1932

Abstract

Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus–plant coevolution.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-030320-041346
2020-08-25
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/phyto/58/1/annurev-phyto-030320-041346.html?itemId=/content/journals/10.1146/annurev-phyto-030320-041346&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adkins S. 2000. Tomato spotted wilt virus: positive steps towards negative success. Mol. Plant Pathol. 1:151–57
    [Google Scholar]
  2. 2.
    Agirrezabala X, Mendez-Lopez E, Lasso G, Sanchez-Pina MA, Aranda M, Valle M 2015. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. eLife 4:e11795
    [Google Scholar]
  3. 3.
    Ahlquist P, Strauss EG, Rice CM, Strauss JH, Haseloff J, Zimmern D 1985. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses. J. Virol. 53:536–42
    [Google Scholar]
  4. 4.
    Atsumi G, Tomita R, Kobayashi K, Sekine KT 2013. Prevalence and genetic diversity of an unusual virus associated with Kobu-sho disease of gentian in Japan. J. Gen. Virol. 94:2360–65
    [Google Scholar]
  5. 5.
    Attoui H, Jaafar FM, Belhouchet M, de Micco P, de Lamballerie X, Brussaard CP 2006. Micromonas pusilla reovirus: a new member of the family Reoviridae assigned to a novel proposed genus (Mimoreovirus). J. Gen. Virol. 87:1375–83
    [Google Scholar]
  6. 6.
    Baulcombe D. 2004. RNA silencing in plants. Nature 431:356–63
    [Google Scholar]
  7. 7.
    Bekal S, Domier LL, Niblack TL, Lambert KN 2011. Discovery and initial analysis of novel viral genomes in the soybean cyst nematode. J. Gen. Virol. 92:1870–79
    [Google Scholar]
  8. 8.
    Benites LF, Poulton N, Labadie K, Sieracki ME, Grimsley N, Piganeau G 2019. Single cell ecogenomics reveals mating types of individual cells and ssDNA viral infections in the smallest photosynthetic eukaryotes. Philos. Trans. R. Soc. Lond. B 374:20190089
    [Google Scholar]
  9. 9.
    Blanc S, Gutierrez S. 2015. The specifics of vector transmission of arboviruses of vertebrates and plants. Curr. Opin. Virol. 15:27–33
    [Google Scholar]
  10. 10.
    Blanc S, Uzest M, Drucker M 2011. New research horizons in vector-transmission of plant viruses. Curr. Opin. Microbiol. 14:483–91
    [Google Scholar]
  11. 11.
    Brazeau MD, Friedman M. 2015. The origin and early phylogenetic history of jawed vertebrates. Nature 520:490–97
    [Google Scholar]
  12. 12.
    Breitbart M, Bonnain C, Malki K, Sawaya NA 2018. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3:754–66
    [Google Scholar]
  13. 13.
    Briddon RW, Martin DP, Roumagnac P, Navas-Castillo J, Fiallo-Olive E et al. 2018. Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch. Virol. 163:2587–600
    [Google Scholar]
  14. 14.
    Brunkard JO, Zambryski PC. 2016. Plasmodesmata enable multicellularity: new insights into their evolution, biogenesis, and functions in development and immunity. Curr. Opin. Plant Biol. 35:76–83
    [Google Scholar]
  15. 15.
    Carr JP, Murphy AM, Tungadi T, Yoon JY 2019. Plant defense signals: players and pawns in plant-virus-vector interactions. Plant Sci 279:87–95
    [Google Scholar]
  16. 16.
    Chabannes M, Iskra-Caruana ML. 2013. Endogenous pararetroviruses: a reservoir of virus infection in plants. Curr. Opin. Virol. 3:615–20
    [Google Scholar]
  17. 17.
    Chen Y, Dessau M, Rotenberg D, Rasmussen DA, Whitfield AE 2019. Entry of bunyaviruses into plants and vectors. Adv. Virus Res. 104:65–96
    [Google Scholar]
  18. 18.
    Cheng S, Xian W, Fu Y, Marin B, Keller J et al. 2019. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179:1057–67.e14
    [Google Scholar]
  19. 19.
    Chiba M, Reed JC, Prokhnevsky AI, Chapman EJ, Mawassi M et al. 2006. Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14
    [Google Scholar]
  20. 20.
    Chow CE, Suttle CA. 2015. Biogeography of viruses in the sea. Annu. Rev. Virol. 2:41–66
    [Google Scholar]
  21. 21.
    Cobián Güemes AG, Youle M, Cantu VA, Felts B, Nulton J, Rohwer F 2016. Viruses as winners in the game of life. Annu. Rev. Virol. 3:197–214
    [Google Scholar]
  22. 22.
    Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW 2018. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10:9487
    [Google Scholar]
  23. 23.
    Csorba T, Kontra L, Burgyan J 2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103
    [Google Scholar]
  24. 24.
