1932

Abstract

Liberibacter” species are associated with economically devastating diseases of citrus, potato, and many other crops. The importance of these diseases as well as the proliferation of new diseases on a wider host range is likely to increase as the insects vectoring the “. Liberibacter” species expand their territories worldwide. Here, we review the progress on understanding pathogenesis mechanisms of “. Liberibacter” species and the control approaches for diseases they cause. We discuss the Liberibacter virulence traits, including secretion systems, putative effectors, and lipopolysaccharides (LPSs), as well as other important traits likely to contribute to disease development, e.g., flagella, prophages, and salicylic acid hydroxylase. The pathogenesis mechanisms of Liberibacters are discussed. Liberibacters secrete Sec-dependent effectors (SDEs) or other virulence factors into the phloem elements or companion cells to interfere with host targets (e.g., proteins or genes), which cause cell death, necrosis, or other phenotypes of phloem elements or companion cells, leading to localized cell responses and systemic malfunction of phloem. Receptors on the remaining organelles in the phloem, such as plastid, vacuole, mitochondrion, or endoplasmic reticulum, interact with secreted SDEs and/or other virulence factors secreted or located on the Liberibacter outer membrane to trigger cell responses. Some of the host genes or proteins targeted by SDEs or other virulence factors of Liberibacters serve as susceptibility genes that facilitate compatibility (e.g., promoting pathogen growth or suppressing immune responses) or disease development. In addition, Liberibacters trigger plant immunity response via pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharides), which leads to premature cell death, callose deposition, or phloem protein accumulation, causing a localized response and/or systemic effect on phloem transportation. Physical presence of Liberibacters and their metabolic activities may disturb the function of phloem, via disrupting osmotic gradients, or the integrity of phloem conductivity. We also review disease management strategies, including promising new technologies. Citrus production in the presence of Huanglongbing is possible if the most promising management approaches are integrated. HLB management is discussed in the context of local, area-wide, and regional Huanglongbing/Asian Citrus Psyllid epidemiological zones. For zebra chip disease control, aggressive psyllid management enables potato production, although insecticide resistance is becoming an issue. Meanwhile, new technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-derived genome editing provide an unprecedented opportunity to provide long-term solutions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035513
2017-08-04
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/phyto/55/1/annurev-phyto-080516-035513.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035513&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar E, Sengoda VG, Bextine B, McCue KF, Munyaneza JE. 1.  2013. First report of “Candidatus Liberibacter solanacearum” on tomato in Honduras. Plant Dis 97:101375 [Google Scholar]
  2. Akula N, Trivedi P, Han FQ, Wang N. 2.  2012. Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design. Eur. J. Med. Chem 54:919–24 [Google Scholar]
  3. Akula N, Zheng H, Han FQ, Wang N. 3.  2011. Discovery of novel SecA inhibitors of Candidatus Liberibacter asiaticus by structure based design. Bioorg. Med. Chem. Lett 21:144183–88 [Google Scholar]
  4. Albrecht U, Fiehn O, Bowman KD. 4.  2016. Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiol. Biochem. 107:33–44 [Google Scholar]
  5. Albrecht U, McCollum G, Bowman KD. 5.  2012. Influence of rootstock variety on Huanglongbing disease development in field-grown sweet orange (Citrus sinensis [l.] Osbeck) trees. Sci. Hortic. 138:210–20 [Google Scholar]
  6. Albrecht U, Bowman KD. 6.  2012. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus. Plant Sci 185–186:118–30 [Google Scholar]
  7. Albus U, Baier R, Holst O, Pühler A, Niehaus K. 7.  2001. Suppression of an elicitor-induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol 151:3597–606 [Google Scholar]
  8. Alfaro-Fernández A, Cebrián MC, Villaescusa FJ, de Mendoza AH, Ferrándiz JC. 8.  et al. 2012. First report of “Candidatus Liberibacter solanacearum” in carrot in mainland Spain. Plant Dis 96:4582 [Google Scholar]
  9. Alvarado VY, Odokonyero D, Duncan O, Mirkov TE, Scholthof HB. 9.  2012. Molecular and physiological properties associated with zebra complex disease in potatoes and its relation with Candidatus Liberibacter contents in psyllid vectors. PLOS ONE 7:5e37345 [Google Scholar]
