1932

Abstract

Harvested fruit and vegetables are perishable, subject to desiccation, show increased respiration during ripening, and are colonized by postharvest fungal pathogens. Induced resistance is a strategy to control diseases by eliciting biochemical processes in fruits and vegetables. This is accomplished by modulating the progress of ripening and senescence, which maintains the produce in a state of heightened resistance to decay-causing fungi. Utilization of induced resistance to protect produce has been improved by scientific tools that better characterize physiological changes in plants. Induced resistance slows the decline of innate immunity after harvest and increases the production of defensive responses that directly inhibit plant pathogens. This increase in defense response in fruits and vegetables contributes to higher amounts of phenols and antioxidant compounds, improving both the quality and appearance of the produce. This review summarizes mechanisms and treatments that induce resistance in harvested fruits and vegetables to suppress fungal colonization. Moreover, it highlights the importance of host maturity and stage of ripening as limiting conditions for the improved expression of induced-resistance processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-021722-035135
2023-09-05
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/phyto/61/1/annurev-phyto-021722-035135.html?itemId=/content/journals/10.1146/annurev-phyto-021722-035135&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adikaram NKB, Joyce DC, Terry LA. 2002. Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Australas. Plant Pathol. 31:223–29
    [Google Scholar]
  2. 2.
    Alkan N, Fortes AM. 2015. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 6:889
    [Google Scholar]
  3. 3.
    Alkan N, Friedlander G, Ment D, Prusky D, Fluhr R. 2015. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies. New Phytol. 205:801–15
    [Google Scholar]
  4. 4.
    Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–84
    [Google Scholar]
  5. 5.
    Asselbergh B, Curvers C, França SC, Audenaert K, Vuylsteke M et al. 2007. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 144:1863–77
    [Google Scholar]
  6. 6.
    Balsells-Llauradó M, Silva CJ, Usall J, Vall-Laura L, Serrano-Prieto S et al. 2020. Depicting the battle between nectarine and Monilinia laxa: the fruit developmental stage dictates the effectiveness of the host defenses and the pathogen's infection strategies. Hortic. Res. 7:167
    [Google Scholar]
  7. 7.
    Baró-Montel N, Vall-Laura L, Giné-Bordonaba J, Serrano-Prieto S, Usall J et al. 2019. Double-sided battle: the role of ethylene during Monilinia spp. infection in peach at different phenological stages. Plant Physiol. Biochem. 144:324–33
    [Google Scholar]
  8. 8.
    Beno-Moualem D, Prusky D. 2000. Early events in the development of quiescent infection of avocado fruits against Colletotrichum gloeosporioides. Phytopathology 90:553–59
    [Google Scholar]
  9. 9.
    Blanco-Ulate B, Labavitch JM, Powell ALT, Cantu D 2016. Hitting the wall: plant cell wall implications during Botrytis cinerea infections. Botrytis: The Fungus, the Pathogen and its Management in Agricultural Systems S Fillinger, Y Elad 361–86. Cham: Springer
    [Google Scholar]
  10. 10.
    Blanco-Ulate B, Morales-Cruz A, Amrine K, Labavitch JM, Powell A, Cantu D. 2014. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Front. Plant Sci. 5:435
    [Google Scholar]
  11. 11.
    Blanco-Ulate B, Vincenti E, Powell AL, Cantu D. 2013. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front. Plant Sci. 4:142
    [Google Scholar]
  12. 12.
    Brummell DA. 2006. Cell wall disassembly in ripening fruit. Funct. Plant Biol. 33:103–19
    [Google Scholar]
  13. 13.
    Buonaurio R, Iriti M, Romanazzi G. 2009. Induced resistance to plant diseases caused by oomycetes and fungi. Petria 19:130–48
    [Google Scholar]
  14. 14.
    Buswell W, Schwarzenbacher RE, Luna E, Sellwood M, Chen B et al. 2018. Chemical priming of immunity without costs to plant growth. New Phytol. 218:1205–16
    [Google Scholar]
  15. 15.
    Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell ALT 2009. Ripening regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol. 150:1434–49
    [Google Scholar]
  16. 16.
    Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB et al. 2008. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. PNAS 105:859–64
    [Google Scholar]
  17. 17.
    Cao D, Li H, Yi J, Zhang J, Che H et al. 2011. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLOS ONE 6:e21071
    [Google Scholar]
  18. 18.
    Cara B, Giovannoni J. 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci. 175:106–13
    [Google Scholar]
  19. 19.
    Chakravarthy S, Tuori RP, D'Ascenzo MD, Fobert PR, Després C, Martin GB 2003. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell 15:3033–50
    [Google Scholar]
  20. 20.
    Chaturvedi R, Krothapalli K, Makandar R, Nandi A, Sparks AA et al. 2008. Plastid ω-3 desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J. 54:106–17
    [Google Scholar]
  21. 21.
    Chen Y, Grimplet J, David K, Castellarin SD, Terol J et al. 2018. Ethylene receptors and related proteins in climacteric and non-climacteric fruits. Plant Sci. 276:63–72
    [Google Scholar]
  22. 22.
    Chen X, Li C, Wang H, Guo Z. 2019. WRKY transcription factors: evolution, binding, and action. Phytopathol. Res. 1:13
    [Google Scholar]
  23. 23.
    Cherian S, Figueroa CR, Nair H. 2014. ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus nonclimacteric fruit. J. Exp. Bot. 65:4705–22
    [Google Scholar]
  24. 24.
    Chervin C, El-Kereamy A, Roustan JP, Latche A, Lamon J, Bouzayen M. 2004. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 167:1301–5
    [Google Scholar]
  25. 25.
    Clark N, Nolan TM, Wang P, Song G, Montes C et al. 2021. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat. Commun. 12:5858
    [Google Scholar]
  26. 26.
    Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97–119
    [Google Scholar]
  27. 27.
    Conrath U, Pieterse CM, Mauch-Mani B. 2002. Priming in plant pathogen interactions. Trends Plant Sci. 7:210–16
    [Google Scholar]
  28. 28.
    Coqueiro DSO, de Souza AA, Takita MA, Munari Rodriguez C, Takeshi Kishi L, Machado MO. 2015. Transcriptional profile of sweet orange in response to chitosan and salicylic acid. BMC Genom. 16:288
    [Google Scholar]
  29. 29.
    Coronado-Partida LD, Serrano M, González-Estrada RR, Romanazzi G, Gutierrez P. 2021. Application of GRAS compounds to control soft rot in jackfruit (Artocarpus heterophyllus L.) caused by Rhizopus stolonifer. TIP Rev. Esp. Cien. Quím.-Biol. 24:e327
    [Google Scholar]
  30. 30.
    Curvers K, Seifi H, Mouille G, de Rycke R, Asselbergh B et al. 2010. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea. Plant Physiol. 154:847–60
    [Google Scholar]
  31. 31.
    Danhash N, Wagemakers CA, van Kan JA, de Wit PJ. 1993. Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol. Biol. 22:1017–29
    [Google Scholar]
  32. 32.
    De Miccolis Angelini RM, Landi L, Raguseo C, Pollastro S, Faretra F, Romanazzi G. 2022. Tracking of diversity and evolution in the brown rot fungi Monilinia fructicola, M. fructigena and M. laxa. Front. Microbiol. 13:854852
    [Google Scholar]
  33. 33.
    Deng B, Wang W, Ruan C, Deng L, Yao S et al. 2020. Involvement of CsWRKY70 in salicylic acid-induced citrus fruit resistance against Penicillium digitatum. Hortic. Res. 7:157
    [Google Scholar]
  34. 34.
    Ding Y, Zhao J, Nie Y, Fan B, Wu S et al. 2016. Salicylic-acid-induced chilling- and oxidative-stress tolerance in relation to gibberellin homeostasis, c-repeat/dehydration-responsive element binding factor pathway, and antioxidant enzyme systems in cold-stored tomato fruit. J. Agric. Food Chem. 64:8200–6
    [Google Scholar]
  35. 35.
