Full text loading...
Abstract
Clavibacter michiganensis subspecies are actinomycete plant pathogens residing mainly in the xylem vessels that infect economically important host plants. In the Clavibacter subspecies michiganensis and sepedonicus, infecting tomato and potato, respectively, essential factors for disease induction are plasmid encoded and loss of the virulence plasmids converts these biotrophic pathogens into endophytes. The genes responsible for successful colonization of the host plant, including evasion/suppression of plant defense reactions, are chromosomally encoded. Several serine proteases seem to be involved in colonization. They are secreted by Clavibacter, but their targets remain unknown. A type 3 secretion system (T3SS) translocating effectors into the plant cells is absent in these gram-positive pathogens. With the development of the modern ‘omics technologies for RNA and proteins based on the known genome sequences, a new phase in the investigation of the mechanisms of plant pathogenicity has begun to allow the genome-wide investigation of the Clavibacter-host interaction.