1932

Abstract

The rise in emerging pathogens and strains has led to increased calls for more effective surveillance in plant health. We show how epidemiological insights about the dynamics of disease spread can improve the targeting of when and where to sample. We outline some relatively simple but powerful statistical approaches to inform surveillance and describe how they can be adapted to include epidemiological information. This enables us to address questions such as: Following the first report of an invading pathogen, what is the likely incidence of disease? If no cases of disease have been found, how certain can we be that the disease was not simply missed by chance? We illustrate the use of spatially explicit stochastic models to optimize targeting of surveillance and control resources. Finally, we discuss how modern detection and diagnostic technologies as well as information from passive surveillance networks (e.g., citizen science) can be integrated into surveillance strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035334
2017-08-04
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035334.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035334&mimeType=html&fmt=ahah

Literature Cited

  1. Alonso Chavez V, Parnell S, Van den Bosch F. 1.  2016. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape. J. Theor. Biol. 407:290–302 [Google Scholar]
  2. Alonso Chavez VA, Parnell S, van den Bosch F. 2.  2015. Designing strategies for epidemic control in a tree nursery: the case of ash dieback in the UK. Forests 6:4135–45 [Google Scholar]
  3. Atkinson A, Donev A. 3.  1992. Optimal Experimental Designs Oxford: Clarendon Press
  4. Bajardi P, Barrat A, Savini L, Colizza V. 4.  2012. Optimizing surveillance for livestock disease spreading through animal movements. J. R. Soc. Interface 9:2814–25 [Google Scholar]
  5. Baker R, Bragard C, Caffier D, Candresse T, Gilioli G. 5.  et al. 2015. Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989 [Google Scholar]
  6. Barham E. 6.  2016. The unique role of sentinel trees, botanic gardens and arboreta in safeguarding global plant health. Plant Biosyst 150:377–80 [Google Scholar]
  7. Baxter PWJ, Possingham HP. 7.  2011. Optimizing search strategies for invasive pests: learn before you leap. J. Appl. Ecol. 48:86–95 [Google Scholar]
  8. Bebber DP, Gurr SJ. 8.  2015. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74:62–64 [Google Scholar]
  9. Bell H, Wakefield M, Macarthur R, Stein J, Collins D. 9.  et al. 2014. Plant health surveys for the EU territory: an analysis of data quality and methodologies and the resulting uncertainties for pest risk assessment. EFSA J. 11:EN–676 [Google Scholar]
  10. Berec L, Kean JM, Epanchin-Niell R, Liebhold AM, Haight RG. 10.  2015. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species. Biol. Invasions 17:445–59 [Google Scholar]
  11. Binns MR, Nyrop JP, van der Werf W, Werf W. 11.  2000. Sampling and Monitoring in Crop Protection: The Theoretical Basis for Developing Practical Decision Guides Wallingford, UK: CABI
  12. Blackburn L, Epanchin-Niell R, Thompson A, Liebhold A, Beggs J. 12.  2016. Predicting costs of alien species surveillance across varying transportation networks. J. Appl. Ecol. 54:225–33 [Google Scholar]
  13. Blickenstorfer S, Schwermer H, Engels M, Reist M, Doherr MG, Hadorn DC. 13.  2011. Using scenario tree modelling for targeted herd sampling to substantiate freedom from disease. BMC Vet. Res. 7:49 [Google Scholar]
  14. Bogich TL, Liebhold AM, Shea K. 14.  2008. To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J. Appl. Ecol. 45:1134–42 [Google Scholar]
  15. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T. 15.  et al. 2009. Citizen science: a developing tool for expanding science knowledge and scientific literacy. Bioscience 59:977–84 [Google Scholar]