    Droby S, Prusky D, Jacoby B. 1987. Induction of an antifungal agent in unripe mango fruit to demonstrate their involvement in latent infections of Alternaria alternata. Physiol. Mol. Plant Pathol. 30:285–92
    [Google Scholar]
  36. 36.
    Durrant WE, Dong X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209
    [Google Scholar]
  37. 37.
    El Ghaouth A, Arul J, Grenier J, Asselin A. 1992. Antifungal activity of chitosan on two post-harvest pathogens of strawberry fruits. Phytopathology 82:398–402
    [Google Scholar]
  38. 38.
    El-Kazzaz MK, Sommer NF, Kader AA. 1993. Ethylene effects on in vitro and in vivo growth of certain postharvest fruit infecting fungi. Phytopathology 83:998–1001
    [Google Scholar]
  39. 39.
    Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J et al. 2004. Effect of the colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–97
    [Google Scholar]
  40. 40.
    FAO 2021. Fruit and vegetables - your dietary essentials Int. Year Fruits Veg. Backgr. Pap., FAO Rome: https://www.fao.org/3/cb2395en/cb2395en.pdf
    [Google Scholar]
  41. 41.
    Farinati S, Rasori A, Varotto S, Bonghi C. 2017. Rosaceae fruit development, ripening and post-harvest: an epigenetic perspective. Front. Plant Sci. 8:1247
    [Google Scholar]
  42. 42.
    Fedorina J, Tikhonova N, Ukhatova Y, Ivanov R, Khlestkina E. 2022. Grapevine gene systems for resistance to gray mold Botrytis cinerea and powdery mildew Erysiphe necator. Agronomy 12:499
    [Google Scholar]
  43. 43.
    Feliziani E, Landi L, Romanazzi G. 2015. Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydr. Polym. 132:111–17
    [Google Scholar]
  44. 44.
    Feliziani E, Santini M, Landi L, Romanazzi G. 2013. Pre- and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biol. Technol. 78:133–38
    [Google Scholar]
  45. 45.
    Flaishman MA, Kolattukudy PE. 1994. Timing of fungal invasion using host's ripening hormone as a signal. PNAS 91:6579–83
    [Google Scholar]
  46. 46.
    Fu ZQ, Dong X. 2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839–63
    [Google Scholar]
  47. 47.
    Gallusci P, Hodgman C, Teyssier E, Seymour GB. 2016. DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front. Plant Sci. 7:807
    [Google Scholar]
  48. 48.
    Ge X, Zhu Y, Li Z, Bi Y, Yang J, Zhang J, Prusky D. 2021. Preharvest multiple fungicide stroby sprays promote wound healing of harvested potato tubers by activating phenylpropanoid metabolism. Postharvest Biol. Technol. 171:111328
    [Google Scholar]
  49. 49.
    Giovannoni JJ. 2001. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:725–49
    [Google Scholar]
  50. 50.
    Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. Plant Cell 16:S170–80
    [Google Scholar]
  51. 51.
    Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C et al. 2002. Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–31
    [Google Scholar]
  52. 52.
    Guidarelli M, Zubini P, Nanni V, Bonghi C, Rasori A et al. 2014. Gene expression analysis of peach fruit at different growth stages and with different susceptibility to Monilinia laxa. Eur. J. Plant Pathol. 140:503–13
    [Google Scholar]
  53. 53.
    Haile ZM, Malacarne G, Pilati S, Sonego P, Moretto M et al. 2020. Dual transcriptome and metabolic analysis of Vitis vinifera cv. Pinot Noir berry and Botrytis cinerea during quiescence and egressed infection. Front. Plant Sci. 10:1704
    [Google Scholar]
  54. 54.
    Hashmi MS, East AR, Palmer JS, Heyes JA. 2014. Strawberries inoculated after hypobaric treatment exhibit reduced fungal decay suggesting induced resistance. Acta Hortic. 1053:163–68
    [Google Scholar]
  55. 55.
    He P, Warren RF, Zhao T, Shan L, Zhu L et al. 2001. Overexpression of Pti5 in tomato potentiates pathogen-induced defense gene expression and enhances disease resistance to Pseudomonas syringae pv. tomato. Mol. Plant-Microbe Interact. 14:1453–57
    [Google Scholar]
  56. 56.