    Dawe AL, Nuss DL. 2013. Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission. Adv. Virus Res. 86:109–47
    [Google Scholar]
  25. 25.
    Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P 2015. Citrus tristeza virus: making an ally from an enemy. Annu. Rev. Phytopathol. 53:137–55
    [Google Scholar]
  26. 26.
    Delwiche CF, Cooper ED. 2015. The evolutionary origin of a terrestrial flora. Curr. Biol. 25:R899–910
    [Google Scholar]
  27. 27.
    de Vries J, Archibald JM 2018. Plant evolution: landmarks on the path to terrestrial life. New Phytol 217:1428–34
    [Google Scholar]
  28. 28.
    Diemer GS, Stedman KM. 2012. A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol. Direct 7:13
    [Google Scholar]
  29. 29.
    Dietzgen RG, Freitas-Astua J, Chabi-Jesus C, Ramos-Gonzalez PL, Goodin MM et al. 2018. Dichorhaviruses in their host plants and mite vectors. Adv. Virus Res. 102:119–48
    [Google Scholar]
  30. 30.
    Di Mattia J, Vernerey MS, Yvon M, Pirolles E, Villegas M et al. 2020. Route of a multipartite nanovirus across the body of its aphid vector. J. Virol 94:e01998–19
    [Google Scholar]
  31. 31.
    Dinman JD. 2012. Control of gene expression by translational recoding. Adv. Protein Chem. Struct. Biol. 86:129–49
    [Google Scholar]
  32. 32.
    Dolja VV. 2003. Beet yellows virus: the importance of being different. Mol. Plant Pathol. 4:91–98
    [Google Scholar]
  33. 33.
    Dolja VV, Boyko VP, Agranovsky AA, Koonin EV 1991. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184:79–86
    [Google Scholar]
  34. 34.
    Dolja VV, Koonin EV. 2011. Common origins and host-dependent diversity of plant and animal viromes. Curr. Opin. Virol. 1:322–31
    [Google Scholar]
  35. 35.
    Dolja VV, Koonin EV. 2018. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res 244:36–52
    [Google Scholar]
  36. 36.
    Dolja VV, Kreuze JF, Valkonen JP 2006. Comparative and functional genomics of closteroviruses. Virus Res 117:38–51
    [Google Scholar]
  37. 37.
    El Baidouri M, Carpentier MC, Cooke R, Gao D, Lasserre E et al. 2014. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24:831–38
    [Google Scholar]
  38. 38.
    Elbeaino T, Digiaro M, Mielke-Ehret N, Muehlbach HP, Martelli GP 2018. ICTV virus taxonomy profile: Fimoviridae. J. Gen. Virol. 99:1478–79
    [Google Scholar]
  39. 39.
    Falk BW, Tsai JH. 1998. Biology and molecular biology of viruses in the genus Tenuivirus. Annu. Rev. Phytopathol 36:139–63
    [Google Scholar]
  40. 40.
    Fang X, Qi Y. 2016. RNAi in plants: an argonaute-centered view. Plant Cell 28:272–85
    [Google Scholar]
  41. 41.
    Folimonova SY, Tilsner J. 2018. Hitchhikers, highway tolls and roadworks: the interactions of plant viruses with the phloem. Curr. Opin. Plant Biol. 43:82–88
    [Google Scholar]
  42. 42.
    Fuchs M, Schmitt-Keichinger C, Sanfaçon H 2017. A renaissance in nepovirus research provides new insights into their molecular interface with hosts and vectors. Adv. Virus Res. 97:61–105
    [Google Scholar]
  43. 43.
    Fukuhara T. 2019. Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes 55:165–73
    [Google Scholar]
  44. 44.
    Gayral P, Noa-Carrazana JC, Lescot M, Lheureux F, Lockhart BE et al. 2008. A single Banana streak virus integration event in the banana genome as the origin of infectious endogenous pararetrovirus. J. Virol. 82:6697–710
    [Google Scholar]
  45. 45.
    Geering AD, Maumus F, Copetti D, Choisne N, Zwickl DJ et al. 2014. Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nat. Commun. 5:5269
    [Google Scholar]
  46. 46.
    Geoghegan JL, Holmes EC. 2018. Evolutionary virology at 40. Genetics 210:1151–62
    [Google Scholar]
  47. 47.
    German TL, Lorenzen MD, Grubbs N, Whitefield AE 2020. New technologies for studying negative-strand RNA viruses in plant and arthropod hosts. Mol. Plant-Microbe Interact. 33:382–93
    [Google Scholar]
  48. 48.
    Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N 2015. 50-plus years of fungal viruses. Virology 479–480:356–68
    [Google Scholar]
  49. 49.
    Gibbs AJ, Hajizadeh M, Ohshima K, Jones RAC 2020. The potyviruses: an evolutionary synthesis is emerging. Viruses 12:E132
    [Google Scholar]
  50. 50.