  16. Bouwmeester H, Heuvelink GBM, Legg JP, Stoorvogel JJ. 16.  2012. Comparison of disease patterns assessed by three independent surveys of cassava mosaic virus disease in Rwanda and Burundi. Plant Pathol 61:399–412 [Google Scholar]
  17. Brasier CM. 17.  2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol 57:792–808 [Google Scholar]
  18. Brown JA, Harris S, Timmins SM. 18.  2004. Estimating the maximum interval between repeat surveys. Austral Ecol 29:631–36 [Google Scholar]
  19. Cacho OJ, Spring D, Hester S, Mac Nally R. 19.  2010. Allocating surveillance effort in the management of invasive species: a spatially-explicit model. Environ. Model. Softw. 25:444–54 [Google Scholar]
  20. Cannon RM. 20.  2002. Demonstrating disease freedom: combining confidence levels. Prev. Vet. Med. 52:227–49 [Google Scholar]
  21. Carisse O, Meloche C, Boivin G, Jobin T. 21.  2009. Action thresholds for summer fungicide sprays and sequential classification of apple scab incidence. Plant Dis 93:490–98 [Google Scholar]
  22. Chades I, Martin TG, Nicol S, Burgman MA, Possingham HP, Buckley YM. 22.  2011. General rules for managing and surveying networks of pests, diseases, and endangered species. PNAS 108:8323–28 [Google Scholar]
  23. Charest J, Dewdney M, Paulitz T, Philion V, Carisse O. 23.  2002. Spatial distribution of Venturia inaequalis airborne ascospores in orchards. Phytopathology 92:769–79 [Google Scholar]
  24. Cook AR, Gibson GJ, Gilligan CA. 24.  2008. Optimal observation times in experimental epidemic processes. Biometrics 64:860–68 [Google Scholar]
  25. Crall AW, Newman GJ, Stohlgren TJ, Holfelder KA, Graham J, Waller DM. 25.  2011. Assessing citizen science data quality: an invasive species case study. Conserv. Lett. 4:433–42 [Google Scholar]
  26. Cunniffe NJ, Cobb RC, Meentemeyer RK, Rizzo DM, Gilligan CA. 26.  2016. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California. PNAS 113:5640–45 [Google Scholar]
  27. Cunniffe NJ, Laranjeira FF, Neri FM, DeSimone RE, Gilligan CA. 27.  2014. Cost-effective control of plant disease when epidemiological knowledge is incomplete: modelling Bahia bark scaling of citrus. PLOS Comput. Biol. 10:8e1003753 [Google Scholar]
  28. Cunniffe NJ, Stutt R, DeSimone RE, Gottwald TR, Gilligan CA. 28.  2015. Optimising and communicating options for the control of invasive plant disease when there is epidemiological uncertainty. PLOS Comput. Biol. 11:4e1004211 [Google Scholar]
  29. da Graca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF. 29.  et al. 2016. Huanglongbing: an overview of a complex pathosystem ravaging the world's citrus. J. Integr. Plant Biol. 58:373–87 [Google Scholar]
  30. Davis RI, Gunua TG, Kame MF, Tenakanai D, Ruabete TK. 30.  2005. Spread of citrus Huanglongbing (greening disease) following incursion into Papua New Guinea. Australas. Plant Pathol. 34:517–24 [Google Scholar]
  31. De Boer SH, Lopez MM. 31.  2012. New grower-friendly methods for plant pathogen monitoring. Annu. Rev. Phytopathol. 50:197–218 [Google Scholar]
  32. Dehnen-Schmutz K, Foster GL, Owen L, Persello S. 32.  2016. Exploring the role of smartphone technology for citizen science in agriculture. Agron. Sustain. Dev. 36:25 [Google Scholar]
  33. 33. Dep. Environ. Food Rural Aff. 2014. Protecting Plant Health: A Plant Biosecurity Strategy for Great Britain London: Defra
  34. Dickinson JL, Zuckerberg B, Bonter DN. 34.  2010. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41:149–72 [Google Scholar]
  35. Epanchin-Niell RS, Brockerhoff EG, Kean JM, Turner JA. 35.  2014. Designing cost-efficient surveillance for early detection and control of multiple biological invaders. Ecol. Appl. 24:1258–74 [Google Scholar]
  36. Epanchin-Niell RS, Haight RG, Berec L, Kean JM, Liebhold AM. 36.  2012. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15:803–12 [Google Scholar]