    Iqbal Z, Singh Z, Khangura R, Ahmad S. 2012. Management of citrus blue and green moulds through application of organic elicitors. Australas. Plant Pathol. 41:69–77
    [Google Scholar]
  57. 57.
    Jaskiewicz M, Conrath U, Peterhänsel C. 2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12:50–55
    [Google Scholar]
  58. 58.
    Jia HF, Chai YM, Li CL, Lu D, Luo JJ et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 157:188–99
    [Google Scholar]
  59. 59.
    Jia H, Jiu S, Zhang C, Wang C, Tariq P et al. 2016. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid‐stress‐ripening transcription factor. Plant Biotechnol. J. 14:2045–65
    [Google Scholar]
  60. 60.
    Jin P, Zheng C, Huang Y-P, Wang X-L, Luo Z-S, Zheng Y-H. 2016. Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit. J. Integr. Agric. 15:2658–65
    [Google Scholar]
  61. 61.
    Joyce DC, Johnson GI. 1999. Prospects for exploitation of natural disease resistance in harvested horticultural crops. Postharvest News Inf. 10:45–48
    [Google Scholar]
  62. 62.
    Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. 2009. Priming in systemic plant immunity. Science 324:89–91
    [Google Scholar]
  63. 63.
    Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. 2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol. 38:651–64
    [Google Scholar]
  64. 64.
    Kader AA 2002. Postharvest Technology of Horticultural Crops Berkeley: Univ. Calif. Agric. Nat. Resour.
    [Google Scholar]
  65. 65.
    Kamo T, Hirai N, Iwami K, Fujioka D, Ohigashi H. 2001. New phenylphenalenones from banana fruit. Tetrahedron 57:7649–56
    [Google Scholar]
  66. 66.
    Kamo T, Hirai N, Tsuda M, Fujioka D, Ohigashi H. 2000. Changes in the content and biosynthesis of phytoalexins in banana fruit. Biosci. Biotechnol. Biochem. 64:2089–98
    [Google Scholar]
  67. 67.
    Karagiannis E, Michailidis M, Tanou G, Samiotaki M, Karamanoli K et al. 2018. Ethylene-dependent and -independent superficial scald resistance mechanisms in ‘Granny Smith’ apple fruit. Sci. Rep. 8:11436
    [Google Scholar]
  68. 68.
    Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet. 45:41–59
    [Google Scholar]
  69. 69.
    Landi L, De Miccolis Angelini RM, Pollastro S, Feliziani E, Faretra F, Romanazzi G. 2017. Global transcriptome analysis and identification of differentially expressed genes in strawberry after preharvest application of benzothiadiazole and chitosan. Front. Plant Sci. 8:1658
    [Google Scholar]
  70. 70.
    Landi L, Feliziani E, Romanazzi G. 2014. Expression of defense genes in strawberry fruit treated with different resistance inducers. J. Agric. Food Chem. 62:3047–56
    [Google Scholar]
  71. 71.
    Landi L, Peralta-Ruiz Y, Chaves-López C, Romanazzi G. 2021. Chitosan coating enriched with Ruta graveolens L. essential oil reduces postharvest anthracnose of papaya (Carica papaya L.) and modulates defense-related gene expression. Front. Plant Sci. 12:765806
    [Google Scholar]
  72. 72.
    Lasanajak Y, Minocha R, Minocha SC, Goyal R, Fatima T et al. 2014. Enhanced flux of substrates into polyamine biosynthesis but not ethylene in tomato fruit engineered with yeast S-adenosylmethionine decarboxylase gene. Amino Acids 46:729–42
    [Google Scholar]
  73. 73.
    Lee S, Hong JC, Jeon WB, Chung YS, Sung S et al. 2009. The salicylic acid-induced protection of non-climacteric unripe pepper fruit against Colletotrichum gloeosporioides is similar to the resistance of ripe fruit. Plant Cell Rep. 28:1573–80
    [Google Scholar]
  74. 74.
    Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K. 2014. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant-Microbe Interact. 27:236–43
    [Google Scholar]
  75. 75.