    Gibbs AJ, Torronen M, Mackenzie AM, Wood JT 2nd, Armstrong JS et al. 2011. The enigmatic genome of Chara australis virus. J. Gen. Virol. 92:2679–90
    [Google Scholar]
  51. 51.
    Gilmer D, Ratti C 2017. ICTV virus taxonomy profile: Benyviridae. J. Gen. Virol. 98:1571–72
    [Google Scholar]
  52. 52.
    Goldbach R, Wellink J. 1988. Evolution of plus-strand RNA viruses. Intervirology 29:260–67
    [Google Scholar]
  53. 53.
    Granot D, Kelly G. 2019. Evolution of guard-cell theories: the story of sugars. Trends Plant Sci 24:507–18
    [Google Scholar]
  54. 54.
    Gray S, Gildow FE. 2003. Luteovirus-aphid interactions. Annu. Rev. Phytopathol. 41:539–66
    [Google Scholar]
  55. 55.
    Gregory AC, Zayed AA, Conceicao-Neto N, Temperton B, Bolduc B et al. 2019. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177:1109–23.e14
    [Google Scholar]
  56. 56.
    Greninger AL. 2018. A decade of RNA virus metagenomics is (not) enough. Virus Res 244:218–29
    [Google Scholar]
  57. 57.
    Grigoras I, Vetten HJ, Commandeur U, Ziebell H, Gronenborn B, Timchenko T 2018. Nanovirus DNA-N encodes a protein mandatory for aphid transmission. Virology 522:281–91
    [Google Scholar]
  58. 58.
    Gronenborn B. 2004. Nanoviruses: genome organisation and protein function. Vet. Microbiol. 98:103–9
    [Google Scholar]
  59. 59.
    Grybchuk D, Akopyants NS, Kostygov AY, Konovalovas A, Lye LF et al. 2018. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. . PNAS 115:E506–15
    [Google Scholar]
  60. 60.
    Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V 2018. RNA viruses in trypanosomatid parasites: a historical overview. Mem. Inst. Oswaldo Cruz 113:e170487
    [Google Scholar]
  61. 61.
    Guiry MD. 2012. How many species of algae are there. J. Phycol. 48:1057–63
    [Google Scholar]
  62. 62.
    Guo Z, Li Y, Ding SW 2019. Small RNA-based antimicrobial immunity. Nat. Rev. Immunol. 19:31–44
    [Google Scholar]
  63. 63.
    Hamelin FM, Allen LJ, Prendeville HR, Hajimorad MR, Jeger MJ 2016. The evolution of plant virus transmission pathways. J. Theor. Biol. 396:75–89
    [Google Scholar]
  64. 64.
    Heinlein M. 2015. Plant virus replication and movement. Virology 479–480:657–71
    [Google Scholar]
  65. 65.
    Hesketh EL, Saunders K, Fisher C, Potze J, Stanley J et al. 2018. The 3.3 Å structure of a plant geminivirus using cryo-EM. Nat. Commun. 9:2369
    [Google Scholar]
  66. 66.
    Hillman BI, Cai G. 2013. The family Narnaviridae: simplest of RNA viruses. Adv. Virus Res. 86:149–76
    [Google Scholar]
  67. 67.
    Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG 2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327–59
    [Google Scholar]
  68. 68.
    Hohn T, Rothnie H. 2013. Plant pararetroviruses: replication and expression. Curr. Opin. Virol. 3:621–28
    [Google Scholar]
  69. 69.
    Iranzo J, Koonin EV, Prangishvili D, Krupovic M 2016. Bipartite network analysis of the archaeal virosphere: evolutionary connections between viruses and capsidless mobile elements. J. Virol. 90:11043–55
    [Google Scholar]
  70. 70.
    Iranzo J, Krupovic M, Koonin EV 2016. The double-stranded DNA virosphere as a modular hierarchical network of gene sharing. mBio 7:e00978–16
    [Google Scholar]
  71. 71.
    Jiang D, Ayllon MA, Marzano SL 2019. ICTV virus taxonomy profile: Mymonaviridae. J. Gen. Virol. 100:1343–44
    [Google Scholar]
  72. 72.
    Jones JD, Vance RE, Dangl JL 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395
    [Google Scholar]
  73. 73.
    Kamer G, Argos P. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12:7269–82
    [Google Scholar]
  74. 74.
    Kanyuka K, Ward E, Adams MJ 2003. Polymyxa graminis and the cereal viruses it transmits: a research challenge. Mol. Plant Pathol. 4:393–406
    [Google Scholar]
  75. 75.
    Karasev AV. 2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293–324
    [Google Scholar]
  76. 76.
    Kazlauskas D, Varsani A, Koonin EV, Krupovic M 2019. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 10:3425
    [Google Scholar]
  77. 77.
