X–associated synergisms results from ER stress in Nicotiana benthamiana. Mol. Plant Pathol. 20:2194–210
    [Google Scholar]
  2. 2.
    Alberti G, Kitajima EW. 2014. Anatomy and fine structure of Brevipalpus mites (Tenuipalpidae): economically important plant-virus vectors. Zoologica 160:1–192
    [Google Scholar]
  3. 3.
    Arena GD, Ramos-González PL, Falk BW, Casteel CL, Freitas-Astúa J, Machado MA. 2020. Plant immune system activation upon citrus leprosis virus C infection is mimicked by the ectopic expression of the P61 viral protein. Front. Plant Sci. 11:1188
    [Google Scholar]
  4. 4.
    Arena GD, Ramos-González PL, Nunes MA, Alves MR, Camargo LEA et al. 2016. Citrus leprosis virus C infection results in hypersensitive-like response, suppression of the JA/ET plant defense pathway and promotion of the colonization of its mite vector. Front. Plant Sci. 7:1757
    [Google Scholar]
  5. 5.
    Arena GD, Ramos-González PL, Nunes MA, Jesus CC, Calegario RF et al. 2017. Arabidopsis thaliana as a model host for Brevipalpus mite-transmitted viruses. Sci. Agric. 74:185–89
    [Google Scholar]
  6. 6.
    Arena GD, Ramos-González PL, Rogerio LA, Ribeiro-Alves M, Casteel CL et al. 2018. Making a better home: modulation of plant defensive response by Brevipalpus mites. Front. Plant Sci. 9:1147
    [Google Scholar]
  7. 7.
    Arena GD, Ramos-González PL, Tassi AD, Machado MA, Freitas-Astúa J. 2023. A TaqMan RT-qPCR assay for absolute quantification of Citrus leprosis virus C lineage SJP: disclosing the subgenomic/genomic ratio in plant and mite vector, plant organ-specific viral loads, and the kinetics of viral accumulation in plants. Trop. Plant Pathol. 48:30–41
    [Google Scholar]
  8. 8.
    Atabekova AK, Lazareva EA, Lezzhov AA, Solovieva AD, Golyshev SA et al. 2022. Interaction between movement proteins of Hibiscus green spot virus. Viruses 14:122742
    [Google Scholar]
  9. 9.
    Barro MP. 2022. Carga viral das estirpes de CiLV-C e seu potencial impacto na epidemiologia da leprose dos citros MS Thesis Instituto Biológico São Paulo, Brazil:
    [Google Scholar]
  10. 10.
    Bassanezi RB, Czermainski ABC, Laranjeira FF, Moreira AS, Ribeiro PJ et al. 2019. Spatial patterns of the Citrus leprosis virus and its associated mite vector in systems without intervention. Plant Pathol. 68:185–93
    [Google Scholar]
  11. 11.
    Bastianel M, Freitas-Astua J, Nicolini F, Segatti N, Novelli VM et al. 2008. Response of mandarin cultivars and hybrids to citrus leprosis virus. J. Plant Pathol. 90:2305–12
    [Google Scholar]
  12. 12.
    Bastianel M, Novelli VM, Kitajima EW, Kubo KS, Bassanezi RB et al. 2010. Citrus leprosis: centennial of an unusual mite-virus pathosystem. Plant Dis. 94:3284–92
    [Google Scholar]
  13. 13.
    Bastianel M, Pereira-Martin JA, Novelli VM, Freitas-Astúa J, Nunes MA. 2018. Citrus leprosis resistance within the citrus group. VirusDisease 29:4491–98
    [Google Scholar]
  14. 14.
    Beard JJ, Ochoa R, Braswell WE, Bauchan GR. 2015. Brevipalpus phoenicis (Geijskes) species complex (Acari: Tenuipalpidae): a closer look. Zootaxa 3944:11–67
    [Google Scholar]
  15. 15.
    Beltran-Beltran AK, Santillán-Galicia MT, Guzmán-Franco AW, Teliz-Ortiz D, Gutiérrez-Espinoza MA et al. 2020. Incidence of Citrus leprosis virus C and Orchid fleck dichorhavirus citrus strain in mites of the genus Brevipalpus in Mexico. J. Econ. Entomol. 113:31576–81
    [Google Scholar]
  16. 16.