    Lehmann S, Serrano M, L'Haridon F, Tjamos SE, Metraux JP 2015. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54–62
    [Google Scholar]
  76. 76.
    Lelievre JM, Latche A, Jones B, Bouzayen M, Pech JC. 1997. Ethylene and fruit ripening. Physiol. Plant. 101:727–39
    [Google Scholar]
  77. 77.
    Li C, Jia H, Chai Y, Shen Y. 2011. Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signal. Behav. 6:1950–53
    [Google Scholar]
  78. 78.
    Li S, Jiang H, Wang Y, Lyu L, Prusky D et al. 2020. Effect of benzothiadiazole treatment on improving the mitochondrial energy metabolism involved in induced resistance of apple fruit during postharvest storage. Food Chem. 302:125288
    [Google Scholar]
  79. 79.
    Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R. 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–50
    [Google Scholar]
  80. 80.
    Lougheed EC, Murr DP, Berard L. 1978. Low pressure storage for horticultural crops. HortScience 13:21–27
    [Google Scholar]
  81. 81.
    Luna E, Beardon E, Ravnskov S, Scholes J, Ton J. 2016. Optimizing chemically induced resistance in tomato against Botrytis cinerea. Plant Dis. 100:704–10
    [Google Scholar]
  82. 82.
    Luna E, Bruce TJA, Roberts MR, Flors V, Ton J. 2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844–53
    [Google Scholar]
  83. 83.
    Luna E, López A, Kooiman J, Ton J. 2014. Role of NPR1 and KYP in long-lasting induced resistance by β-aminobutyric acid. Front. Plant Sci. 5:184
    [Google Scholar]
  84. 84.
    Luria N, Sela N, Yaari M, Feygenberg O, Lers A, Prusky D 2014. De-novo assembly of mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment. BMC Genom. 15:957
    [Google Scholar]
  85. 85.
    Malerba M, Cerana R. 2016. Chitosan effects on plant systems. Int. J. Mol. Sci. 17:996
    [Google Scholar]
  86. 86.
    Malinovsky FG, Fangel JU, Willats WG. 2014. The role of the cell wall in plant immunity. Front. Plant Sci. 5:178
    [Google Scholar]
  87. 87.
    Marcos JF, González-Candelas L, Zacarías L. 2005. Involvement of ethylene biosynthesis and perception in the susceptibility of citrus fruits to Penicillium digitatum infection and the accumulation of defence-related mRNAs. J. Exp. Bot. 56:2183–93
    [Google Scholar]
  88. 88.
    Mari M, Spadaro D, Casals C, Collina M, De Cal A, Usall J. 2019. Stone fruits. Postharvest Pathology of Fresh Horticultural Produce L Palou, JL Smilanick 111–40. Boca Raton, FL: CRC Press
    [Google Scholar]
  89. 89.
    Martinez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CMJ et al. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818–22
    [Google Scholar]
  90. 90.
    Mauch-Mani B, Baccelli I, Luna E, Flors V. 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485–512
    [Google Scholar]
  91. 91.
    Mayda E, Marqués C, Conejero V, Vera P. 2000. Expression of a pathogen-induced gene can be mimicked by auxin insensitivity. Mol. Plant-Microbe Interact. 13:23–31
    [Google Scholar]
  92. 92.
    Meyer M, Huttenlocher F, Cedzich A, Procopio S, Stroeder J et al. 2016. The subtilisin-like protease SBT3 contributes to insect resistance in tomato. J. Exp. Bot. 67:4325–38
    [Google Scholar]
  93. 93.
    Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L et al. 2021. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC Plant Biol. 21:411
    [Google Scholar]
  94. 94.
    Obianom C, Romanazzi G, Sivakumar D. 2019. Effects of chitosan treatment on avocado postharvest diseases and expression of phenylalanine ammonia-lyase, chitinase and lipoxygenase genes. Postharvest Biol. Technol. 147:214–21
    [Google Scholar]
  95. 95.
    Ordaz-Ortiz JJ, Marcus SE, Knox JP. 2009. Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol. Plant 2:910–21
    [Google Scholar]
  96. 96.