  10. Arredondo Valdés R, Delgado Ortiz JC, Beltrán Beache M, Anguiano Cabello J, Cerna Chávez E. 10.  et al. 2016. A review of techniques for detecting Huanglongbing (greening) in citrus. Can. J. Microbiol. 62:10803–11 [Google Scholar]
  11. Aurambout JP, Finlay KJ, Luck J, Beattie GAC. 11.  2009. A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—a means for assessing biosecurity risk. Ecol. Model. 220:2512–24 [Google Scholar]
  12. Balogh B, Jones JB, Iriarte FB, Momol MT. 12.  2010. Phage therapy for plant disease control. Curr. Pharm. Biotechnol. 11:148–57 [Google Scholar]
  13. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 13.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:58191709–12 [Google Scholar]
  14. Bassanezi RB, Montesino LH, Gimenes-Fernandes N, Yamamoto PT, Gottwald TR. 14.  et al. 2013. Efficacy of area-wide inoculum reduction and vector control on temporal progress of Huanglongbing in young sweet orange plantings. Plant Dis 97:6789–96 [Google Scholar]
  15. Belasque J, Bassanezi RB, Yamamoto PT, Ayres AJ, Tachibana A. 15.  et al. 2010. Lessons from Huanglongbing management in São Paulo state, Brazil. J. Plant Path. 82:285–302 [Google Scholar]
  16. Bertolini E, Teresani GR, Loiseau M, Tanaka FAO, Barbé S. 16.  et al. 2015. Transmission of “Candidatus Liberibacter solanacearum” in carrot seeds. Plant Pathol 64:2276–85 [Google Scholar]
  17. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K. 17.  et al. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform 8:1209 [Google Scholar]
  18. Boina DR, Bloomquist JR. 18.  2015. Chemical control of the Asian citrus psyllid and of Huanglongbing disease in citrus. Pest Manag. Sci. 71:6808–23 [Google Scholar]
  19. Bonnington KE, Kuehn MJ. 19.  2014. Protein selection and export via outer membrane vesicles. Biochim. Biophys. Acta 1843:81612–19 [Google Scholar]
  20. Bové JM. 20.  2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88:17–37 [Google Scholar]
  21. Boykin LM, De Barro P, Hall DG, Hunter WB, McKenzie CL. 21.  et al. 2012. Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two old world lineages and a new world invasion. Bull. Entomol. Res. 102:5573–82 [Google Scholar]
  22. Buchman JL, Fisher TW, Sengoda VG, Munyaneza JE. 22.  2012. Zebra chip progression: from inoculation of potato plants with Liberibacter to development of disease symptoms in tubers. Am. J. Potato Res. 89:2159–68 [Google Scholar]
  23. Camacho-Tapia M, Rojas-Martínez RI, Zavaleta-Mejía E, Hernández-Deheza MG, Carrillo-Salazar JA. 23.  et al. 2011. Aetiology of chili pepper variegation from Yurécuaro, México. J. Plant Pathol. 93:2331–35 [Google Scholar]
  24. Casteel CL, Hansen AK, Walling LL, Paine TD. 24.  2012. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLOS ONE 7:4e35191 [Google Scholar]
  25. Castresana J. 25.  2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17:540–52 [Google Scholar]
  26. Chatterjee S, Almeida RPP, Lindow S. 26.  2008. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. . Annu. Rev. Phytopathol. 46:243–71 [Google Scholar]
  27. Chávez EC, Bautista OH, Flores JL, Uribe LA, Fuentes YMO. 27.  2015. Insecticide-resistance ratios of three populations of Bactericera cockerelli (Hemiptera: Psylloidea: Triozidae) in regions of northern Mexico. Fla. Entomol. 98:3950–53 [Google Scholar]
  28. Chopra I, Roberts M. 28.  2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232–60 [Google Scholar]
  29. Cicero JM, Fisher TW, Brown JK. 29.  2016. Localization of “Candidatus Liberibacter solanacearum” and evidence for surface appendages in the potato psyllid vector. Phytopathology 106:2142–54 [Google Scholar]
  30. Cocuzza GEM, Alberto U, Hernández-Suárez E, Siverio F, Di Silvestro S. 30.  et al. 2016. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of Huanglongbing (HLB) in citrus. J. Pest Sci. 2004:1–17 [Google Scholar]
  31. Coletta-Filho HD, Targon MLPN, Takita MA, De Negri JD, Pompeu J. 31.  et al. 2004. First report of the causal agent of Huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil. Plant Dis 88:121382–82 [Google Scholar]
  32. Cong Q, Kinch LN, Kim B-H, Grishin NV. 32.  2012. Predictive sequence analysis of the Candidatus Liberibacter asiaticus proteome. PLOS ONE 7:7e41071 [Google Scholar]
  33. Cooper WR, Alcala PE, Barcenas NM. 33.  2015. Relationship between plant vascular architecture and within-plant distribution of “Candidatus Liberibacter solanacearum” in potato. Am. J. Potato Res. 92:191–99 [Google Scholar]
  34. Crosslin JM, Hamm PB, Eggers JE, Rondon SI, Sengoda VG, Munyaneza JE. 34.  2012. First report of zebra chip disease and “Candidatus Liberibacter solanacearum” on potatoes in Oregon and Washington State. Plant Dis 96:3452 [Google Scholar]