    Bitancourt A. 1940. A leprose dos citrus. Biológico 6:239–45
    [Google Scholar]
  17. 17.
    Bitancourt A. 1955. Estudos sobre a leprose dos citros. Arq. Inst. Biol. 22:161–231
    [Google Scholar]
  18. 18.
    Bitancourt A, Grillo HV. 1934. A clorose zonada: uma nova doença de citrus. Arq. Inst. Biol. 5:245–47
    [Google Scholar]
  19. 19.
    Boncristiani HF, Di Prisco G, Pettis JS, Hamilton M, Chen YP. 2009. Molecular approaches to the analysis of deformed wing virus replication and pathogenesis in the honey bee, Apis mellifera. Virol. J. 6:1221
    [Google Scholar]
  20. 20.
    Burkle C, Olmstead JW, Harmon PF. 2012. A potential vector of Blueberry necrotic ring blotch virus and symptoms on various host genotypes. Phytopathology 102:S4.17
    [Google Scholar]
  21. 21.
    Calegario RF, Locali EC, Stach-Machado DR, Peroni LA, Caserta R et al. 2013. Polyclonal antibodies to the putative coat protein of Citrus leprosis virus C expressed in Escherichia coli: production and use in immunodiagnosis. Trop. Plant Pathol. 38:3188–97
    [Google Scholar]
  22. 22.
    Cantu-Iris M, Harmon PF, Londoño A, Polston JE. 2013. A variant of blueberry necrotic ring blotch virus associated with red lesions in blueberry. Arch. Virol. 158:102197–200
    [Google Scholar]
  23. 23.
    Castro EB, Mesa NC, Feres RJF, De Moraes GJ, Ochoa R et al. 2020. A newly available database of an important family of phytophagous mites: Tenuipalpidae database. Zootaxa 4868:4577–83
    [Google Scholar]
  24. 24.
    Cepea/Esalq 2022. Cotações de laranja. Notícias Agrícolas. https://www.noticiasagricolas.com.br/cotacoes/laranja
    [Google Scholar]
  25. 25.
    Chabi-Jesus C, Ramos-González PL, Postclam-Barro M, Fontenele RS, Harakava R et al. 2021. Molecular epidemiology of Citrus leprosis virus C: a new viral lineage and phylodynamic of the main viral subpopulations in the Americas. Front. Microbiol. 12:641252
    [Google Scholar]
  26. 26.
    Chabi-Jesus C, Ramos-Gonzalez PL, Tassi AD, Guerra-Peraza O, Kitajima EW et al. 2018. Identification and characterization of citrus chlorotic spot virus, a new dichorhavirus associated with citrus leprosis-like symptoms. Plant Dis. 102:81588–98
    [Google Scholar]
  27. 27.
    Chabi-Jesus C, Ramos-González PL, Tassi AD, Pereira LR, Bastianel M et al. 2023. Citrus bright spot virus: a new dichorhavirus, transmitted by Brevipalpus azores, causing citrus leprosis disease in Brazil. Plants 12:61371
    [Google Scholar]
  28. 28.
    Chagas C, Rossetti V 1984. Transmission of leprosis by grafting. Proceedings of the 9th Conference of the International Organization of Citrus Virologists SM Garnsey, LW Timmer, JA Dodds 215–17. Riverside, CA: IOCV
    [Google Scholar]
  29. 29.
    Chagas CM 2000. Leprosis and zonate chlorosis. Compendium of Citrus Diseases LW Timmer, SM Garnsey, JH Graham 57–58. St. Paul, MN: APS Publ. , 2nd ed..
    [Google Scholar]
  30. 30.
    Ciuffo M, Kinoti WM, Tiberini A, Forgia M, Tomassoli L et al. 2020. A new blunervirus infects tomato crops in Italy and Australia. Arch. Virol. 165:102379–84
    [Google Scholar]
  31. 31.
    Colariccio A, Lovisolo O, Boccardo G, Chagas C, D'Aquilio M, Rossetti V 2000. Preliminary purification and double stranded RNA analysis of citrus leprosis virus. Proceedings of the 14th Conference of the International Organization of Citrus Virologists JV de Graça, RF Lee, RK Yokami 159–63. Riverside, CA: IOCV
    [Google Scholar]
  32. 32.