    Osondu HAA, Akinola SA, Shoko T, Pillai SK, Sivakumar D. 2022. Coating properties, resistance response, molecular mechanisms and anthracnose decay reduction in green skin avocado fruit (‘Fuerte’) coated with chitosan hydrochloride loaded with functional compound. Postharvest Biol. Technol. 186:111812
    [Google Scholar]
  97. 97.
    Osorio S, Scossa F, Fernie AR. 2013. Molecular regulation of fruit ripening. Front. Plant Sci. 4:198
    [Google Scholar]
  98. 98.
    Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A. 2016. Plant defense signaling and responses against necrotrophic fungal pathogens. J. Plant Growth Regul. 35:1159–74
    [Google Scholar]
  99. 99.
    Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–16
    [Google Scholar]
  100. 100.
    Penninckx IAM, Thomma BPHJ, Buchala A, Metraux JP, Broekaert WF. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–13
    [Google Scholar]
  101. 101.
    Perkins-Veazie PM, Huber DJ, Brecht JK. 1996. In vitro growth and ripening of strawberry fruit in the presence of ACC, STS or propylene. Ann. Appl. Biol. 128:105–16
    [Google Scholar]
  102. 102.
    Petriccione M, Mastrobuoni F, Pasquariello MS, Zampella L, Nobis E et al. 2015. Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods 4:501–23
    [Google Scholar]
  103. 103.
    Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308–16
    [Google Scholar]
  104. 104.
    Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75
    [Google Scholar]
  105. 105.
    Porat R, Weiss B, Cohen L, Daus A, Goren R, Droby S. 1999. Effects of ethylene and 1-methylcyclopropene on the post-harvest qualities of ‘Shamouti’ oranges. Postharvest Biol. Technol. 15:155–63
    [Google Scholar]
  106. 106.
    Pristijono P, Wills RBH, Tesoriero L, Golding JB. 2018. Effect of continuous exposure to low levels of ethylene on mycelial growth of postharvest fruit fungal pathogens. Horticulturae 4:20
    [Google Scholar]
  107. 107.
    Prusky D. 1996. Pathogen quiescence in postharvest diseases. Annu. Rev. Phytopathol. 34:413–34
    [Google Scholar]
  108. 108.
    Prusky D, Alkan N, Fluhr R, Tesfaye M. 2013. Quiescent and necrotrophic lifestyle choice during postharvest disease development. Annu. Rev. Phytopathol. 51:155–76
    [Google Scholar]
  109. 109.
    Prusky D, Keen NT. 1993. Involvement of preformed antifungal compounds and the resistance of subtropical fruits to fungal decay. Plant Dis. 77:114–19
    [Google Scholar]
  110. 110.
    Prusky D, Kobiler I, Jacoby B, Sims JJ, Midland SL. 1985. Effects of inhibitors of avocado lipoxygenase: their possible relationship with the latency of Colletotrichum gloeosporioides on avocado fruits. Physiol. Mol. Plant Pathol. 27:269–79
    [Google Scholar]
  111. 111.
    Prusky D, Kobiler I, Plumbley R, Fuchs Y, Zauberman G. 1993. The effect of CO2 levels on the symptom expression of Colletotrichum gloeosporioides on avocado fruits. Plant Pathol. 42:900–4
    [Google Scholar]
  112. 112.
    Prusky D, Wattad C, Koliber I. 1996. Effect of ethylene on the activation of quiescent infections of Colletotrichum gloeosporioides in avocado fruits. Mol. Plant-Microbe Interact. 9:864–68
    [Google Scholar]
  113. 113.
    Rajestary R, Landi L, Romanazzi G. 2021. Chitosan and postharvest decay of fresh fruit: meta-analysis of disease control and antimicrobial and eliciting activities. Compr. Rev. Food Sci. Food Saf. 20:563–82
    [Google Scholar]
  114. 114.
    Reddy BMV, Belkacemi K, Corcuff R, Castaigne F, Arul J. 2000. Effect of preharvest chitosan sprays on postharvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol. Technol. 20:39–51
    [Google Scholar]
  115. 115.