  37. 37. FAO. 1997. International Standards for Phytosanitary Measures. ISPM 6: Guidelines for Surveillance. Rome: IPPC
  38. 38. FAO. 2013. International Standards for Phytosanitary Measures. ISPM 5: Glossary of Phytosanitary Terms. Rome: IPPC
  39. Filipe JAN, Cobb RC, Meentemeyer RK, Lee CA, Valachovic YS. 39.  et al. 2012. Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: sudden oak death in northern Californian forests. PLOS Comput. Biol. 8:1e1002328 [Google Scholar]
  40. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 40.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  41. Franke J, Gebhardt S, Menz G, Helfrich HP. 41.  2009. Geostatistical analysis of the spatiotemporal dynamics of powdery mildew and leaf rust in wheat. Phytopathology 99:974–84 [Google Scholar]
  42. Freitas AS, Pozza EA, Alves MC, Coelho G, Rocha HS, Pozza AAA. 42.  2016. Spatial distribution of Yellow Sigatoka leaf spot correlated with soil fertility and plant nutrition. Precis. Agric. 17:93–107 [Google Scholar]
  43. Gardiner MM, Allee LL, Brown PMJ, Losey JE, Roy HE, Smyth RR. 43.  2012. Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science programs. Front. Ecol. Environ. 10:471–76 [Google Scholar]
  44. Gibson G, Gilligan CA. 44.  2015. Inference and prediction with individual-based stochastic models of epidemics. Biosecurity Surveillance: Quantitative Approaches F Jarrad, S Low-Choy, K Mengersen 253–64 Boston: CABI [Google Scholar]
  45. Gibson GJ, Kleczkowski A, Gilligan CA. 45.  2004. Bayesian analysis of botanical epidemics using stochastic compartmental models. PNAS 101:12120–24 [Google Scholar]
  46. Gilligan CA, van den Bosch F. 46.  2008. Epidemiological models for invasion and persistence of pathogens. Annu. Rev. Phytopathol. 46:385–418 [Google Scholar]
  47. Gottwald TR. 47.  2010. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 48:119–39 [Google Scholar]
  48. Gottwald TR, Graham JH, Schubert TS. 48.  2002. Citrus canker: the pathogen and its impact. Plant Health Prog https://doi.org/10.1094/PHP-2002-0812-01-RV [Crossref]
  49. Gottwald TR, Luo W, McRoberts N. 49.  2013. Risk-based residential HLB/ACP survey for California, Texas, and Arizona. Plant Manag. Netw. http://www.plantmanagementnetwork.org/edcenter/seminars/Outreach/Citrus/HLB/
  50. Gottwald TR, Luo W, McRoberts N. 50.  2014. Risk-based residential HLB/ACP survey for California, Texas and Arizona. J. Citrus Pathol. http://escholarship.org/uc/item/99c6v21q
  51. Gottwald TR, Wierenga E, Luo W, Parnell S. 51.  2013. Epidemiology of Plum pox “D” strain in Canada and the USA. Can. J. Plant Pathol. 35:442–57 [Google Scholar]
  52. Graziosi I, Minato N, Alvarez E, Ngo DT, Hoat TX. 52.  et al. 2016. Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs. Pest Manag. Sci. 72:1071–89 [Google Scholar]
  53. Grunwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S. 53.  2012. Emergence of the sudden oak death pathogen Phytophthora ramorum. . Trends Microbiol. 20:131–38 [Google Scholar]
  54. Handel IG, de C, Bronsvoort BM, Forbes JF, Woolhouse ME. 54.  2011. Risk-targeted selection of agricultural holdings for post-epidemic surveillance: estimation of efficiency gains. PLOS ONE 6:e20064 [Google Scholar]
  55. Hester S, Sergeant E, Robinson AP, Schultz G. 55.  2015. Animal, vegetable, or...? A case study in using animal-health monitoring design tools to solve a plant-health surveillance problem. Biosecurity Surveillance: Quantitative Approaches F Jarrad, S Low-Choy, K Mengersen 313 Wallingford, UK: CABI [Google Scholar]
  56. Hester SM, Cacho OJ. 56.  2017. The contribution of passive surveillance to invasive species management. Biol. Invasions 19:737–48 [Google Scholar]
  57. Hughes G, Gottwald TR, Yamamura K. 57.  2002. Survey methods for assessment of Citrus tristeza virus incidence in urban citrus populations. Plant Dis 86:367–72 [Google Scholar]