    Colariccio A, Lovisolo O, Chagas C, Galleti S, Rossetti V, Kitajima EW. 1995. Mechanical transmission and ultrastructural aspects of citrus leprosis disease. Fitopatol. Bras. 20:2208–13
    [Google Scholar]
  33. 33.
    Cruz-Jaramillo JL, Ruiz-Medrano R, Rojas-Morales L, López-Buenfil JA, Morales-Galván O et al. 2014. Characterization of a proposed dichorhavirus associated with the citrus leprosis disease and analysis of the host response. Viruses 6:72602–22
    [Google Scholar]
  34. 34.
    de Lillo E, Freitas-Astúa J, Kitajima EW, Ramos-González PL, Simoni S et al. 2021. Phytophagous mites transmitting plant viruses: update and perspectives. Entomol. Gen. 41:5439–62
    [Google Scholar]
  35. 35.
    Della Vechia JF, Zanardi OZ, Kapp ABP, Bassanezi RB, de Andrade DJ 2021. Lethal and sublethal effects of insecticides on the survival and reproduction of Brevipalpus yothersi (Acari: Tenuipalpidae). Exp. Appl. Acarol. 85:2–4191–204
    [Google Scholar]
  36. 36.
    Dietzgen RG, Freitas-Astúa J, Chabi-Jesus C, Ramos-González PL, Goodin MM et al. 2018. Dichorhaviruses in their host plants and mite vectors. Adv. Virus Res. 102:119–48
    [Google Scholar]
  37. 37.
    Dolja VV, Krupovic M, Koonin EV. 2020. Deep roots and splendid boughs of the global plant virome. Annu. Rev. Phytopathol. 58:23–53
    [Google Scholar]
  38. 38.
    Ferreira PTO, Locali-Fabris EC, Freitas-Astúa J, Antonioli-Luizon R, Gomes RT et al. 2007. Caracterização de um vírus baciliforme isolado de Solanum violaefolium transmitido pelos ácaros Brevipalpus phoenicis e Brevipalpus obovatus (Acari: Tenuipalpidae). Summa Phytopathol. 33:3264–69
    [Google Scholar]
  39. 39.
    Freitas-Astúa J, Ramos-González PL, Arena GD, Tassi AD, Kitajima EW. 2018. Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens?. Curr. Opin. Virol. 33:66–73
    [Google Scholar]
  40. 40.
    Frezzi MS. 1940. La lepra explosiva del naranjo. Bol. Frutas Hortal. 5:461–16
    [Google Scholar]
  41. 41.
    Garita LC, Tassi AD, Calegario RF, Freitas-Astúa J, Salaroli RB et al. 2014. Experimental host range of citrus leprosis virus C (CiLV-C). Trop. Plant Pathol. 39:143–55
    [Google Scholar]
  42. 42.
    Hao X, Zhang W, Zhao F, Liu Y, Qian W et al. 2018. Discovery of plant viruses from tea plant (Camellia sinensis (L.) O. Kuntze) by metagenomic sequencing. Front. Microbiol. 9:2175
    [Google Scholar]
  43. 43.
    Kitajima EW, Alberti G. 2014. Anatomy and fine structure of Brevipalpus mites (Tenuipalpidae): economically important plant virus vectors. Part 7. Ultrastructural detection of cytoplasmic and nuclear types of Brevipalpus transmitted viruses. Zoologica 160:174–92
    [Google Scholar]
  44. 44.
    Kitajima EW, Chagas CM, Rodrigues JCV. 2003. Brevipalpus-transmitted plant virus and virus-like diseases: cytopathology and some recent cases. Exp. Appl. Acarol. 30:1–3135–60
    [Google Scholar]
  45. 45.
    Kitajima EW, Müller GW, Costa AS, Yuki W 1972. Short, rod-like particles associated with citrus leprosis. Virology 50:1254–58
    [Google Scholar]
  46. 46.
    Kitajima EW, Nakasu EYT, Inoue-Nagata AK, Salaroli RB, Ramos-González PL. 2023. Tomato fruit blotch virus cytopathology strengthens evolutionary links between plant blunerviruses and insect negeviruses. Sci. Agric. 80:6e20220045
    [Google Scholar]
  47. 47.