    Romanazzi G, Feliziani E, Bautista-Baños S, Sivakumar D. 2017. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 57:579–601
    [Google Scholar]
  116. 116.
    Romanazzi G, Feliziani E, Sivakumar D. 2018. Chitosan, a biopolymer with triple action on postharvest decay of fruit and vegetables: eliciting, antimicrobial and film-forming properties. Front. Microbiol. 9:2745
    [Google Scholar]
  117. 117.
    Romanazzi G, Mlikota Gabler F, Smilanick JL 2006. Preharvest chitosan and postharvest UV-C irradiation treatments suppress gray mold of table grapes. Plant Dis. 90:445–50
    [Google Scholar]
  118. 118.
    Romanazzi G, Mlikota Gabler F, Margosan DA, Mackey BE, Smilanick JL 2009. Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology 99:1028–36
    [Google Scholar]
  119. 119.
    Romanazzi G, Moumni M. 2022. Chitosan and other edible coatings to manage postharvest decay, extend shelf life, and reduce losses and wastes of fresh fruit and vegetables. Curr. Opin. Biotechnol. 78:102834
    [Google Scholar]
  120. 120.
    Romanazzi G, Murolo S, Feliziani E. 2013. Effects of an innovative strategy to contain grapevine Bois noir: field treatment with resistance inducers. Phytopathology 103:785–91
    [Google Scholar]
  121. 121.
    Romanazzi G, Nigro F, Ippolito A, Salerno M. 2001. Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol. Technol. 22:1–6
    [Google Scholar]
  122. 122.
    Romanazzi G, Orçonneau Y, Moumni M, Davillerd Y, Marchand PA. 2022. Basic substances, a sustainable tool to complement and eventually replace synthetic pesticides in the management of pre and postharvest diseases: reviewed instructions for users. Molecules 27:113484
    [Google Scholar]
  123. 123.
    Romanazzi G, Sanzani SM, Bi Y, Tian S, Gutierrez-Martinez P, Alkan N. 2016. Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol. Technol. 122:82–94
    [Google Scholar]
  124. 124.
    Romanazzi G, Smilanick JL, Feliziani E, Droby S. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest Biol. Technol. 113:69–76
    [Google Scholar]
  125. 125.
    Saidi L, Duanis-Assaf D, Galsarker O, Maurer D, Alkan N, Poverenov E. 2021. Elicitation of fruit defense response by active edible coatings embedded with phenylalanine to improve quality and storability of avocado fruit. Postharvest Biol. Technol. 174:111442
    [Google Scholar]
  126. 126.
    Saleh A, Withers J, Mohan R, Marqués J, Gu Y et al. 2015. Posttranscriptional modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of immune responses. Cell Host Microbe 18:2169–82
    [Google Scholar]
  127. 127.
    Silva CJ, Adaskaveg JA, Mesquida-Pesci SD, Ortega-Salazar IB, Pattathil S et al. 2023. Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit. Plant Physiol. 191:1575–90
    [Google Scholar]
  128. 128.
    Silva CJ, van den Abeele C, Ortega-Salazar I, Papin V, Adaskaveg JA et al. 2021. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. J. Exp. Bot. 72:2696–99
    [Google Scholar]
  129. 129.
    Srivastava MK, Dwivedi UN. 2000. Delayed ripening of banana fruit by salicylic acid. Plant Sci. 158:87–96
    [Google Scholar]
  130. 130.
    Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J et al. 2008. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–56
    [Google Scholar]
  131. 131.
    Thomma BP, Eggermont K, Tierens KF, Broekaert WF. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121:1093–102
    [Google Scholar]
  132. 132.
    Ton J, Mauch-Mani B. 2004. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38:119–30
    [Google Scholar]
  133. 133.
    Vallad GE, Goodman RM. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44:1920–34
    [Google Scholar]
  134. 134.
    Vall-Llaura N, Torres R, Teixidó N, Usall J, Giné-Bordonaba J. 2022. Untangling the role of ethylene beyond fruit development and ripening: a physiological and molecular perspective focused on the Monilinia-peach interaction. Sci. Hortic. 301:111123
    [Google Scholar]
  135. 135.