    Kazlauskas D, Varsani A, Krupovic M 2018. Pervasive chimerism in the replication-associated proteins of uncultured single-stranded DNA viruses. Viruses 10:E187
    [Google Scholar]
  78. 78.
    Keeling PJ, Burki F. 2019. Progress towards the tree of eukaryotes. Curr. Biol. 29:R808–17
    [Google Scholar]
  79. 79.
    Kenrick P, Wellman CH, Schneider H, Edgecombe GD 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. Lond. B 367:519–36
    [Google Scholar]
  80. 80.
    Kew Bot. Gard 2017. State of the World's Plants, 2017 London: SFUMATO Found https://stateoftheworldsplants.org/2017/report/SOTWP_2017.pdf
    [Google Scholar]
  81. 81.
    Kirsip H, Abroi A. 2019. Protein structure-guided hidden Markov models (HMMs) as a powerful method in the detection of ancestral endogenous viral elements. Viruses 11:E320
    [Google Scholar]
  82. 82.
    Kobayashi K, Atsumi G, Iwadate Y, Tomita R, Chiba K et al. 2013. Gentian Kobu-sho-associated virus: a tentative, novel double-stranded RNA virus that is relevant to gentian Kobu-sho syndrome. J. Gen. Plant Pathol. 79:56–63
    [Google Scholar]
  83. 83.
    Koga R, Fukuhara T, Nitta T 1998. Molecular characterization of a single mitochondria-associated double-stranded RNA in the green alga Bryopsis. Plant Mol. . Biol 36:717–24
    [Google Scholar]
  84. 84.
    Koga R, Horiuchi H, Fukuhara T 2003. Double-stranded RNA replicons associated with chloroplasts of a green alga. Bryopsis cinicola. Plant Mol. Biol. 51:991–99
    [Google Scholar]
  85. 85.
    Koonin EV, Dolja VV. 1993. Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit. Rev. Biochem. Mol. Biol. 28:375–430
    [Google Scholar]
  86. 86.
    Koonin EV, Dolja VV. 2014. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78:278–303
    [Google Scholar]
  87. 87.
    Koonin EV, Dolja VV, Krupovic M 2015. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479–480:2–25
    [Google Scholar]
  88. 88.
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI et al. 2020. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84:2e00061–19
    [Google Scholar]
  89. 89.
    Koonin EV, Krupovic M. 2018. The depths of virus exaptation. Curr. Opin. Virol. 31:1–8
    [Google Scholar]
  90. 90.
    Koonin EV, Wolf YI, Katsnelson MI 2017. Inevitability of the emergence and persistence of genetic parasites caused by evolutionary instability of parasite-free states. Biol. Direct 12:31
    [Google Scholar]
  91. 91.
    Koonin EV, Wolf YI, Nagasaki K, Dolja VV 2008. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat. Rev. Microbiol. 6:925–39
    [Google Scholar]
  92. 92.
    Kormelink R, Garcia ML, Goodin M, Sasaya T, Haenni AL 2011. Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 162:184–202
    [Google Scholar]
  93. 93.
    Kotta-Loizou I, Coutts RH. 2017. Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence. PLOS Pathog 13:e1006183
    [Google Scholar]
  94. 94.
    Krupovic M. 2013. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr. Opin. Virol. 3:578–86
    [Google Scholar]
  95. 95.
    Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H et al. 2018. Ortervirales: a new viral order unifying five families of reverse-transcribing viruses. J. Virol. 92:12e00515–18
    [Google Scholar]
  96. 96.
    Krupovic M, Dolja VV, Koonin EV 2015. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol. Direct 10:12
    [Google Scholar]
  97. 97.
    Krupovic M, Dolja VV, Koonin EV 2019. Origin of viruses: primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol. 17:449–58
    [Google Scholar]
  98. 98.
    Krupovic M, Ghabrial SA, Jiang D, Varsani A 2016. Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch. Virol. 161:2633–43
    [Google Scholar]
  99. 99.
    Krupovic M, Koonin EV. 2017. Homologous capsid proteins testify to the common ancestry of retroviruses, caulimoviruses, pseudoviruses, and metaviruses. J. Virol. 91:12e00210–17
    [Google Scholar]
  100. 100.
    Krupovic M, Koonin EV. 2017. Multiple origins of viral capsid proteins from cellular ancestors. PNAS 114:E2401–10
    [Google Scholar]
  101. 101.
    Krupovic M, Ravantti JJ, Bamford DH 2009. Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol. Biol. 9:112
    [Google Scholar]
  102. 102.
    Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E et al. 2020. Cressdnaviricota: a virus phylum unifying 7 families of Rep-encoding viruses with single-stranded, circular DNA genomes. J. Virol. https://doi.org/10.1128/JVI.00582-20
    [Crossref] [Google Scholar]
  103. 103.