    Kitajima EW, Ramos-González PL, Freitas-Astúa J, Tassi AD. 2020. A brief history of diseases associated with Brevipalpus-transmitted viruses. Atti della Accademia Nazionale Italiana di Entomologia A di Palma, E de Lillo 183–88. Firenze, Italy: Tipografia Coppini
    [Google Scholar]
  48. 48.
    Kitajima EW, Rezende JAM, Rodrigues JCV. 2003. Passion fruit green spot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on passion fruit in Brazil. Exp. Appl. Acarol. 30:1–3225–31
    [Google Scholar]
  49. 49.
    Kitajima EW, Rezende JAM, Rodrigues JCV, Chiavegato LG, Piza Júnior CT, Morozini W. 1997. Green spot of passion fruit, a possible viral disease associated with infestation by the mite Brevipalpus phoenicis. Fitopatol. Bras. 22:4555–59
    [Google Scholar]
  50. 50.
    Kitajima EW, Rodrigues JCV, Freitas-Astua J. 2010. An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Sci. Agric. 67:3348–71
    [Google Scholar]
  51. 51.
    Kitajima EW, Rosillo MA, Portillo MM, Muller GW, Costa AS. 1974. Microscopia eletrônica de tecidos foliares de laranjeiras infectadas pela lepra explosiva da Argentina. Fitopatologia 9:55–56
    [Google Scholar]
  52. 52.
    Kondo H, Fujita M, Hisano H, Hyodo K, Andika IB, Suzuki N. 2020. Virome analysis of aphid populations that infest the barley field: the discovery of two novel groups of Nege/Kita-like viruses and other novel RNA viruses. Front. Microbiol. 11:509
    [Google Scholar]
  53. 53.
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI et al. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84:2e00061–19
    [Google Scholar]
  54. 54.
    Kuchibhatla DB, Sherman WA, Chung BYW, Cook S, Schneider G et al. 2014. Powerful sequence similarity search methods and in-depth manual analyses can identify remote homologs in many apparently “orphan” viral proteins. J. Virol. 88:110–20
    [Google Scholar]
  55. 55.
    Laranjeira FF, de Brito Silva SX, de Andrade EC, de Oliveira Almeida D, da Silva TSM et al. 2015. Infestation dynamics of Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) in citrus orchards as affected by edaphic and climatic variables. Exp. Appl. Acarol. 66:4491–508
    [Google Scholar]
  56. 56.
    Lazareva EA, Lezzhov AA, Chergintsev DA, Golyshev SA, Dolja VV et al. 2021. Reticulon-like properties of a plant virus-encoded movement protein. New Phytol. 229:21052–66
    [Google Scholar]
  57. 57.
    Lazareva EA, Lezzhov AA, Dolja VV, Morozov SY, Heinlein M, Solovyev AG. 2021. Constriction of endoplasmic reticulum tubules by the viral movement protein BMB2 is associated with local BMB2 anchorage at constriction sites. Plant Signal. Behav. 16:31856547
    [Google Scholar]
  58. 58.
    Lazareva EA, Lezzhov AA, Golyshev SA, Morozov SY, Heinlein M, Solovyev AG. 2017. Similarities in intracellular transport of plant viral movement proteins BMB2 and TGB3. J. Gen. Virol. 98:92379–91
    [Google Scholar]
  59. 59.
    Lazareva EA, Lezzhov AA, Komarova TV, Morozov SY, Heinlein M, Solovyev AG. 2017. A novel block of plant virus movement genes. Mol. Plant Pathol. 18:5611–24
    [Google Scholar]
  60. 60.
    Leastro MO, Castro DYO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JÁ. 2020. Citrus leprosis virus C encodes three proteins with gene silencing suppression activity. Front. Microbiol. 11:1231
    [Google Scholar]
  61. 61.
    Leastro MO, Freitas-Astúa J, Kitajima EW, Pallás V, Sánchez-Navarro JA. 2021. Unravelling the involvement of cilevirus p32 protein in the viral transport. Sci. Rep. 11:12943
    [Google Scholar]
  62. 62.
    Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astúa J. 2018. Dissecting the subcellular localization, intracellular trafficking, interactions, membrane association, and topology of citrus leprosis virus C proteins. Front. Plant Sci. 9:1299
    [Google Scholar]
  63. 63.
    León MG, Becerra CH, Freitas-Astúa J, Salaroli RB, Kitajima EW. 2008. Natural infection of Swinglea glutinosa by the citrus leprosis virus cytoplasmic type (CiLV-C) in Colombia. Plant Dis. 92:91364
    [Google Scholar]
  64. 64.
    Li C, An W, Zhang S, Cao M, Yang C. 2023. Characterization of a putative novel higrevirus infecting Phellodendron amurense Rupr. in China. Arch. Virol. 168:258
    [Google Scholar]
  65. 65.
    Li C, Zhang T, Liu Y, Li Z, Wang Y et al. 2022. Rice stripe virus activates the bZIP17/28 branch of the unfolded protein response signalling pathway to promote viral infection. Mol. Plant Pathol. 23:3447–58
    [Google Scholar]
  66. 66.
    Lima MLRZC, Lima Neto VC, Souza VBV 1991. The causal agent of the Ligustrum ringspot disease. Phytopathology 81:101216
    [Google Scholar]
  67. 67.
    Locali-Fabris EC, Freitas-Astúa J, Souza AA, Takita MA, Astúa-Monge G et al. 2006. Complete nucleotide sequence, genomic organization and phylogenetic analysis of citrus leprosis virus cytoplasmic type. J. Gen. Virol. 87:92721–29
    [Google Scholar]
  68. 68.
    Maachi A, Torre C, Sempere RN, Hernando Y, Aranda MA, Donaire L. 2021. Use of high-throughput sequencing and two RNA input methods to identify viruses infecting tomato crops. Microorganisms 9:51043
    [Google Scholar]
  69. 69.
    Manghwar H, Li J. 2022. Endoplasmic reticulum stress and unfolded protein response signaling in plants. Int. J. Mol. Sci. 23:2828
    [Google Scholar]
  70. 70.
    Marques JP, Kitajima E, Freitas-Astúa J, Apezzato-da-Glória B. 2010. Comparative morpho-anatomical studies of the lesions caused by citrus leprosis virus on sweet orange. Ann. Braz. Acad. Sci. 82:2501–11
    [Google Scholar]
  71. 71.
    Maruyama N, Iwabuchi N, Nishikawa M, Nijo T, Yoshida T et al. 2022. Complete genome sequence of tea plant necrotic ring blotch virus detected from a tea plant in Japan. Microbiol. Resour. Announc. 11:6e00323–22
    [Google Scholar]
  72. 72.
    Melzer MJ, Sether DM, Borth WB, Hu JS. 2012. Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms. Phytopathology 102:1122–27
    [Google Scholar]
  73. 73.
    Melzer MJ, Simbajon N, Carillo J, Borth WB, Freitas-Astúa J et al. 2013. A cilevirus infects ornamental hibiscus in Hawaii. Arch. Virol. 158:112421–24
    [Google Scholar]
  74. 74.
    Mohammadi M, Hosseini A, Nasrollanejad S. 2021. In silico identification of two novel viruses on Iranian pistachio. Iran. J. Plant Pathol. 57:181–85
    [Google Scholar]
  75. 75.
    Moreira RR, Machado FJ, Lanza FE, Trombin VG, Bassanezi RB et al. 2022. Impact of diseases and pests on premature fruit drop in sweet orange orchards in São Paulo state citrus belt, Brazil. Pest Manag. Sci. 78:62643–56
    [Google Scholar]
  76. 76.
    Morozov SY, Lazareva EA, Solovyev AG. 2020. Sequence relationships of RNA helicases and other proteins encoded by blunervirus RNAs highlight recombinant evolutionary origin of kitaviral genomes. Front. Microbiol. 11:561092
    [Google Scholar]
  77. 77.
    Morozov SY, Solovyev AG. 2015. Phylogenetic relationship of some “accessory” helicases of plant positive-stranded RNA viruses: toward understanding the evolution of triple gene block. Front. Microbiol. 6:5508
    [Google Scholar]
  78. 78.
    Nakasu EYT, Nagata T, Inoue-Nagata A. 2022. First report of tomato fruit blotch virus infecting tomatoes in Brazil. Plant Dis. 106:82271
    [Google Scholar]
  79. 79.
