species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to -mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error