  58. Hughes G, Madden LV. 58.  1995. Some methods allowing for aggregated patterns of disease incidence in the analysis of data from designed experiments. Plant Pathol 44:927–43 [Google Scholar]
  59. Hughes G, Madden LV, Munkvold GP. 59.  1996. Cluster sampling for disease incidence data. Phytopathology 86:132–37 [Google Scholar]
  60. Hughes G, McRoberts N, Madden LV, Gottwald TR. 60.  1997. Relationships between disease incidence at two levels in a spatial hierarchy. Phytopathology 87:542–50 [Google Scholar]
  61. Hyatt-Twynam SR, Parnell S, Stutt ROJH, Gottwald TR, Gilligan CA, Cunniffe NJ. 61.  2017. Risk-based management of invading plant disease. New Phytol 214:1317–29 [Google Scholar]
  62. Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB. 62.  2014. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5:1052–60 [Google Scholar]
  63. Jaime-Garcia R, Orum TV, Felix-Gastelum R, Trinidad-Correa R, Vanetten HD, Nelson MR. 63.  2001. Spatial analysis of Phytophthora infestans genotypes and late blight severity on tomato and potato in the Del Fuerte Valley using geostatistics and geographic information systems. Phytopathology 91:1156–65 [Google Scholar]
  64. Jovanovic BD, Levy PS. 64.  1997. A look at the rule of three. Am. Stat. 51:137–39 [Google Scholar]
  65. Jovanovic BD, Zalenski RJ. 65.  1997. Safety evaluation and confidence intervals when the number of observed events is small or zero. Ann. Emerg. Med. 30:301–6 [Google Scholar]
  66. Keeling MJ, Brooks SP, Gilligan CA. 66.  2004. Using conservation of pattern to estimate spatial parameters from a single snapshot. PNAS 101:9155–60 [Google Scholar]
  67. Keremane ML, Ramadugu C, Rodriguez E, Kubota R, Shibata S. 67.  et al. 2015. A rapid field detection system for citrus Huanglongbing associated “Candidatus Liberibacter asiaticus” from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Prot 68:41–48 [Google Scholar]
  68. Kremen C, Ullmann KS, Thorp RW. 68.  2011. Evaluating the quality of citizen-scientist data on pollinator communities. Conserv. Biol. 25:607–17 [Google Scholar]
  69. Kriss AB, Paul PA, Madden LV. 69.  2012. Characterizing heterogeneity of disease incidence in a spatial hierarchy: a case study from a decade of observations of Fusarium head blight of wheat. Phytopathology 102:867–77 [Google Scholar]
  70. Lamichhane JR, Fabi A, Ridolfi R, Varvaro L. 70.  2013. Epidemiological study of hazelnut bacterial blight in central Italy by using laboratory analysis and geostatistics. PLOS ONE 8:2e56298 [Google Scholar]
  71. Leal RM, Barbosa JC, Costa MG, Belasque J, Yamamoto PT, Dragone J. 71.  2010. Spatial distribution of Huanglongbing (greening) on citrus using geostatistic. Rev. Bras. Frutic. 32:808–18 [Google Scholar]
  72. Lee JA, Halbert SE, Dawson WO, Robertson CJ, Keesling JE, Singer BH. 72.  2015. Asymptomatic spread of Huanglongbing and implications for disease control. PNAS 112:7605–10 [Google Scholar]
  73. Legg J, Somado E, Barker I, Beach L, Ceballos H. 73.  et al. 2014. A global alliance declaring war on cassava viruses in Africa. Food Secur 6:231–48 [Google Scholar]
  74. Low-Choy S, Hammond N, Penrose L, Anderson C, Taylor S. 74.  2011. Dispersal in a hurry: Bayesian learning from surveillance to establish area freedom from plant pests with early dispersal. Proc. Int. Conf. Model. Simul., 19th, Perth Dec. 12–16 Canberra: MODSIM [Google Scholar]
  75. Luo W, Pietravalle S, Parnell S, van den Bosch F, Gottwald TR. 75.  et al. 2012. An improved regulatory sampling method for mapping and representing plant disease from a limited number of samples. Epidemics 4:68–77 [Google Scholar]
  76. Madden LV. 76.  2006. Botanical epidemiology: some key advances and its continuing role in disease management. Eur. J. Plant Pathol. 115:3–23 [Google Scholar]
