1932

Abstract

Society is confronted by interconnected threats to ecological sustainability. Among these is the devastation of forests by destructive non-native pathogens and insects introduced through global trade, leading to the loss of critical ecosystem services and a global forest health crisis. We argue that the forest health crisis is a public-good social dilemma and propose a response framework that incorporates principles of collective action. This framework enables scientists to better engage policymakers and empowers the public to advocate for proactive biosecurity and forest health management. Collective action in forest health features broadly inclusive stakeholder engagement to build trust and set goals; accountability for destructive pest introductions; pooled support for weakest-link partners; and inclusion of intrinsic and nonmarket values of forest ecosystems in risk assessment. We provide short-term and longer-term measures that incorporate the above principles to shift the societal and ecological forest health paradigm to a more resilient state.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021722-024626
2023-09-05
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021722-024626.html?itemId=/content/journals/10.1146/annurev-phyto-021722-024626&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams DC, Olexa MT, Reynolds T. 2018. Invasive alien species policy: incremental approaches and the promise of comprehensive reform. Drake J. Agric. Law 23:292–342
    [Google Scholar]
  2. 2.
    Aiko S, Duncan RP, Hulme PE. 2010. Lag-phases in alien plant invasions: separating the facts from the artefacts. Oikos 119:370–78
    [Google Scholar]
  3. 3.
    Aukema JE, McCullough DG, Von Holle B, Liebhold AM, Britton K, Frankel SJ. 2010. Historical accumulation of nonindigenous forest pests in the continental United States. BioScience 60:886–97
    [Google Scholar]
  4. 4.
    Bagavathiannan MV, Graham S, Ma Z, Barney JN, Coutts SR et al. 2019. Considering weed management as a social dilemma bridges individual and collective interests. Nat. Plants 5:343–51A review and meta-analysis that identifies the most critical collective action principles in plant invasion dilemmas.
    [Google Scholar]
  5. 5.
    Berkes F, Colding J, Folke C. 2000. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 10:51251–62
    [Google Scholar]
  6. 6.
    Billie JE. 2014. Beetles killing our “tu lee” must be stopped. Seminole Tribune Febr. 26. https://seminoletribune.org/beetles-killing-our-tu-lee-must-be-stopped/
    [Google Scholar]
  7. 7.
    Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP et al. 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26:333–39Critical meta-analysis of terminology and process models applied to invasive, alien, introduced, and naturalized species.
    [Google Scholar]
  8. 8.
    Bonello P, Campbell FT, Cipollini D, Conrad AO, Farinas C et al. 2020. Invasive tree pests devastate ecosystems—a proposed new response framework. Front. For. Glob. Change 3:2Introduces the concept of Centers for Forest Pest Control and Prevention.
    [Google Scholar]
  9. 9.
    Borevitz B. 2021. State of the Union. State of the Union http://stateoftheunion.onetwothree.net/
    [Google Scholar]
  10. 10.
    Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HCJ. 2013. The consequence of tree pests and diseases for ecosystem services. Science 342:61601235773
    [Google Scholar]
  11. 11.
    Brasier CM. 2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57:5792–808
    [Google Scholar]
  12. 12.
    Brockerhoff EG, Liebhold AM. 2017. Ecology of forest insect invasions. Biol. Invasions 19:113141–59
    [Google Scholar]
  13. 13.
    Brundu G, Pauchard A, Pyšek P, Pergl J, Bindewald A et al. 2020. Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts. NeoBiota 8:6165–116
    [Google Scholar]
  14. 14.
    Cale JA, Garrison-Johnston MT, Teale SA, Castello JD. 2017. Beech bark disease in North America: over a century of research revisited. For. Ecol. Manag. 394:86–103
    [Google Scholar]
  15. 15.
    Cappaert D, McCullough DG, Poland TM, Siegert NW. 2005. Emerald ash borer in North America: a research and regulatory challenge. Am. Entomol. 51:3152–65
    [Google Scholar]
  16. 16.
    Carlowicz M. 2012. Seeing forests for the trees and carbon: mapping the world's forests in three dimensions. NASA Earth Observatory https://earthobservatory.nasa.gov/features/ForestCarbon/page1.php
    [Google Scholar]
  17. 17.
    Carnegie AJ, Pegg GS. 2018. Lessons from the incursion of myrtle rust in Australia. Annu. Rev. Phytopathol. 56:457–78
    [Google Scholar]
  18. 18.
    Chandelier A, Hulin J, San Marin G, Debode F, Massart S 2021. Comparison of qPCR and metabarcoding methods as tools for the detection of airborne inoculum of forest fungal pathogens. Phytopathology 111:3570–81
    [Google Scholar]
  19. 19.