    Nunes MA, Bergamini MP, Coerini LF, Bastianel M, Novelli VM et al. 2012. Citrus leprosis virus C naturally infecting Commelina benghalensis, a prevalent monocot weed of citrus orchards in Brazil. Plant Dis. 96:5770
    [Google Scholar]
  80. 80.
    Nunes MA, de Carvalho Mineiro JL, Rogerio LA, Ferreira LM, Tassi AD et al. 2018. First report of Brevipalpus papayensis Baker (Acari: Tenuipalpidae) as vector of Coffee ringspot virus and Citrus leprosis virus C. Plant Dis. 102:51046
    [Google Scholar]
  81. 81.
    Nunes MA, Lameiro P, Calegario RF, Bergamini M, Fender L et al. 2012. Tropical spiderwort (Commelina benghalensis L.) as source of inoculum for citrus leprosis virus C. Citrus Res. Technol. 33:11–9
    [Google Scholar]
  82. 82.
    O'Brien CA, McLean BJ, Colmant AMG, Harrison JJ, Hall-Mendelin S et al. 2017. Discovery and characterisation of castlerea virus, a new species of negevirus isolated in Australia. Evol. Bioinform. Online 13:1176934317691269
    [Google Scholar]
  83. 83.
    Olmedo-Velarde A, Hu J, Melzer MJ. 2021. A virus infecting Hibiscus rosa-sinensis represents an evolutionary link between cileviruses and higreviruses. Front. Microbiol. 12:988
    [Google Scholar]
  84. 84.
    Olmedo-Velarde A, Roy A, Larrea-Sarmiento A, Wang X, Padmanabhan C et al. 2022. First report of the hibiscus strain of citrus leprosis virus C2 infecting passionfruit (Passiflora edulis). Plant Dis. 106:92539
    [Google Scholar]
  85. 85.
    Ortega-Rivera OA, Beiss V, Osota EO, Chan SK, Karan S, Steinmetz NF. 2023. Production of cytoplasmic type citrus leprosis virus-like particles by plant molecular farming. Virology 578:7–12
    [Google Scholar]
  86. 86.
    Pascon RC, Kitajima JP, Breton MC, Assumpção L, Greggio C et al. 2006. The complete nucleotide sequence and genomic organization of citrus leprosis associated virus, cytoplasmatic type (CiLV-C). Virus Genes 32:3289–98
    [Google Scholar]
  87. 87.
    Quito-Avila DF, Brannen PM, Cline WO, Harmon PF, Martin RR. 2013. Genetic characterization of Blueberry necrotic ring blotch virus, a novel RNA virus with unique genetic features. J. Gen. Virol. 94:61426–34
    [Google Scholar]
  88. 88.
    Quito-Avila DF, Freitas-Astúa J, Melzer MJ. 2021. Bluner-, cile-, and higreviruses (Kitaviridae). Encycl. Virol. 3:247–51
    [Google Scholar]
  89. 89.
    Ramos-González PL, Chabi-Jesus C, Arena GD, Tassi AD, Kitajima EW, Freitas-Astúa J 2018. Citrus leprosis: a unique multietiologic disease. Citrus Am. 1:14–19
    [Google Scholar]
  90. 90.
    Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Breton MC, Arena GD et al. 2016. Phylogenetic and molecular variability studies reveal a new genetic clade of Citrus leprosis virus C. Viruses 8:6153
    [Google Scholar]
  91. 91.
    Ramos-González PL, Chabi-Jesus C, Guerra-Peraza O, Tassi AD, Kitajima EW et al. 2017. Citrus leprosis virus N: a new dichorhavirus causing Citrus leprosis disease. Phytopathology 107:8963–76
    [Google Scholar]
  92. 92.
    Ramos-González PL, Chabi-Jesus C, Tassi AD, Calegario RF, Harakava R et al. 2022. A novel lineage of cile-like viruses discloses the phylogenetic continuum across the family Kitaviridae. Front. Microbiol. 13:836076
    [Google Scholar]
  93. 93.