  77. Madden LV, Hughes G. 77.  1995. Plant-disease incidence: distribution, heterogeneity, and temporal analysis. Annu. Rev. Phytopathol. 33:529–64 [Google Scholar]
  78. Madden LV, Hughes G. 78.  1999. An effective sample size for predicting plant disease incidence in a spatial hierarchy. Phytopathology 89:770–81 [Google Scholar]
  79. Madden LV, Hughes G. 79.  1999. Sampling for plant disease incidence. Phytopathology 89:1088–103 [Google Scholar]
  80. Madden LV, Hughes G, Ellis MA. 80.  1995. Spatial heterogeneity of the incidence of grape downy mildew. Phytopathology 85:269–75 [Google Scholar]
  81. Madden LV, Hughes G, van den Bosch F. 81.  2007. The Study of Plant Disease Epidemics St. Paul, MN: APS Press
  82. Maistrello L, Dioli P, Bariselli M, Mazzoli GL, Giacalone-Forini I. 82.  2016. Citizen science and early detection of invasive species: phenology of first occurrences of Halyomorpha halys in Southern Europe. Biol. Invasions 18:3109–16 [Google Scholar]
  83. Marques AR, Pereira M, Ferreira Neto JS, Ferreira F. 83.  2015. Design and prospective evaluation of a risk-based surveillance system for shrimp grow-out farms in northeast Brazil. Prev. Vet. Med. 122:355–62 [Google Scholar]
  84. Martelli GP, Boscia D, Porcelli F, Saponari M. 84.  2016. The olive quick decline syndrome in south-east Italy: a threatening phytosanitary emergency. Eur. J. Plant Pathol. 144:235–43 [Google Scholar]
  85. Martin RR, Constable F, Tzanetakis IE. 85.  2016. Quarantine regulations and the impact of modern detection methods. Annu. Rev. Phytopathol. 54:189–205 [Google Scholar]
  86. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G. 86.  et al. 2014. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35:1–25 [Google Scholar]
  87. Meentemeyer RK, Anacker BL, Mark W, Rizzo DM. 87.  2008. Early detection of emerging forest disease using dispersal estimation and ecological niche modeling. Ecol. Appl. 18:377–90 [Google Scholar]
  88. Meentemeyer RK, Cunniffe NJ, Cook AR, Filipe JA, Hunter RD. 88.  et al. 2011. Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere 2:1–24 [Google Scholar]
  89. Meentemeyer RK, Dorning MA, Vogler JB, Schmidt D, Garbelotto M. 89.  2015. Citizen science helps predict risk of emerging infectious disease. Front. Ecol. Environ. 13:189–94 [Google Scholar]
  90. Meentemeyer RK, Haas SE, Václavík T. 90.  2012. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50:379–402 [Google Scholar]
  91. Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC. 91.  2007. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61:237–45 [Google Scholar]
  92. Mikaberidze A, Mundt CC, Bonhoeffer S. 92.  2016. Invasiveness of plant pathogens depends on the spatial scale of host distribution. Ecol. Appl. 26:1238–48 [Google Scholar]
  93. Miller SA, Beed FD, Harmon CL. 93.  2009. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47:15–38 [Google Scholar]
  94. Molina AB, Fabregar E, Sinohin VG, Yi G, Viljoen A. 94.  2009. Recent occurrence of Fusarium oxysporum f. sp. cubense tropical race 4 in Asia. Acta Hortic 828:109–16 [Google Scholar]
  95. Musoli CP, Pinard F, Charrier A, Kangire A, ten Hoopen GM. 95.  et al. 2008. Spatial and temporal analysis of coffee wilt disease caused by Fusariumxylarioides in Coffea canephora. . Eur. J. Plant Pathol. 122:451–60 [Google Scholar]
  96. Ndeffo Mbah ML, Gilligan CA. 96.  2010. Balancing detection and eradication for control of epidemics: sudden oak death in mixed-species stands. PLOS ONE 5:e12317 [Google Scholar]
  97. Neri FM, Cook AR, Gibson GJ, Gottwald TR, Gilligan CA. 97.  2014. Bayesian analysis for inference of an emerging epidemic: citrus canker in urban landscapes. PLOS Comput. Biol. 10:e1003587 [Google Scholar]