    Chong KY, Corlett RT, Nuñez MA, Chiu JH, Courchamp F et al. 2021. Are terrestrial biological invasions different in the tropics?. Annu. Rev. Ecol. Evol. Syst. 52:291–314
    [Google Scholar]
  20. 20.
    Clarke DA, Palmer DJ, McGrannachan C, Burgess TI, Chown SL et al. 2021. Options for reducing uncertainty in impact classification for alien species. Ecosphere 12:4e03461
    [Google Scholar]
  21. 21.
    Clarke M, Ma Z, Snyder SA, Floress K. 2021. Factors influencing family forest owners’ interest in community-led collective invasive plant management. Environ. Manag. 67:61088–99
    [Google Scholar]
  22. 22.
    Cobb RC, Haas SE, Kruskamp N, Dillon WW, Swiecki TJ et al. 2020. The magnitude of regional-scale tree mortality caused by the invasive pathogen Phytophthora ramorum. Earth's Future 8:7e2020EF001500
    [Google Scholar]
  23. 23.
    Corley JC, Lanyschner MV, Fischbeib D, Martínez AS, Villacide JM. 2019. Management of Sirex noctilio populations in exotic pine plantations: critical issues explaining invasion success and damage levels in South America. J. Pest Sci. 92:131–42
    [Google Scholar]
  24. 24.
    Costanza KKL, Livingston WH, Kashian DM, Slesak RA, Tardif JC et al. 2017. The precarious state of a cultural keystone species: tribal and biological assessments of the role and future of black ash. J. For. 115:5435–46
    [Google Scholar]
  25. 25.
    Cox M, Arnold G, Tomás SV. 2010. A review of design principles for community-based natural resource management. Ecol. Soc. 15:438
    [Google Scholar]
  26. 26.
    Dort EN, Tanguay P, Hamelin RC. 2020. CRISPR/Cas9 gene editing: an unexplored frontier for forest pathology. Front. Plant Sci. 11:1126
    [Google Scholar]
  27. 27.
    Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M. 2006. Can forest management based on natural disturbances maintain ecological resilience?. Can. J. For. Res. 36:2285–99
    [Google Scholar]
  28. 28.
    Dudley N, Jones T, Gerber K, Ross-Davis AL, Sniezko RA et al. 2020. Establishment of a genetically diverse, disease-resistant Acaciakoa A. gray seed orchard in Kokee, Kauai: early growth, form, and survival. Forests 11:1276
    [Google Scholar]
  29. 29.
    Dukes JS, Pontius J, Orwig D, Garnas JR, Rodgers VL et al. 2009. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: What can we predict?. Can. J. For. Res. 39:231–48
    [Google Scholar]
  30. 30.
    Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD et al. 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7:12485
    [Google Scholar]
  31. 31.
    Epanchin-Niell R, McAusland C, Liebhold A, Mwebaze P, Springborn MR. 2021. Biological invasions and international trade: managing a moving target. Rev. Environ. Econ. Policy 15:1180–90
    [Google Scholar]
  32. 32.
    Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V et al. 2015. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ. Sci. Policy 51:228–37
    [Google Scholar]
  33. 33.
    Eschen R, O'Hanlon R, Santini A, Vannini A, Roques A et al. 2019. Safeguarding global plant health: the rise of sentinels. J. Pest Sci. 92:29–36
    [Google Scholar]
  34. 34.
    Eschen R, Roques A, Santini A. 2015. Taxonomic dissimilarity in patterns of interception and establishment of alien arthropods, nematodes and pathogens affecting woody plants in Europe. Divers. Distrib. 21:36–45
    [Google Scholar]
  35. 35.
    Escobedo FJ, Adams DC, Timilsina N. 2015. Urban forest structure effects on property value. Ecosyst. Serv. 12:209–17
    [Google Scholar]
  36. 36.
    Evans EA, Crane J, Hodges A, Osborne JL. 2010. Potential economic impact of laurel wilt disease on the Florida avocado industry. HortTechnology 20:234–38
    [Google Scholar]
  37. 37.
    Evans KJ, Scott JB, Barry KM. 2020. Pathogen incursions: integrating technical expertise in a socio-political context. Plant Dis. 104:3097–109Considers sociopolitical dimensions of invasive plant pathogens and treats plant health as a common-pool resource.
    [Google Scholar]
  38. 38.
    Ewing CJ, Hausman CE, Pogacnik J, Slot J, Bonello P. 2019. Beech leaf disease: an emerging forest epidemic. Forest Pathol. 49:e12488
    [Google Scholar]
  39. 39.