    Ramos-González PL, dos Santos GF, Chabi-Jesus C, Harakava R, Kitajima EW, Freitas-Astúa J 2020. Passion fruit green spot virus genome harbors a new orphan ORF and highlights the flexibility of the 5′-end of the RNA2 segment across cileviruses. Front. Microbiol. 11:206
    [Google Scholar]
  94. 94.
    Ramos-González PL, Kondo H, Morozov S, Vasilakis N, Varsani A et al. 2022. The border between kitavirids and nege-like viruses: tracking the evolutionary pace of plant- and arthropod-infecting viruses. Front. Plant Sci. 13:1798
    [Google Scholar]
  95. 95.
    Ramos-González PL, Pons T, Chabi-Jesus C, Arena GD, Freitas-Astua J. 2021. Poorly conserved P15 proteins of cileviruses retain elements of common ancestry and putative functionality: a theoretical assessment on the evolution of cilevirus genomes. Front. Plant Sci. 12:771983
    [Google Scholar]
  96. 96.
    Ren H, Chen Y, Zhao F, Ding C, Zhang K et al. 2022. Quantitative distribution and transmission of tea plant necrotic ring blotch virus in Camellia sinensis. Forests 13:81306
    [Google Scholar]
  97. 97.
    Rivarez MPS, Pecman A, Bačnik K, Ferreira OMC, Vučurović A et al. 2022. In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem. Microbiome 1160
    [Google Scholar]
  98. 98.
    Robinson TS, Scherm H, Brannen PM, Allen R, Michael C. 2016. Blueberry necrotic ring blotch virus in southern highbush blueberry: insights into in planta and in-field movement. Plant Dis. 100:81575–79
    [Google Scholar]
  99. 99.
    Rocha CM, de Castro MC, Andrade DJ 2022. Resistance of citrus pest mites to acaricides. Topics in Agricultural Entomology - XIII J do Nascimento, CM da Rocha, DD do Nascimento, E Peterlini, ÉA Taguti et al.83–89. Ponta Grossa, PR, Brazil: Atena Editora
    [Google Scholar]
  100. 100.
    Rocha CM, Della Vechia JF, Savi PJ, Omoto C, Andrade DJ 2021. Resistance to spirodiclofen in Brevipalpus yothersi (Acari: Tenuipalpidae) from Brazilian citrus groves: detection, monitoring, and population performance. Pest Manag. Sci. 77:73099–106
    [Google Scholar]
  101. 101.
    Rodrigues MC. 2022. Caracterização de um novo agente causal associado a manchas cloróticas em citros MS Thesis Instituto Biológico São Paulo, Brazil:
    [Google Scholar]
  102. 102.
    Rodrigues MC, Rossetto Pereira L, Ramos-González PL, Chabi-Jesus C, Tassi AD et al. 2022. First report of passion fruit green spot virus infecting hibiscus plants. New Dis. Rep. 45:2e12080
    [Google Scholar]
  103. 103.
    Roy A, Choudhary N, Guillermo LM, Shao J, Govindarajulu A et al. 2013. A novel virus of the genus Cilevirus causing symptoms similar to citrus leprosis. Phytopathology 103:5488–500
    [Google Scholar]
  104. 104.
    Roy A, Hartung JS, Schneider WL, Shao J, Leon MG et al. 2015. Role bending: complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology 105:7872–84
    [Google Scholar]
  105. 105.
    Roy A, Leon MG, Nunziata S, Padmanabhan C, Rivera Y et al. 2022. First report of Passion fruit green spot virus in yellow Passion fruit (Passiflora edulis f. flavicarpa) in Casanare, Colombia. Plant Dis. In press https://doi.org/10.1094/PDIS-09-22-2267-PDN
    [Crossref] [Google Scholar]
  106. 106.
    Roy A, Leon MG, Stone AL, Schneider WL, Hartung J, Brlansky RH. 2014. First report of citrus leprosis virus nuclear type in sweet orange in Colombia. Plant Dis. 98:81162
    [Google Scholar]
  107. 107.
    Roy A, Stone AL, Melzer MJ, Hartung JS, Mavrodieva VA et al. 2018. First report of a cilevirus associated with green ringspot on senescent hibiscus leaves in Tampa, Florida. Plant Dis. 102:61181
    [Google Scholar]
  108. 108.