    Lachnit T, Thomas T, Steinberg P 2016. Expanding our understanding of the seaweed holobiont: RNA viruses of the red alga Delisea pulchra. Front. . Microbiol 6:1489
    [Google Scholar]
  104. 104.
    Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC et al. 2006. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–80
    [Google Scholar]
  105. 105.
    Laten HM, Majumdar A, Gaucher EA 1998. SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. PNAS 95:6897–902
    [Google Scholar]
  106. 106.
    Lauber C, Seifert M, Bartenschlager R, Seitz S 2019. Discovery of highly divergent lineages of plant-associated astro-like viruses sheds light on the emergence of potyviruses. Virus Res 260:38–48
    [Google Scholar]
  107. 107.
    Leastro MO, Kitajima EW, Silva MS, Resende RO, Freitas-Astua J 2018. Dissecting the subcellular localization, intracellular trafficking, interactions, membrane association, and topology of citrus leprosis virus C proteins. Front. Plant Sci. 9:1299
    [Google Scholar]
  108. 108.
    Lecoq H, Wipf-Scheibel C, Verdin E, Desbiez C 2019. Characterization of the first tenuivirus naturally infecting dicotyledonous plants. Arch. Virol. 164:297–301
    [Google Scholar]
  109. 109.
    Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A 2019. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 17:632–44
    [Google Scholar]
  110. 110.
    Li CX, Shi M, Tian JH, Lin XD, Kang YJ et al. 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4:e05378
    [Google Scholar]
  111. 111.
    Li F, Wang A. 2019. RNA-targeted antiviral immunity: more than just RNA silencing. Trends Microbiol 27:792–805
    [Google Scholar]
  112. 112.
    Lin YH, Fujita M, Chiba S, Hyodo K, Andika IB et al. 2019. Two novel fungal negative-strand RNA viruses related to mymonaviruses and phenuiviruses in the shiitake mushroom (Lentinula edodes). Virology 533:125–36
    [Google Scholar]
  113. 113.
    Liu H, Fu Y, Jiang D, Li G, Xie J et al. 2009. A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J. Virol. 83:1981–91
    [Google Scholar]
  114. 114.
    Liu L, Chen X. 2018. Intercellular and systemic trafficking of RNAs in plants. Nat. Plants 4:869–78
    [Google Scholar]
  115. 115.
    Liu W, Hajano JU, Wang X 2018. New insights on the transmission mechanism of tenuiviruses by their vector insects. Curr. Opin. Virol. 33:13–17
    [Google Scholar]
  116. 116.
    Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM et al. 2011. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:D70–74
    [Google Scholar]
  117. 117.
    Llorens C, Munoz-Pomer A, Bernad L, Botella H, Moya A 2009. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol. Direct 4:41
    [Google Scholar]
  118. 118.
    Lu G, Li S, Zhou C, Qian X, Xiang Q et al. 2019. Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLOS Pathog 15:e1007655
    [Google Scholar]
  119. 119.
    Lubicz JV, Rush CM, Payton M, Colberg T 2007. Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. Virol. J 4:37
    [Google Scholar]
  120. 120.
    Malik HS, Henikoff S, Eickbush TH 2000. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–18
    [Google Scholar]
  121. 121.
    Martelli GP, Adams MJ, Kreuze JF, Dolja VV 2007. Family Flexiviridae: a case study in virion and genome plasticity. Annu. Rev. Phytopathol. 45:73–100
    [Google Scholar]
  122. 122.
    Marzano SY, Nelson BD, Ajayi-Oyetunde O, Bradley CA, Hughes TJ et al. 2016. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 90:6846–63
    [Google Scholar]
  123. 123.
    Mata CP, Luque D, Gomez-Blanco J, Rodriguez JM, Gonzalez JM et al. 2017. Acquisition of functions on the outer capsid surface during evolution of double-stranded RNA fungal viruses. PLOS Pathog 13:e1006755
    [Google Scholar]
  124. 124.
    Maumus F, Epert A, Nogue F, Blanc G 2014. Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5:4268
    [Google Scholar]
  125. 125.
    McLeish MJ, Fraile A, García-Arenal F 2019. Evolution of plant-virus interactions: host range and virus emergence. Curr. Opin. Virol. 34:50–55
    [Google Scholar]
  126. 126.
    Melnyk CW, Molnar A, Baulcombe DC 2011. Intercellular and systemic movement of RNA silencing signals. EMBO J 30:3553–63
    [Google Scholar]
  127. 127.
    Misof B, Liu S, Meusemann K, Peters RS, Donath A et al. 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–67
    [Google Scholar]
  128. 128.
    Miyazaki N, Nakagawa A, Iwasaki K 2013. Life cycle of phytoreoviruses visualized by electron microscopy and tomography. Front. Microbiol. 4:306
    [Google Scholar]
  129. 129.