    Faier L, Group MWR. 2011. Fungi, trees, people, nematodes, beetles, and weather: ecologies of vulnerability and ecologies of negotiation in matsutake commodity exchange. Environ. Plan. A Econ. Space 43:1079–97
    [Google Scholar]
  40. 40.
    Farjon A. 2013. Chamaecyparis lawsoniana. IUCN Red List Threat. Species 2013:e.T34004A2840024
    [Google Scholar]
  41. 41.
    Fei S, Morin RS, Oswalt CM, Liebhold AM. 2019. Biomass losses resulting from insect and disease invasions in US forests. PNAS 116:17371–76
    [Google Scholar]
  42. 42.
    Fitzsimmons S, Gurney K, White W, McCune K 2012. The chapter breeding program of the American Chestnut Foundation. Proceedings of the Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees Gen. Tech. Rep. PSW-GTR-240, ed. RA Sniezko, AD Yanchuk, JT Kliejunas, KM Palmieri, JM Alexander, SJ Frankel Albany, CA: USDA
    [Google Scholar]
  43. 43.
    Fleischman F, Basant S, Chhatre A, Coleman EA, Fisher HW et al. 2020. Pitfalls of tree planting show why we need people-centered natural climate solutions. BioScience 70:11947–50
    [Google Scholar]
  44. 44.
    Food Agric. Organ. (FAO) 2009. Global review of forest pests and diseases For. Pap. 156 FAO Rome: https://www.fao.org/3/i0640e/i0640e00.htm
    [Google Scholar]
  45. 45.
    Franić I, Prosepro S, Adamson K, Allan E, Attorre F et al. 2022. Worldwide diversity of endophytic fungi and insects associated with dormant tree twigs. Sci. Data 9:62
    [Google Scholar]
  46. 46.
    Gallagher PB. 2014. Redbay trees are dying. Seminole Tribune Febr. 25. https://seminoletribune.org/redbay-trees-are-dying/
    [Google Scholar]
  47. 47.
    Gallagher PB. 2015. Much research, few answers as laurel wilt disease spreads. Seminole Tribune July 1. https://seminoletribune.org/much-research-few-answers-as-laurel-wilt-disease-spreads/
    [Google Scholar]
  48. 48.
    Gandhi KJK, Herms DA. 2010. North American arthropods at risk due to widespread Fraxinus mortality caused by the alien emerald ash borer. Biol. Invasions 12:1839–46
    [Google Scholar]
  49. 49.
    Garzon ARG, Bettinger P, Siry J, Abrams J, Cieszewski C et al. 2020. A comparative analysis of five forest certification programs. Forests 11:8863
    [Google Scholar]
  50. 50.
    Gilbert GS, Magarey R, Suiter K, Webb CO. 2012. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5:869–78
    [Google Scholar]
  51. 51.
    Gilbert GS, Webb CO. 2007. Phylogenetic signal in plant pathogen-host range. PNAS 104:4979–83
    [Google Scholar]
  52. 52.
    Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C. 2007. Puccinia psidii: a threat to the Australian environment and economy—a review. Austral. Plant Pathol. 36:1–16
    [Google Scholar]
  53. 53.
    Gomez DF, Adams DC, Cossio RE, de Grammont PC, Messina WA et al. 2020. Peering into the Cuba phytosanitary black box: an institutional and policy analysis. PLOS ONE 15:e0239808
    [Google Scholar]
  54. 54.
    Gougherty AV, Jonathan DT. 2021. Towards a phylogenetic ecology of plant pests and pathogens. Philos. Trans. R. Soc. B 376:20200359
    [Google Scholar]
  55. 55.
    Graham S, Metcalf AL, Gill N, Niemiec R, Moreno C et al. 2019. Opportunities for better use of collective action theory in research and governance for invasive species management. Conserv. Biol. 33:275–87
    [Google Scholar]
  56. 56.
    Graziosi I, Tembo M, Kuate J, Muchugi A. 2019. Pests and diseases of trees in Africa: a growing continental emergency. Plants People Planet 2:114–28
    [Google Scholar]
  57. 57.
    Green S, Elliot M, Armstrong A, Hendry SJ. 2015. Phytophthora austrocedrae emerges as a serious threat to juniper (Juniperus communis) in Britain. Plant Pathol. 64:456–66
    [Google Scholar]
  58. 58.
    Guo Q, Fei S, Potter KM, Liebhold AM, Wen J. 2019. Tree diversity regulates forest pest invasion. PNAS 116:7382–86
    [Google Scholar]
  59. 59.
    Haack RA, Britton KO, Brockerhoff EG, Cavey JF, Garrett LJ et al. 2014. Effectiveness of the International Phytosanitary Standard ISPM No. 15 on reducing wood borer infestation rates in wood packaging material entering the United States. PLOS ONE 9:e96611
    [Google Scholar]
  60. 60.
