I recount the early influences that directed me toward a career in research and then describe some efforts investigating and the satellite RNA of . These descriptions have a common theme of surprise, how things often can be not as they are expected to be. Finally, I examine the widely held belief that a plant transgene derived from a distant taxonomic source presents a greater risk than a transgene derived from a closely related plant and contend that this also is a situation in which things may not be as they initially seem.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alberty RA.1.  1994. Farrington Daniels, 1889–1972, a biographical memoir. Biogr. Mem. Natl. Acad. Sci. USA 65:105–21 [Google Scholar]
  2. Baldwin RL, Ferry JD. 2.  1994. John Warren Williams, 1898–1988, a biographical memoir. Biogr. Mem. Natl. Acad. Sci. USA 65:373–90 [Google Scholar]
  3. Beier H, Bruening G, Russell ML, Tucker CL. 3.  1979. Replication of cowpea mosaic virus in protoplasts isolated from immune lines of cowpeas. Virology 95:165–75 [Google Scholar]
  4. Beier H, Siler DJ, Russell ML, Bruening G. 4.  1977. Survey of susceptibility to cowpea mosaic virus among protoplasts and intact plants from Vigna sinensis lines. Phytopathology 76:917–21 [Google Scholar]
  5. Bernard M.5.  1979. Creation of a new species: triticale. Bull. Soc. Bot. France-Actual. Bot. 126:55–65 [Google Scholar]
  6. Bruening G.6.  1969. The inheritance of top component formation in cowpea mosaic virus. Virology 37:577–84 [Google Scholar]
  7. Bruening G, Beachy R, Zaitlin M. 7.  1979. Replication of RNA plant viruses. Molecular Biology of Plants I Rubenstein, R Phillips, E Green, B Gegenbach 241–72 New York: Academic [Google Scholar]
  8. Bruening G, Buzayan JM, Ferreiro C, Lim W. 8.  2000. Evidence for participation of RNA 1-encoded elicitor in Cowpea mosaic virus–mediated concurrent protection. Virology 266:299–309 [Google Scholar]
  9. Bruening G, Kiefer MC. 9.  1981. Control of immunity to cowpea mosaic virus. Proceedings of Symposia, IX International Congress of Plant Protection (Washington, DC, 1979) T Kommedahl 225–28 Minneapolis, MN: Burgess Publ. [Google Scholar]
  10. Buzayan JM, Gerlach WL, Bruening G. 10.  1986. Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature (London) 323:349–53 [Google Scholar]
  11. Caspar DLD.11.  1980. Movement and self-control in protein assemblies: quasi-equivalence revisted. Biophys. J. 32:103–38 [Google Scholar]
  12. Caspar DLD, Klug A. 12.  1962. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quantit. Biol. 27:1–24 [Google Scholar]
  13. Chay CA, Guan X, Bruening G. 13.  1997. Formation of circular satellite tobacco ringspot virus RNA in protoplasts transiently expressing the linear RNA. Virology 239:413–25 [Google Scholar]
  14. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F. 14.  et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761 [Google Scholar]
  15. Collinge DB, Jorgensen HJL, Lund OS, Ktbgjhaerm NF. 15.  2010. Engineering pathogen resistance in crop plants: current trends and future prospects. Annu. Rev. Phytopathol. 48:269–91 [Google Scholar]
  16. Conant JB.16.  1974. Theodore William Richards, 1886–1928, a biographical memoir. Biogr. Mem. Natl. Acad. Sci. USA 44:249–86 [Google Scholar]
  17. Conner AJ, Barrell PJ, Baldwin SJ, Lokerse AS, Cooper PA. 17.  et al. 2007. Intragenic vectors for gene transfer without foreign DNA. Euphytica 154:341–53 [Google Scholar]
  18. Cornish-Bowden A, Goldberg RN, Hammes GG. 18.  2010. Professor Robert A. Alberty: a legacy of excellence. J. Phys. Chem. B 114:16045–46 [Google Scholar]
  19. Crick FHC, Watson JD. 19.  1956. Structure of small viruses. Nature (London) 177:473–75 [Google Scholar]
  20. Eastwell KC, Kalmar GB. 20.  1997. Characterizing the interference between two comoviruses in cowpea. J. Am. Soc. Hortic. Sci. 122:163–68 [Google Scholar]
  21. Fan Q, Niroula M, Feldstein PA, Bruening G. 21.  2011. Participation of the Cowpea mosaic virus protease in eliciting extreme resistance. Virology in press [Google Scholar]
  22. Gleba YY, Hoffmann F. 22.  1980. Arabidobrassica: a novel plant obtained by protoplast fusion. Planta 149:112–17 [Google Scholar]
  23. Hintz MA.23.  1940. A modern biology program for the high school. Am. Biol. Teach. 3:48–51 [Google Scholar]
  24. Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS. 24.  et al. 2002. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol. Biol. 48:805–20 [Google Scholar]
  25. Jackson JL.25.  1902. Memoir of Josiah Parsons Cooke, 1827–1894. Biogr. Mem. Natl. Acad. Sci. USA 4:175–83 [Google Scholar]
  26. Jacobsen E, Schouten HJ. 26.  2007. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol. 25:219–23 [Google Scholar]