  98. Parnell S, Gottwald TR, Cunniffe NJ, Alonso Chavez V, van den Bosch F. 98.  2015. Early detection surveillance for an emerging plant pathogen: a rule of thumb to predict prevalence at first discovery. Proc. Biol. Sci. R. Soc. B 282:20151478 [Google Scholar]
  99. Parnell S, Gottwald TR, Gilks WR, van den Bosch F. 99.  2012. Estimating the incidence of an epidemic when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305:30–36 [Google Scholar]
  100. Parnell S, Gottwald TR, Gilligan CA, Cunniffe NJ, van den Bosch F. 100.  2010. The effect of landscape pattern on the optimal eradication zone of an invading epidemic. Phytopathology 100:638–44 [Google Scholar]
  101. Parnell S, Gottwald TR, Irey MS, Luo W, van den Bosch F. 101.  2011. A stochastic optimization method to estimate the spatial distribution of a pathogen from a sample. Phytopathology 101:1184–90 [Google Scholar]
  102. Parnell S, Gottwald TR, Riley T, van den Bosch F. 102.  2014. A generic risk-based surveying method for invading plant pathogens. Ecol. Appl. 24:779–90 [Google Scholar]
  103. Parnell S, Gottwald TR, van den Bosch F, Gilligan CA. 103.  2009. Optimal strategies for the eradication of Asiatic citrus canker in heterogeneous host landscapes. Phytopathology 99:1370–76 [Google Scholar]
  104. Parry M, Gibson GJ, Parnell S, Gottwald TR, Irey MS. 104.  et al. 2014. Bayesian inference for an emerging arboreal epidemic in the presence of control. PNAS 111:6258–62 [Google Scholar]
  105. Paulitz TC, Zhang H, Cook RJ. 105.  2003. Spatial distribution of Rhizoctonia oryzae and rhizoctonia root rot in direct-seeded cereals. Can. J. Plant Pathol. 25:295–303 [Google Scholar]
  106. Pautasso M, Doring TF, Garbelotto M, Pellis L, Jeger MJ. 106.  2012. Impacts of climate change on plant diseases-opinions and trends. Eur. J. Plant Pathol. 133:295–313 [Google Scholar]
  107. 107. Plant Health Aust. 2013. National Plant Biosecurity Surveillance Strategy Canberra, Aust.: Plant Health Aust.
  108. Pocock MJO, Evans DM. 108.  2014. The success of the horse-chestnut leaf-miner, Cameraria ohridella, in the UK revealed with hypothesis-led citizen science. PLOS ONE 9:9 [Google Scholar]
  109. Pocock MJO, Roy HE, Fox R, Ellis WE, Botham M. 109.  2017. Citizen science and invasive alien species: predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol. Conserv. 208:146–54 [Google Scholar]
  110. Potts JM, Cox MJ, Barkley P, Christian R, Telford G. 110.  et al. 2013. Model-based search strategies for plant diseases: a case study using citrus canker (Xanthomonas citri). Divers. Distrib. 19:590–602 [Google Scholar]
  111. Purse BV, Golding N. 111.  2015. Tracking the distribution and impacts of diseases with biological records and distribution modelling. Biol. J. Linn. Soc. 115:664–77 [Google Scholar]
  112. Real LA, Biek R. 112.  2007. Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J. R. Soc. Interface 4:935–48 [Google Scholar]
  113. Rosenzweig N, Steere L, Gerondale B, Kirk WW. 113.  2016. A geostatistical approach to visualize the diversity of soil inhabiting bacteria and edaphic qualities in potato (Solanum tuberosum) production systems. Am. J. Potato Res. 93:518–32 [Google Scholar]
  114. Roy HE, Peyton J, Aldridge DC, Bantock T, Blackburn TM. 114.  et al. 2014. Horizon scanning for invasive alien species with the potential to threaten biodiversity in Great Britain. Glob. Change Biol. 20:3859–71 [Google Scholar]
  115. Russell JC, Binnie HR, Oh J, Anderson DP, Samaniego‐Herrera A. 115.  2016. Optimizing confirmation of invasive species eradication with rapid eradication assessment. J. Appl. Ecol. 54:160–69 [Google Scholar]
  116. Schrader G, Unger J-G. 116.  2003. Plant quarantine as a measure against invasive alien species: the framework of the International Plant Protection Convention and the plant health regulations in the European Union. Biol. Invasions 5:357–64 [Google Scholar]