    Hadziabdic D, Bonello P, Hamelin RC, Juzwik J, Moltzan B et al. 2021. The future of forest pathology in North America. Front. For. Glob. Change 4:737445
    [Google Scholar]
  61. 61.
    Hajek AE, Eilenberg J. 2018. Natural Enemies: An Introduction to Biological Control Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  62. 62.
    Halpern CB. 1988. Early successional pathways and the resistance and resilience of forest communities. Ecology 69:61703–15
    [Google Scholar]
  63. 63.
    Hamelin RC, Roe AD. 2020. Genomic biosurveillance of forest invasive alien enemies: a story written in code. Evol. Appl. 13:195–115
    [Google Scholar]
  64. 64.
    Hantula J, Müller MM, Uusivuori J. 2014. International plant trade associated risks: laissez-faire or novel solutions. Environ. Sci. Policy 37:158–60
    [Google Scholar]
  65. 65.
    Heger T, Jeschke JM. 2014. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123:741–50
    [Google Scholar]
  66. 66.
    Howlett M, Ramesh M, Perl A 2009. Studying Public Policy: Principles and Processes Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  67. 67.
    Hufbauer RA, Roderick GK. 2005. Microevolution in biological control: mechanisms, patterns, and processes. Biol. Control 35:227–39
    [Google Scholar]
  68. 68.
    Hultberg T, Sandström J, Felton A, Öhman K, Rönnberg J et al. 2020. Ash dieback risks an extinction cascade. Biol. Conserv. 244:108516
    [Google Scholar]
  69. 69.
    Hurley BP, Slippers B, Wingfield MJ. 2007. A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the Southern Hemisphere. Agric. For. Entomol. 9:159–71
    [Google Scholar]
  70. 70.
    Ingwell LL, Preisser EL. 2011. Using citizen science programs to identify host resistance in pest-invaded forests. Conserv. Biol. 25:1182–88
    [Google Scholar]
  71. 71.
    Jactel H, Moreira X, Castagneyrol B. 2021. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu. Rev. Entomol. 66:277–96
    [Google Scholar]
  72. 72.
    Jepson PR, Arakelyan I. 2017. Developing publicly acceptable tree health policy: public perceptions of tree-breeding solutions to ash dieback among interested publics in the UK. For. Policy Econ. 80:167–77
    [Google Scholar]
  73. 73.
    Johnson TD, Lelito JP, Pfammatter JA, Raffa KF. 2016. Evaluation of tree mortality and parasitoid recoveries on the contiguous western invasion edge of emerald ash borer. Agric. For. Entomol. 18:327–39
    [Google Scholar]
  74. 74.
    Jones M, Mautner A, Luenco S, Bismarck A, John S. 2020. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187:108397
    [Google Scholar]
  75. 75.
    Jules ES, Kauffman MJ, Ritts WD, Carroll AL. 2002. Spread of an invasive pathogen over a variable landscape: a nonnative root rot on Port Orford cedar. Ecology 83:3167–81
    [Google Scholar]
  76. 76.
    Jung T, Jung MH, Webber JF, Kageyama K, Hieno A et al. 2021. The destructive tree pathogen Phytophthora ramorum originates from the laurosilva forests of East Asia. J. Fungi 7:226
    [Google Scholar]
  77. 77.
    Jung T, Orlikowski L, Henricot B, Abad-Campos P, Aday AG et al. 2015. Widespread Phytophthora infestans in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 46:2134–63
    [Google Scholar]
  78. 78.
    Kenis M, Hurley BP, Hajek AE, Cock MJ. 2017. Classical biological control of insect pests of trees: facts and figures. Biol. Invasions 19:113401–17
    [Google Scholar]
  79. 79.
    Klooster WS, Gandhi KJK, Long LC, Perry KI, Rice KB, Herms DA. 2018. Ecological impacts of emerald ash borer in forests at the epicenter of the invasion in North America. Forests 9:250
    [Google Scholar]
  80. 80.
    Koch JL, Carey DW, Mason ME, Poland TM, Knight KS. 2015. Intraspecific variation in Fraxinus pennsylvanica responses to emerald ash borer (Agrilus planipennis). New For. 46:995–1011
    [Google Scholar]
  81. 81.
    Krause SL, Raffa KF. 1996. Defoliation tolerance affects the spatial and temporal distributions of larch sawfly and natural enemy populations. Ecolog. Entomol. 21:101–11
    [Google Scholar]
  82. 82.