    Mushegian A, Shipunov A, Elena SF 2016. Changes in the composition of the RNA virome mark evolutionary transitions in green plants. BMC Biol 14:68
    [Google Scholar]
  130. 130.
    Mushegian AR, Elena SF. 2015. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes. Virology 476:304–15
    [Google Scholar]
  131. 131.
    Mushegian AR, Koonin EV. 1993. Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Arch. Virol. 133:239–57
    [Google Scholar]
  132. 132.
    Napuli AJ, Alzhanova DV, Doneanu CE, Barofsky DF, Koonin EV, Dolja VV 2003. The 64-kilodalton capsid protein homolog of Beet yellows virus is required for assembly of virion tails. J. Virol. 77:2377–84
    [Google Scholar]
  133. 133.
    Naranjo-Ortiz MA, Gabaldon T. 2019. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. Camb. Philos. Soc. 94:1443–76
    [Google Scholar]
  134. 134.
    Navarro JA, Sanchez-Navarro JA, Pallas V 2019. Key checkpoints in the movement of plant viruses through the host. Adv. Virus Res. 104:1–64
    [Google Scholar]
  135. 135.
    Nawaz-ul-Rehman MS, Fauquet CM. 2009. Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–32
    [Google Scholar]
  136. 136.
    Nerva L, Forgia M, Ciuffo M, Chitarra W, Chiapello M et al. 2019. The mycovirome of a fungal collection from the sea cucumber Holothuria polii. . Virus Res 273:197737
    [Google Scholar]
  137. 137.
    Nerva L, Turina M, Zanzotto A, Gardiman M, Gaiotti F et al. 2019. Isolation, molecular characterization and virome analysis of culturable wood fungal endophytes in esca symptomatic and asymptomatic grapevine plants. Environ. Microbiol. 21:2886–904
    [Google Scholar]
  138. 138.
    Neuhauser S, Kirchmair M, Bulman S, Bass D 2014. Cross-kingdom host shifts of phytomyxid parasites. BMC Evol. Biol. 14:33
    [Google Scholar]
  139. 139.
    Neumann P, Novak P, Hostakova N, Macas J 2019. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10:1
    [Google Scholar]
  140. 140.
    Ng JC, Falk BW. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44:183–212
    [Google Scholar]
  141. 141.
    Nibert ML, Debat HJ, Manny AR, Grigoriev IV, De Fine Licht HH 2019. Mitovirus and mitochondrial coding sequences from basal fungus Entomophthora muscae. . Viruses 11:4E351
    [Google Scholar]
  142. 142.
    Nibert ML, Ghabrial SA, Maiss E, Lesker T, Vainio EJ et al. 2014. Taxonomic reorganization of family Partitiviridae and other recent progress in partitivirus research. Virus Res 188:128–41
    [Google Scholar]
  143. 143.
    Nibert ML, Vong M, Fugate KK, Debat HJ 2018. Evidence for contemporary plant mitoviruses. Virology 518:14–24
    [Google Scholar]
  144. 144.
    Niklas KJ, Cobb ED, Matas AJ 2017. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. Bot. 68:5261–69
    [Google Scholar]
  145. 145.
    Niklas KJ, Newman SA. 2019. The many roads to (and from) multicellularity. J. Exp. Bot. https://doi.org/10.1093/jxb/erz547
    [Crossref] [Google Scholar]
  146. 146.
    Novikova O, Belfort M. 2017. Mobile group II introns as ancestral eukaryotic elements. Trends Genet 33:773–83
    [Google Scholar]
  147. 147.
    Novikova O, Smyshlyaev G, Blinov A 2010. Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants. BMC Genom 11:231
    [Google Scholar]
  148. 148.
    OTPT Initiat 2019. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–85
    [Google Scholar]
  149. 149.
    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M et al. 2016. Uncovering Earth's virome. Nature 536:425–30
    [Google Scholar]
  150. 150.
    Pascon RC, Kitajima JP, Breton MC, Assumpcao L, Greggio C et al. 2006. The complete nucleotide sequence and genomic organization of Citrus leprosis associated virus, cytoplasmatic type (CiLV-C). Virus Genes 32:289–98
    [Google Scholar]
  151. 151.
    Peterson KJ, Cotton JA, Gehling JG, Pisani D 2008. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos. Trans. R. Soc. Lond. B 363:1435–43
    [Google Scholar]
  152. 152.
    Popper ZA, Michel G, Herve C, Domozych DS, Willats WG et al. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62:567–90
    [Google Scholar]
  153. 153.
    Pyle JD, Keeling PJ, Nibert ML 2017. Amalga-like virus infecting Antonospora locustae, a microsporidian pathogen of grasshoppers, plus related viruses associated with other arthropods. Virus Res 233:95–104
    [Google Scholar]
  154. 154.