    Van der Ent S, Pieterse CMJ. 2012. Ethylene: multi-tasker in plant-attacker interactions. Annu. Plant Rev. 44:343–77
    [Google Scholar]
  136. 136.
    van Loon LC, van Strien EA. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85–97
    [Google Scholar]
  137. 137.
    Walters DR, Ratsep J, Havis ND. 2013. Controlling crop diseases using induced resistance: challenges for the future. J. Exp. Bot. 64:1263–80
    [Google Scholar]
  138. 138.
    Wang B, He X, Bi Y, Jiang H, Wang Y et al. 2021. Preharvest sprays with sodium nitroprusside induce resistance in harvested muskmelon against the pink rot disease. J. Food Process. Preserv. 45:e15339
    [Google Scholar]
  139. 139.
    Wang R, Lammers M, Tikunov Y, Bovy AG, Angenent GC, de Maagd RA. 2020. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci. 294:110436
    [Google Scholar]
  140. 140.
    Wasternack C, Hause B 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58
    [Google Scholar]
  141. 141.
    Wasternack C, Song S. 2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68:1303–21
    [Google Scholar]
  142. 142.
    Waszczak C, Carmody M, Kangasjärvi J. 2018. Reactive oxygen species in plant signaling. Annu. Rev. Plant Biol. 69:209–36
    [Google Scholar]
  143. 143.
    Wilkinson SW, Pastor V, Paplauskas S, Pétriacq P, Luna E. 2018. Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathol. 67:30–41
    [Google Scholar]
  144. 144.
    Wu HL, Lv H, Li L, Liu J, Mu SH et al. 2015. Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in Moso Bamboo (Phyllostachys edulis). PLOS ONE 10:e0126657
    [Google Scholar]
  145. 145.
    Wu X, Wu H, Yu M, Ma R, Yu Z. 2022. Effect of combined hypobaric and cold storage on defense-related enzymes in postharvest peach fruit during ripening. Acta Physiol. Plant. 44:93
    [Google Scholar]
  146. 146.
    Xoca-Orozco L-Á, Cuellar-Torres EA, González-Morales S, Gutiérrez-Martínez P, López-García U et al. 2017. Transcriptomic analysis of avocado Hass (Persea americana Mill) in the interaction system fruit-chitosan-Colletotrichum. Front. Plant Sci. 8:956
    [Google Scholar]
  147. 147.
    Xu J, Xu H, Liu Y, Wang X, Xu Q, Deng X. 2015. Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process. Front. Plant Sci. 6:607
    [Google Scholar]
  148. 148.
    Xu ZS, Chen M, Li LC, Ma YZ. 2008. Functions of the ERF transcription factor family in plants. Botany 86:969–77
    [Google Scholar]
  149. 149.
    Yan Y, Borrego E, Kolomiets MV. 2013. Jasmonate biosynthesis, perception and function in plant development and stress responses. Lipid Metabolism RV Baez London: IntechOpen
    [Google Scholar]
  150. 150.
    Yang J, Zhang KQ. 2019. Chitin synthesis and degradation in fungi: biology and enzymes. Adv. Exp. Med. Biol. 1142:153–67
    [Google Scholar]
  151. 151.
    Zainuri JDC, Wearing AH, Coates L, Terry L. 2001. Effect of phosphonate and salicylic acid treatments on anthracnose disease development and ripening of ‘Kensington Pride’ mango fruit. J. Exp. Agric. 41:805–13
    [Google Scholar]
  152. 152.
    Zhang W, Jiang H, Cao J, Jiang W. 2021. UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biol. Technol. 180:111613
    [Google Scholar]
  153. 153.
    Zhang Z, Tian CP, Zhang Y, Li CZY, Li X et al. 2020. Transcriptomic and metabolomic analysis provides insights into anthocyanin and procyanidin accumulation in pear. BMC Plant Biol. 20:129
    [Google Scholar]
  154. 154.
    Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. PNAS 97:12920–25
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-021722-035135
Loading
/content/journals/10.1146/annurev-phyto-021722-035135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error