    La Y-J 2009. Korean successes in controlling blister rust of Korean pine. Proceedings of the Breeding and Genetic Resources of Five-Needle Pines Conference D Noshad, E Noh, J King, R Sniezko 1–9. Vienna: IUFRO
    [Google Scholar]
  83. 83.
    Laffoley D, Baxter JM, Amon DJ, Currie DEJ, Downs CA et al. 2020. Eight urgent, fundamental and simultaneous steps needed to restore ocean health, and the consequences for humanity and the planet of inaction or delay. Aquat. Conserv. 30:194–208
    [Google Scholar]
  84. 84.
    Laursen B. 2018. What is collaborative, interdisciplinary reasoning? The heart of interdisciplinary team science. Inf. Sci. Int. J. Emerg. Transdiscipl. 21:75–106
    [Google Scholar]
  85. 85.
    Lee DJ, Adams DC, Kim CS. 2009. Managing invasive plants on public conservation forestlands: application of a bio-economic model. For. Policy Econ. 11:4237–43
    [Google Scholar]
  86. 86.
    Lehtijärvi A, Oskay F, Dogmus Lehtijärvi HT, Aday Kaya AG, Pecori F et al. 2018. Ceratocystis platani is killing plane trees in Istanbul (Turkey). For. Pathol. 48:e12375
    [Google Scholar]
  87. 87.
    Leung B, Springborn MR, Turner JA, Brockerhoff EG. 2014. Pathway-level risk analysis: the net present value of an invasive species policy in the US. Front. Ecol. Environ. 12:273–79
    [Google Scholar]
  88. 88.
    Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. 2012. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10:135–43
    [Google Scholar]
  89. 89.
    Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. 2017. Biological invasions in forest ecosystems. Biol. Invasions 19:3437–58
    [Google Scholar]
  90. 90.
    Liebhold AM, Kean JM. 2019. Eradication and containment of non-native forest insects: successes and failures. J. Pest Sci. 92:83–91
    [Google Scholar]
  91. 91.
    Loo JA. 2009. Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol. Invasions 11:181–96
    [Google Scholar]
  92. 92.
    Lovett G, Weiss M, Lambert KF. 2019. Preventing the importation of invasive forest pests through Tree-SMART trade. Entomol. Soc. Am. https://eco.confex.com/eco/2020/meetingapp.cgi/Paper/86805
    [Google Scholar]
  93. 93.
    Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD. 2006. Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 56:395–405
    [Google Scholar]
  94. 94.
    Lovett GM, Weiss M, Liebhold AM, Holmes TP, Leung B et al. 2016. Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecol. Appl. 26:1437–55
    [Google Scholar]
  95. 95.
    Luchi N, Ioos R, Santini A. 2020. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl. Microbiol. Biotechnol. 104:2453–68
    [Google Scholar]
  96. 96.
    Lutts RH. 2004. Like manna from God: the American chestnut trade in southwestern Virginia. Environ. Hist. 9:497–525
    [Google Scholar]
  97. 97.
    MacQuarrie CJ, Lyons DB, Seehausen ML, Smith SM. 2016. A history of biological control in Canadian forests, 1882–2014. Can. Entomol. 148:S1S239–69
    [Google Scholar]
  98. 98.
    Mansfield S, McNeill MR, Aalders LT, Bell NL, Kean JM et al. 2019. The value of sentinel plants for risk assessment and surveillance to support biosecurity. NeoBiota 48:1–24
    [Google Scholar]
  99. 99.
    Marini L, Ayres MP, Jactel H. 2022. Impact of stand and landscape management on forest pest damage. Annu. Rev. Entomol. 67:181–99
    [Google Scholar]
  100. 100.
    Martinez D, Duran EM, Bauer N. 2020. Saving ‘Ōhi‘a: a case study on the influence of human behavior on ecological degradation through an examination of rapid ‘Ōhi‘a death and its impacts on the Hawaiian Islands. Case Stud. Environ. 4:111041185
    [Google Scholar]
  101. 101.
    McDonald RI, Kroeger T, Zhang P, Hamel P. 2020. The value of US urban tree cover for reducing heat-related health impacts and electricity consumption. Ecosystems 23:1137–50
    [Google Scholar]
  102. 102.
    McRoberts N, Thomas CS, Brown JK, Nutter FW, Stack JP, Martyn RD. 2016. The evolution of a process for selecting and prioritizing plant diseases for recovery plans. Plant Dis. 100:4665–71
    [Google Scholar]
  103. 103.
    Meldrum JR, Champ PA, Bond CA 2011. Valuing the forest for the trees: willingness to pay for white pine blister rust management. The Future of High-Elevation, Five-Needle White Pines in Western North America: Proceedings of the High Five Symposium RE Keane, DF Tomback, MP Murray, CM Smith 226–34. Fort Collins, CO: USDA
    [Google Scholar]
  104. 104.