    Roy A, Stone AL, Shao J, Otero-Colina G, Wei G et al. 2015. Identification and molecular characterization of nuclear citrus leprosis virus, a member of the proposed Dichorhavirus genus infecting multiple citrus species in Mexico. Phytopathology 105:4564–75
    [Google Scholar]
  109. 109.
    Sánchez-Velázquez EJ, Santillán-Galicia MT, Novelli VM, Nunes MA, Mora-Aguilera G et al. 2015. Diversity and genetic variation among Brevipalpus populations from Brazil and Mexico. PLOS ONE 10:7e0133861
    [Google Scholar]
  110. 110.
    Santos Filho HP, de A Lima A, de Jesus Barbosa C, Borges AL, da S Noronha AC et al. 1999. Definhamento precoce do maracujazeiro. Tech. Rep. Embrapa 99:1–5
    [Google Scholar]
  111. 111.
    Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. 2022. Cell death signaling from endoplasmic reticulum stress: plant-specific and conserved features. Front. Plant Sci. 13:835738
    [Google Scholar]
  112. 112.
    Sinico TE, Nunes MA, Kitajima EW, Cunha BA, Novelli VM. 2022. Notes on the embryological development of the Brevipalpus yothersi (Acari: Tenuipalpidae). Acarologia 62:1113–19
    [Google Scholar]
  113. 113.
    Solovyev AG, Atabekova AK, Lezzhov AA, Solovieva AD, Chergintsev DA, Morozov SY. 2022. Distinct mechanisms of endomembrane reorganization determine dissimilar transport pathways in plant RNA viruses. Plants 11:182403
    [Google Scholar]
  114. 114.
    Spegazzini C. 1920. Sobre algunas enfermedades y hongos que afectan las plantas de agrios en el Paraguay. An. Soc. Cient. Argent. 90:155–88
    [Google Scholar]
  115. 115.
    Strydom E, Pietersen G. 2018. Development of a strand-specific RT-PCR to detect the positive sense replicative strand of Soybean blotchy mosaic virus. J. Virol. Methods 259:39–44
    [Google Scholar]
  116. 116.
    Tassi AD, Garita-Salazar LC, Amorim L, Novelli VM, Freitas-Astúa J et al. 2017. Virus-vector relationship in the Citrus leprosis pathosystem. Exp. Appl. Acarol. 71:3227–41
    [Google Scholar]
  117. 117.
    Tassi AD, Ramos-González PL, Sinico TE, Kitajima EW, Freitas-Astúa J. 2022. Circulative transmission of cileviruses in Brevipalpus mites may involve the paracellular movement of virions. Front. Microbiol. 13:683
    [Google Scholar]
  118. 118.
    US Dep. Agric. Foreign Agric. Serv. 2022. Citrus: world markets and trade Rep. USDA-FAS Washington, DC: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf
    [Google Scholar]
  119. 119.
    Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N et al. 2013. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 87:52475–88
    [Google Scholar]
  120. 120.
    Velarde MAO, Roy DA, Larrea-Sarmiento DA, Wang DX, Padmanabhan DC et al. 2022. First report of the hibiscus strain of citrus leprosis virus C2 infecting passionfruit (Passiflora edulis). Plant Dis. 106:92539
    [Google Scholar]
  121. 121.
    Vergani AR. 1942. La transmisión de la lepra explosiva de la ligustrina por ácaros. Rev. Agric. Agron. 9:292–94
    [Google Scholar]
  122. 122.
    Weeks AR, Marec F, Breeuwer JA. 2001. A mite species that consists entirely of haploid females. Science 292:55262479–82
    [Google Scholar]
  123. 123.
    Williams B, Verchot J, Dickman MB. 2014. When supply does not meet demand: ER stress and plant programmed cell death. Front. Plant Sci. 5:211
    [Google Scholar]
  124. 124.
    Zhang S, Yang C, Wu J, Qiu Y, Xuan Z et al. 2022. Conserved untranslated regions of multipartite viruses: natural markers of novel viral genomic components and tags of viral evolution. bioRxiv 476546. https://doi.org/10.1101/2022.01.16.476546
/content/journals/10.1146/annurev-phyto-021622-121351
Loading
/content/journals/10.1146/annurev-phyto-021622-121351
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error