    Quito-Avila DF, Brannen PM, Cline WO, Harmon PF, Martin RR 2013. Genetic characterization of Blueberry necrotic ring blotch virus, a novel RNA virus with unique genetic features. J. Gen. Virol. 94:1426–34
    [Google Scholar]
  155. 155.
    Rastgou M, Habibi MK, Izadpanah K, Masenga V, Milne RG et al. 2009. Molecular characterization of the plant virus genus Ourmiavirus and evidence of inter-kingdom reassortment of viral genome segments as its possible route of origin. J. Gen. Virol. 90:2525–35
    [Google Scholar]
  156. 156.
    Revers F, Garcia JA. 2015. Molecular biology of potyviruses. Adv. Virus Res. 92:101–99
    [Google Scholar]
  157. 157.
    Richert-Poggeler KR, Noreen F, Schwarzacher T, Harper G, Hohn T 2003. Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia. EMBO J 22:4836–45
    [Google Scholar]
  158. 158.
    Richert-Poggeler KR, Shepherd RJ. 1997. Petunia vein-clearing virus: a plant pararetrovirus with the core sequences for an integrase function. Virology 236:137–46
    [Google Scholar]
  159. 159.
    Rochon D, Kakani K, Robbins M, Reade R 2004. Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. Annu. Rev. Phytopathol. 42:211–41
    [Google Scholar]
  160. 160.
    Roossinck MJ. 2010. Lifestyles of plant viruses. Philos. Trans. R. Soc. Lond. B 365:1899–905
    [Google Scholar]
  161. 161.
    Roossinck MJ. 2012. Plant virus metagenomics: biodiversity and ecology. Annu. Rev. Genet. 46:359–69
    [Google Scholar]
  162. 162.
    Roossinck MJ. 2018. Evolutionary and ecological links between plant and fungal viruses. New Phytol 221:186–92
    [Google Scholar]
  163. 163.
    Roossinck MJ, Sabanadzovic S, Okada R, Valverde RA 2011. The remarkable evolutionary history of endornaviruses. J. Gen. Virol. 92:2674–78
    [Google Scholar]
  164. 164.
    Rosa C, Kuo YW, Wuriyanghan H, Falk BW 2018. RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol. 56:581–610
    [Google Scholar]
  165. 165.
    Rota-Stabelli O, Daley AC, Pisani D 2013. Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr. Biol. 23:392–98
    [Google Scholar]
  166. 166.
    Rousvoal S, Bouyer B, Lopez-Cristoffanini C, Boyen C, Collen J 2016. Mutant swarms of a totivirus-like entities are present in the red macroalga Chondrus crispus and have been partially transferred to the nuclear genome. J. Phycol. 52:493–504
    [Google Scholar]
  167. 167.
    Roux S, Enault F, Bronner G, Vaulot D, Forterre P, Krupovic M 2013. Chimeric viruses blur the borders between the major groups of eukaryotic single-stranded DNA viruses. Nat. Commun. 4:2700
    [Google Scholar]
  168. 168.
    Sabanadzovic S, Valverde RA, Brown JK, Martin RR, Tzanetakis IE 2009. Southern tomato virus: the link between the families Totiviridae and Partitiviridae. . Virus Res 140:130–37
    [Google Scholar]
  169. 169.
    Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T 2009. Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. . Arch. Virol 154:899–907
    [Google Scholar]
  170. 170.
    Scholthof KB. 2004. Tobacco mosaic virus: a model system for plant biology. Annu. Rev. Phytopathol. 42:13–34
    [Google Scholar]
  171. 171.
    Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12:938–54
    [Google Scholar]
  172. 172.
    Shi M, Lin XD, Chen X, Tian JH, Chen LJ et al. 2018. The evolutionary history of vertebrate RNA viruses. Nature 556:197–202
    [Google Scholar]
  173. 173.
    Shi M, Lin XD, Tian JH, Chen LJ, Chen X et al. 2016. Redefining the invertebrate RNA virosphere. Nature 540:539–43
    [Google Scholar]
  174. 174.
    Shi M, Lin XD, Vasilakis N, Tian JH, Li CX et al. 2016. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. J. Virol. 90:659–69
    [Google Scholar]
  175. 175.
    Sicard A, Michalakis Y, Gutierrez S, Blanc S 2016. The strange lifestyle of multipartite viruses. PLOS Pathog 12:e1005819
    [Google Scholar]
  176. 176.
    Sicard A, Zeddam JL, Yvon M, Michalakis Y, Gutierrez S, Blanc S 2015. Circulative nonpropagative aphid transmission of nanoviruses: an oversimplified view. J. Virol. 89:9719–26
    [Google Scholar]
  177. 177.
    Sobhy H. 2017. A comparative review of viral entry and attachment during large and giant dsDNA virus infections. Arch. Virol. 162:3567–85
    [Google Scholar]
  178. 178.