    Mota M, Vieira P, eds. 2008. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems Dordrecht, Neth.: Springer
    [Google Scholar]
  105. 105.
    Munck IA, Bonello P. 2018. Modern approaches for early detection of forest pathogens are sorely needed in the United States. For. Pathol. 48:e12445
    [Google Scholar]
  106. 106.
    Natl. Acad. Sci. Eng. Med 2019. Forest Health and Biotechnology: Possibilities and Considerations Washington, DC: Natl. Acad. Press
    [Google Scholar]
  107. 107.
    Natl. Res. Counc. 2005. Facilitating Interdisciplinary Research Washington, DC: Natl. Acad. Press
    [Google Scholar]
  108. 108.
    Olatinwo RO, Fraedrich SW, Mayfield AE. 2021. Laurel wilt: current and potential impacts and possibilities for prevention and management. Forests 12:2181
    [Google Scholar]
  109. 109.
    Ormsby M, Brenton-Rule E. 2017. A review of global instruments to combat invasive alien species in forestry. Biol. Invasions 19:3355–64Review of current instruments aimed at curbing forest invasive species and their history.
    [Google Scholar]
  110. 110.
    Ostrom E. 1990. Governing the Commons: The Evolution of Institutions for Collective Action Cambridge, UK: Cambridge Univ. PressNobel-winning work on collective action to solve common-pool resource social dilemmas in natural resources.
    [Google Scholar]
  111. 111.
    Ostrom E. 2010. A multi-scale approach to coping with climate change and other collective action problems. Solutions 1:27–36
    [Google Scholar]
  112. 112.
    Paap T, Burgess TI, Wingfield MJ. 2017. Urban trees: bridgeheads for forest pest invasions and sentinels for early detection. Biol. Invasions 19:3515–26
    [Google Scholar]
  113. 113.
    Paap T, Wingfield MJ, Burgess TI, Hulbert JM, Santini A. 2020. Harmonising the fields of invasion science and forest pathology. NeoBiota 62:301
    [Google Scholar]
  114. 114.
    Paap T, Wingfield MJ, Burgess TI, Wilson JRU, Richardson DM, Santini A. 2022. Invasion frameworks: a forest pathogen perspective. Curr. For. Rep. 8:74–89
    [Google Scholar]
  115. 115.
    Pautasso M, Aas G, Queloz V, Holdenrieder O. 2013. European ash (Fraxinus excelsior) dieback: a conservation biology challenge. Biol. Conserv. 158:37–49
    [Google Scholar]
  116. 116.
    Pawson SM, Sullivan JJ, Grant A. 2020. Expanding general surveillance of invasive species by integrating citizens as both observers and identifiers. J. Pest Sci. 93:1155–66
    [Google Scholar]
  117. 117.
    Pike CC, Koch J, Nelson CD. 2021. Breeding for resistance to tree pests: successes, challenges, and a guide to the future. J. For. 119:96–105
    [Google Scholar]
  118. 118.
    Potter KM, Escanferla ME, Jetton RM, Man G. 2019. Important insect and disease threats to United States tree species and geographic patterns of their potential impacts. Forests 10:304
    [Google Scholar]
  119. 119.
    Powell WA, Newhouse AE, Coffey V. 2019. Developing blight-tolerant American chestnut trees. CSH Perspect. Biol. 11:a034587
    [Google Scholar]
  120. 120.
    Prospero S, Botella L, Santini A, Robin C. 2021. Biological control of emerging forest diseases: How can we move from dreams to reality?. For. Ecol. Manag. 496:119377
    [Google Scholar]
  121. 121.
    Pureswaran DS, Roques A, Battisti A. 2018. Forest insects and climate change. Curr. For. Rep. 4:35–50
    [Google Scholar]
  122. 122.
    Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM et al. 2020. Scientists’ warning on invasive alien species. Biol. Rev. 95:61511–34
    [Google Scholar]
  123. 123.
    Quirion B, Domke GM, Walters BF, Lovett GM, Fargione J et al. 2021. Insect and disease disturbances correlate with reduced carbon sequestration capacity in forests of the contiguous United States. Front. For. Glob. Change 4:143
    [Google Scholar]
  124. 124.
    Rabaglia R, Cognato AI, Hoebeke ER, Johnson CW, LaBonte JR et al. 2019. Early detection and rapid response: a 10-year summary of the USDA Forest Service program of surveillance for non-native bark and ambrosia beetles. Am. Entomol. 65:129–42
    [Google Scholar]
  125. 125.