  27. Jacobsen E, Schouten HJ. 27.  2009. Cisgenesis: an important sub-invention for traditional plant breeding companies. Euphytica 170:235–47 [Google Scholar]
  28. Kiefer MC, Bruening G, Russell ML. 28.  1984. RNA and capsid accumulation in cowpea protoplasts that are resistant to cowpea mosaic virus strain SB. Virology 137:371–81 [Google Scholar]
  29. Kiefer MC, Daubert SD, Schneider IR, Bruening G. 29.  1982. Multimeric forms of satellite tobacco ringspot virus RNA. Virology 137:371–81 [Google Scholar]
  30. Koch MA, Haubold B, Mitchell-Olds T. 30.  2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol. 17:1483–98 [Google Scholar]
  31. Lin TW, Chen ZG, Usha R, Stauffacher CV, Dai JB. 31.  et al. 1999. The refined crystal structure of cowpea mosaic virus at 2.8 angstrom resolution. Virology 265:20–34 [Google Scholar]
  32. Lin TW, Clark AJ, Chen ZG, Shanks M, Dai JB. 32.  et al. 2000. Structural fingerprinting: subgrouping of comoviruses by structural studies of Red clover mottle virus to 2.4-Å resolution and comparisons with other comoviruses. J. Virol. 74:493–504 [Google Scholar]
  33. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A. 33.  et al. 2010. Nontransgenic genome modification in plant cells. Plant Physiol. 154:1079–87 [Google Scholar]
  34. Park TH, Vleeshouwers V, Jacobsen E, van der Vossen E, Visser RGF. 34.  2009. Molecular breeding for resistance to Phytophthora infestans (Mont.) de Bary in potato (Solanum tuberosum L.): a perspective of cisgenesis. Plant Breeding 128:109–17 [Google Scholar]
  35. Ponz F, Bruening G. 35.  1986. Mechanisms of resistance to plant viruses. Annu. Rev. Phytopathol. 24:355–81 [Google Scholar]
  36. Prody GA, Bakos JT, Buzayan JL, Schneider IR, Bruening G. 36.  1986. Autolytic processing of dimeric plant virus satellite RNA. Science 321:1577–80 [Google Scholar]
  37. Russell AW, Sparrow R. 37.  2008. The case for regulating intragenic GMOS. J. Agric. Environ. Ethics 21:153–81 [Google Scholar]
  38. Schneider IR.38.  1969. Satellite-like particle of tobacco ringspot virus that resembles tobacco ringspot virus. Science 166:1627–29 [Google Scholar]
  39. Schneider IR.39.  1971. Characteristics of a satellite-like virus of tobacco ringspot virus. Virology 45:108–12 [Google Scholar]
  40. Schneider IR.40.  1977. Defective plant viruses. Virology in Agriculture TO Diener 201–19 Beltsville, MD: Allenheld, Osmun Univ. Books [Google Scholar]
  41. Schneider IR, Hull R, Markham R. 41.  1972. Multidense satellite of tobacco ringspot virus: regular series of components of different densities. Virology 47:320–30 [Google Scholar]
  42. Schouten HJ, Krens FA, Jacobsen K, Jacobsen E. 42.  2006. Cisgenic plants are similar to traditionally bred plants: International regulations for genetically modified organisms should be altered to exempt cisgenesis. Embo Reports 7:750–53 [Google Scholar]
  43. Schouten HJ, Jacobsen E. 43.  2008. Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends in Plant Science 13:260–61 [Google Scholar]
  44. Shackel KA, Polito VS, Ahmadi H. 44.  1991. Maintenance of turgor by rapid sealing of puncture wounds in leaf epidermal-cells. Plant Physiol. 97:907–12 [Google Scholar]
  45. Sogo JM, Schneider IR, Koller T. 45.  1974. Size determination by electron-microscopy of RNA of tobacco ringspot satellite virus. Virology 57:459–66 [Google Scholar]
  46. Stauffacher CV, Usha R, Harrington M, Schmidt T, Hosur M, Johnson JE. 46.  1987. The structure of cowpea mosaic virus at 3.5 Å resolution. Crystallography in Molecular Biology D Moras, J Drenth, B Strandberg, D Suck, K Wilson 293–308 New York: Plenum Publ [Google Scholar]
  47. Sterk P, de Jager CP. 47.  1987. Interference between cowpea mosaic virus and cowpea severe mosaic virus in a cowpea host immune to cowpea mosaic virus. J. Gen. Virol. 68:2751–58 [Google Scholar]
  48. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. 48.  2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636–46 [Google Scholar]
  49. van Bueren ETL, Verhoog H, Tiemens-Huscher M, Struik PC, Haring MA. 49.  2007. Organic agriculture requires process rather than product evaluation of novel breeding techniques. Njas-Wageningen Journal of Life Sciences 54:401–12 [Google Scholar]
  50. van Tol H, Buzayan JM, Feldstein PA, Eckstein F, Bruening G. 50.  1990. Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 18:1971–76 [Google Scholar]
  51. Weinthal D, Tovkach A, Zeevi V, Tzfira T. 51.  2010. Genome editing in plant cells by zinc finger nucleases. Trends Plant Sci. 15:308–21 [Google Scholar]
  52. Wu G-J, Bruening G. 52.  1971. Two proteins from Cowpea mosaic virus. Virology 46:596–612 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error