  117. Selvin S. 117.  1996. Statistical Analysis of Epidemiological Data New York: Oxford Univ. Press, 2nd ed..
  118. Shaw MW, Osborne TM. 118.  2011. Geographic distribution of plant pathogens in response to climate change. Plant Pathol 60:31–43 [Google Scholar]
  119. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S. 119.  et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81 [Google Scholar]
  120. Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA. 120.  et al. 2015. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–84 [Google Scholar]
  121. Stacey AJ, Truscott JE, Asher MJC, Gilligan CA. 121.  2004. A model for the invasion and spread of rhizomania in the United Kingdom: implications for disease control strategies. Phytopathology 94:209–15 [Google Scholar]
  122. Stonard JF, Marchant BP, Latunde-Dada AO, Liu Z, Evans N. 122.  et al. 2010. Geostatistical analysis of the distribution of Leptosphaeria species causing phoma stem canker on winter oilseed rape (Brassica napus) in England. Plant Pathol 59:200–10 [Google Scholar]
  123. Taliei F, Safaie N, Aghajani MA. 123.  2013. Spatial distribution of Macrophomina phaseolina and soybean charcoal rot incidence using geographic information system (a case study in northern Iran). J. Agric. Sci. Technol. 15:1523–36 [Google Scholar]
  124. Thompson RN, Cobb RC, Gilligan CA, Cunniffe NJ. 124.  2016. Management of invading pathogens should be informed by epidemiology rather than administrative boundaries. Ecol. Model. 324:28–32 [Google Scholar]
  125. Thompson RN, Gilligan CA, Cunniffe NJ. 125.  2016. Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks. PLOS Comput. Biol. 12:e1004836 [Google Scholar]
  126. Tubajika KM, Civerolo EL, Ciomperlik MA, Luvisi DA, Hashim JM. 126.  2004. Analysis of the spatial patterns of Pierce's disease incidence in the lower San Joaquin Valley in California. Phytopathology 94:1136–44 [Google Scholar]
  127. Turechek WW, Madden LV. 127.  1999. Spatial pattern analysis of strawberry leaf blight in perennial production systems. Phytopathology 89:421–33 [Google Scholar]
  128. Vaclavik T, Kanaskie A, Hansen EM, Ohmann JL, Meentemeyer RK. 128.  2010. Predicting potential and actual distribution of sudden oak death in Oregon: prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 260:1026–35 [Google Scholar]
  129. Van der Heyden H, Dutilleul P, Brodeur L, Carisse O. 129.  2014. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling. Phytopathology 104:604–13 [Google Scholar]
  130. White SM, Bullock JM, Hooftman DAP, Chapman DS. 130.  2017. Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biol. Invasions 19:1825–37 [Google Scholar]
  131. Williams MS, Ebel ED, Wells SJ. 131.  2009. Poisson sampling: a sampling strategy for concurrently establishing freedom from disease and estimating population characteristics. Prev. Vet. Med. 89:34–42 [Google Scholar]
  132. Williams MS, Ebel ED, Wells SJ. 132.  2009. Population inferences from targeted sampling with uncertain epidemiologic information. Prev. Vet. Med. 89:25–33 [Google Scholar]
  133. Woodward S, Boa E. 133.  2013. Ash dieback in the UK: a wake-up call. Mol. Plant Pathol. 14:856–60 [Google Scholar]
  134. Yuan L, Pu RL, Zhang JC, Wang JH, Yang H. 134.  2016. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precis. Agric. 17:332–48 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035334
Loading
/content/journals/10.1146/annurev-phyto-080516-035334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error