    Ramsfield TD, Bentz BJ, Faccoli M, Jactel H, Brockerhoff EG. 2016. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry 89:245–52
    [Google Scholar]
  126. 126.
    Reyes-García V, Fernández-Llamazares Á, McElwee P, Molnár Z, Öllerer K et al. 2019. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27:13–8
    [Google Scholar]
  127. 127.
    Robertson PA, Mill A, Novoa A, Jeschke JM, Essl F et al. 2020. A proposed unified framework to describe the management of biological invasions. Biol. Invasions 22:2633–45
    [Google Scholar]
  128. 128.
    Rosenbaum WA. 2020. Environmental Politics and Policy Washington, DC: CQ Press. , 11th ed..
    [Google Scholar]
  129. 129.
    Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ et al. 2014. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12:8457–65Wake-up call linking invasions to trade, inadequacy of current policy, and need for a proactive approach.
    [Google Scholar]
  130. 130.
    Russell JC, Blackburn TM. 2017. The rise of invasive species denialism. Trends Ecol. Evol. 32:3–6
    [Google Scholar]
  131. 131.
    Santini A, Ghelardini L, De Pace C, Desprez-Loustau M-L, Capretti P et al. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197:238–50
    [Google Scholar]
  132. 132.
    Schultz AN, Lucardi RD, Marsico TD. 2019. Successful invasions and failed biocontrol: the role of antagonistic species interactions. BioScience 69:9711–14
    [Google Scholar]
  133. 133.
    Seebens H, Blackburn T, Dyer E, Genovesi P, Hulme PA et al. 2017. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8:14435
    [Google Scholar]
  134. 134.
    Seebens H, Essl F, Dawson W, Fuentes N, Moser D et al. 2015. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Change Biol. 21:4128–40Identifies growing threat to biodiversity in emerging economies.
    [Google Scholar]
  135. 135.
    Shin SC 2008. Pine wilt disease in Korea. Pine Wilt Disease BG Zhao, F Kzauyoshi, JR Sutherland, Y Takeuchi 26–32. Dordrecht, Neth: Springer
    [Google Scholar]
  136. 136.
    Showalter DN, Raffa KF, Sniezko RA, Herms DA, Liebhold AM et al. 2018. Strategic development of tree resistance against forest pathogen and insect invasions in defense-free space. Front. Ecol. Evol. 6:124
    [Google Scholar]
  137. 137.
    Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA et al. 2013. Impacts of biological invasions: what's what and the way forward. Trends Ecol. Evol. 28:158–66
    [Google Scholar]
  138. 138.
    Sniezko RA, Johnson JS, Reeser P, Kegley A, Hansen EM et al. 2020. Genetic resistance to Phytophthora lateralis in Port-Orford-cedar (Chamaecyparis lawsoniana): basic building blocks for a resistance program. Plants People Planet 2:69–83
    [Google Scholar]
  139. 139.
    Sniezko RA, Johnson JS, Savin DP. 2020. Assessing the durability, stability, and usability of genetic resistance to a non-native fungal pathogen in two pine species. Plants People Planet 2:57–68
    [Google Scholar]
  140. 140.
    Sniezko RA, Koch J. 2017. Breeding trees resistant to insects and diseases: putting theory into application. Biol. Invasions 19:3377–400Reviews practical considerations of implementing effective resistance breeding programs in forestry.
    [Google Scholar]
  141. 141.
    Sniezko RA, Liu JJ. 2021. Prospects for developing durable resistance in populations of forest trees. New For. https://doi.org/10.1007/s11056-021-09898-3
    [Google Scholar]
  142. 142.
    Solano A, Rodriguez SL, Coyle DR. 2020. The Nature Conservancy's Don't Move Firewood campaign: an analysis of the 2005–2016 survey data Rep. For. Environ. Conserv. Clemson, SC: http://www.dontmovefirewood.org/wp-content/uploads/2020/07/Solano-Rodriguez-and-Coyle-DMF-Report-for-2005-2016-Survey-Data_2.pdf
    [Google Scholar]
  143. 143.
    Spence N, Hill L, Morris J. 2020. How the global threat of pests and diseases impacts plants, people, and the planet. Plants People Planet 2:5–13Uses two case studies to put people first in telling the invasive forest pest narrative.
    [Google Scholar]
  144. 144.
    Susaeta A, Soto JR, Adams DC, Hulcr J. 2017. Expected timber-based economic impacts of a wood-boring beetle (Acanthotomicus sp.) that kills American sweetgum. J. Econ. Entomol. 110:41942–45
    [Google Scholar]
  145. 145.
    Theoharides KA, Dukes JS. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176:256–73
    [Google Scholar]
  146. 146.