    Soltis PS, Folk RA, Soltis DE 2019. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B 286:20190099
    [Google Scholar]
  179. 179.
    Somera M, Sarmiento C, Truve E 2015. Overview on sobemoviruses and a proposal for the creation of the family Sobemoviridae. Viruses 7:3076–115
    [Google Scholar]
  180. 180.
    Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M 2017. The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol. Spectr. 5:FUNK–0053-2016
    [Google Scholar]
  181. 181.
    Stork NE. 2018. How many species of insects and other terrestrial arthropods are there on Earth. Annu. Rev. Entomol. 63:31–45
    [Google Scholar]
  182. 182.
    Taliansky M, Mayo MA, Barker H 2003. Potato leafroll virus: a classic pathogen shows some new tricks. Mol. Plant Pathol. 4:81–89
    [Google Scholar]
  183. 183.
    Teixeira M, Sela N, Ng J, Casteel CL, Peng HC et al. 2016. A novel virus from Macrosiphum euphorbiae with similarities to members of the family Flaviviridae. J. Gen. Virol. 97:1261–71
    [Google Scholar]
  184. 184.
    Toriyama S, Kimishima T, Takahashi M, Shimizu T, Minaka N, Akutsu K 1998. The complete nucleotide sequence of the rice grassy stunt virus genome and genomic comparisons with viruses of the genus Tenuivirus. J. Gen. Virol. 79:Pt. 82051–58
    [Google Scholar]
  185. 185.
    Van Etten JL, Agarkova IV, Dunigan DD 2019. Chloroviruses. Viruses 12:E20
    [Google Scholar]
  186. 186.
    Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N et al. 2013. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 87:2475–88
    [Google Scholar]
  187. 187.
    Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D 2010. Varied movement strategies employed by triple gene block-encoding viruses. Mol. Plant-Microbe Interact. 23:1231–47
    [Google Scholar]
  188. 188.
    Vlok M, Gibbs AJ, Suttle CA 2019. Metagenomes of a freshwater charavirus from British Columbia provide a window into ancient lineages of viruses. Viruses 11:E299
    [Google Scholar]
  189. 189.
    Wei T, Li Y. 2016. Rice reoviruses in insect vectors. Annu. Rev. Phytopathol. 54:99–120
    [Google Scholar]
  190. 190.
    Weynberg KD, Allen MJ, Wilson WH 2017. Marine prasinoviruses and their tiny plankton hosts: a review. Viruses 9:E43
    [Google Scholar]
  191. 191.
    White KA, Nagy PD. 2004. Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination. Prog. Nucleic Acid Res. Mol. Biol. 78:187–226
    [Google Scholar]
  192. 192.
    Whitfield AE, Falk BW, Rotenberg D 2015. Insect vector-mediated transmission of plant viruses. Virology 479–480:278–89
    [Google Scholar]
  193. 193.
    Whitfield AE, Huot OB, Martin KM, Kondo H, Dietzgen RG 2018. Plant rhabdoviruses: their origins and vector interactions. Curr. Opin. Virol. 33:198–207
    [Google Scholar]
  194. 194.
    Wolf YI, Kazlauskas D, Iranzo J, Lucia-Sanz A, Kuhn JH et al. 2018. Origins and evolution of the global RNA virome. mBio 9:e02329–18
    [Google Scholar]
  195. 195.
    Wood R, Liu AG, Bowyer F, Wilby PR, Dunn FS et al. 2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 3:528–38
    [Google Scholar]
  196. 196.
    Wright DA, Voytas DF. 1998. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics 149:703–15
    [Google Scholar]
  197. 197.
    Yu X, Li B, Fu Y, Xie J, Cheng J et al. 2013. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. PNAS 110:1452–57
    [Google Scholar]
  198. 198.
    Zamora M, Mendez-Lopez E, Agirrezabala X, Cuesta R, Lavin JL et al. 2017. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Sci. Adv. 3:eaao2182
    [Google Scholar]
  199. 199.
    Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E et al. 2017. ICTV virus taxonomy profile: Geminiviridae. J. Gen. Virol. 98:131–33
    [Google Scholar]
  200. 200.
    Zhang YZ, Chen YM, Wang W, Qin XC, Holmes EC 2019. Expanding the RNA virosphere by unbiased metagenomics. Annu. Rev. Virol. 6:119–39
    [Google Scholar]
  201. 201.
    Zhang YZ, Wu WC, Shi M, Holmes EC 2018. The diversity, evolution and origins of vertebrate RNA viruses. Curr. Opin. Virol. 31:9–16
    [Google Scholar]
  202. 202.
    Zhao L, Rosario K, Breitbart M, Duffy S 2019. Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv. Virus Res. 103:71–133
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-030320-041346
Loading
/content/journals/10.1146/annurev-phyto-030320-041346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error