    Tobin PC, Kean JM, Suckling DM, McCullough DG, Herms DA, Stringer LD. 2014. Determinants of successful arthropod eradication programs. Biol. Invasions 16:401–14
    [Google Scholar]
  147. 147.
    Tsopelas P, Santini A, Wingfield M, DeBeer W. 2017. Canker stain: a lethal disease destroying iconic plane trees. Plant Dis. 101:645–58
    [Google Scholar]
  148. 148.
    Turner RM, Brockerhoff EG, Bertelmeier C, Blake RE, Caton B et al. 2021. Worldwide border inspections provide a window into human-mediated global insect movement. Ecol. Appl. 31:7e02412
    [Google Scholar]
  149. 149.
    Ugawa S, Fukuda K. 2008. Effect of aerial spraying of insecticide as a control measure for pine wilt disease. Pine Wilt Disease: A Worldwide Threat to Forest Ecosystems MM Mota, PR Vieira 389–96. Dordrecht, Neth: Springer
    [Google Scholar]
  150. 150.
    USDA 2023. Budget. U.S. Department of Agriculture https://www.usda.gov/our-agency/about-usda/budget
    [Google Scholar]
  151. 151.
    Van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J et al. 2010. Classical biological control for the protection of natural ecosystems. Biol. Control 54:Suppl. 1S2–33
    [Google Scholar]
  152. 152.
    Vélez ML, La Manna L, Tarabini M, Gomez F, Elliott M et al. 2020. Phytophthora austrocedri in Argentina and co-inhabiting Phytophthoras: roles of anthropogenic and abiotic factors in species distribution and diversity. Forests 11:1223
    [Google Scholar]
  153. 153.
    Villari C, Dowkiw A, Enderle R, Ghasemkhani M, Kirisits T et al. 2018. Advanced spectroscopy-based phenotyping offers a potential solution to the ash dieback epidemic. Sci. Rep. 8:17448
    [Google Scholar]
  154. 154.
    Ward SF, Aukema BH, Fei S, Liebhold AM. 2020. Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids. Ecology 101:11e03156
    [Google Scholar]
  155. 155.
    Wasielewski J. 2020. Laurel wilt: a disease impacting avocados Rep. Univ. Fla. Inst. Food Agric. Sci. Ext. Gainesville, FL: https://sfyl.ifas.ufl.edu/miami-dade/agriculture/laurel-wilt---a-disease-impacting-avocados/
    [Google Scholar]
  156. 156.
    Westbrook JW, Holliday JA, Newhouse AE, Powell WA. 2020. A plan to diversify a transgenic blight-tolerant American chestnut population using citizen science. Plants People Planet 2:84–95
    [Google Scholar]
  157. 157.
    Wilson EO. 2016. Half-Earth: Our Planet's Fight for Life New York: Norton
    [Google Scholar]
  158. 158.
    Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. 2015. Planted forest health: the need for a global strategy. Science 349:832–36
    [Google Scholar]
  159. 159.
    Wingfield MJ, Slippers B, Wingfield BD, Barnes I. 2017. The unified framework for biological invasions: a forest fungal pathogen perspective. Biol. Invasions 19:3201–14
    [Google Scholar]
  160. 160.
    Wittmann ME, Chandra S, Boyd K, Jerde CL. 2015. Implementing invasive species control: a case study of multi-jurisdictional coordination at Lake Tahoe, USA. Manag. Biol. Invasions 6:4319–28
    [Google Scholar]
  161. 161.
    Woodford DJ, Richardson DM, MacIsaac HJ, Mandrak NE, van Wilgen BW et al. 2016. Confronting the wicked problem of managing biological invasions. NeoBiota 3163–86Uses case studies to highlight how sociopolitical dimensions of invasions complicate and restrict solution space.
    [Google Scholar]
  162. 162.
    World Trade Organ. (WTO) 2010. Sanitary and phytosanitary measures Rep. WTO Geneva: https://www.wto.org/english/res_e/booksp_e/agrmntseries4_sps_e.pdf
    [Google Scholar]
  163. 163.
    Wu N, Zhang S, Li X, Cao Y, Liu X et al. 2019. Fall webworm genomes yield insights into rapid adaptation of invasive species. Nature Ecol. Evol. 3:105–15
    [Google Scholar]
  164. 164.
    Yan Z, Sun J, Don O, Zhang Z. 2005. The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers. Conserv. 14:1735–60
    [Google Scholar]
  165. 165.
    Zhang XY, Lu Q, Sniezko R, Song RQ, Man G. 2010. Blister rusts in China: hosts, pathogens, and management. For. Pathol. 40:369–81
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021722-024626
Loading
/content/journals/10.1146/annurev-phyto-021722-024626
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error