  35. Crosslin JM, Munyaneza JE. 35.  2009. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. Am. J. Potato Res. 86:3183–87 [Google Scholar]
  36. Crosslin JM, Munyaneza JE, Brown JK, Liefting LW. 36.  2010. Potato zebra chip disease: a phytopathological tale. Plant Health Prog https://doi.org/10.1094/PHP-2010-0317-01-RV [Crossref] [Google Scholar]
  37. da Graça JV, Douhan GW, Halbert SE, Keremane ML, Lee RF. 37.  et al. 2016. Huanglongbing: an overview of a complex pathosystem ravaging the world's citrus. J. Integr. Plant Biol. 58:4373–87 [Google Scholar]
  38. Davey MR, Anthony P, Power JB, Lowe KC. 38.  2005. Plant protoplasts: status and biotechnological perspectives. Biotechnol. Adv. 23:2131–71 [Google Scholar]
  39. Davis RI, Gunua TG, Kame MF, Tenakanai D, Ruabete TK. 39.  2005. Spread of citrus Huanglongbing (greening disease) following incursion into Papua New Guinea. Australas. Plant Pathol. 34:4517 [Google Scholar]
  40. de León JH, Sétamou M, Gastaminza GA, Buenahora J, Cáceres S. 40.  et al. 2011. Two separate introductions of Asian citrus psyllid populations found in the American continents. Ann. Entomol. Soc. Am. 104:61392–98 [Google Scholar]
  41. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H. 41.  et al. 2009. Complete genome sequence of citrus Huanglongbing bacterium, “Candidatus Liberibacter asiaticus” obtained through metagenomics. Mol. Plant-Microbe Interact. 22:81011–20 [Google Scholar]
  42. Durrant WE, Dong X. 42.  2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209 [Google Scholar]
  43. Dutt M, Barthe G, Irey M, Grosser J, Duan Y. 43.  et al. 2015. Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; citrus greening). PLOS ONE 10:9e0137134 [Google Scholar]
  44. Edgar RC. 44.  2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:51792–97 [Google Scholar]
  45. Ehsani R, Reyes De Corcuera JI, Khot L. 45.  2013. The potential of thermotherapy in combating HLB. Resour. Mag. 20:618–19 [Google Scholar]
  46. Esau K, Cheadle VI. 46.  1959. Size of pores and their contents in sieve elements of dicotyledons. PNAS 45:2156–62 [Google Scholar]
  47. Etxeberria E, Gonzalez P, Borges AF, Brodersen C. 47.  2016. The use of laser light to enhance the uptake of foliar-applied substances into citrus (Citrus sinensis) leaves. Appl. Plant Sci. 4:11500106 [Google Scholar]
  48. Fagen JR, Leonard MT, McCullough CM, Edirisinghe JN, Henry CS. 48.  et al. 2014. Comparative genomics of cultured and uncultured strains suggests genes essential for free-living growth of Liberibacter. PLOS ONE 9:1e84469 [Google Scholar]
  49. Fan J, Chen C, Brlansky RH, Gmitter FG Jr., Li Z-G. 49.  2010. Changes in carbohydrate metabolism in Citrus sinensis infected with “Candidatus Liberibacter asiaticus.”. Plant Pathol 59:61037–43 [Google Scholar]
  50. Fan J, Chen C, Yu Q, Brlansky RH, Li Z-G, Gmitter FG. 50.  2011. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by “Candidatus Liberibacter asiaticus.”. Physiol. Plant. 143:3235–45 [Google Scholar]
  51. Fan J, Chen C, Yu Q, Khalaf A, Achor DS. 51.  et al. 2012. Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to “Candidatus Liberibacter asiaticus” infection. Mol. Plant-Microbe Interact. 25:111396–407 [Google Scholar]
  52. Ferooz J, Lemaire J, Letesson J-J. 52.  2011. Role of FlbT in flagellin production in Brucella melitensis. . Microbiology 157:51253–62 [Google Scholar]
  53. Fisher TW, Vyas M, He R, Nelson W, Cicero JM. 53.  et al. 2014. Comparison of potato and Asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative Liberibacter transmission. Pathogens 3:4875–907 [Google Scholar]
  54. Folimonova SY, Achor DS. 54.  2010. Early events of citrus greening (Huanglongbing) disease development at the ultrastructural level. Phytopathology 100:9949–58 [Google Scholar]
  55. Folimonova SY, Robertson CJ, Garnsey SM, Gowda S, Dawson WO. 55.  2009. Examination of the responses of different genotypes of citrus to Huanglongbing (citrus greening) under different conditions. Phytopathology 99:121346–54 [Google Scholar]
  56. Francl LJ. 56.  2001. The disease triangle: a plant pathological paradigm revisited. Plant Health Instr https://doi.org/10.1094/PHI-T-2001-0517-01 [Crossref] [Google Scholar]
  57. Fu SM, Hartung J, Zhou CY, Su HN, Tan J, Li ZA. 57.  2015. Ultrastructural changes and putative phage particles observed in sweet orange leaves infected with “Candidatus Liberibacter asiaticus.”. Plant Dis 99:3320–24 [Google Scholar]
  58. Garnier M, Bové JM, Jagoueix-Eveillard S, Cronje CPR, Sanders GM. 58.  2000. Presence of “Candidatus Liberibacter africanus” in the Western Cape province of South Africa.. Proc. Conf. Int. Organ. Citrus Virol., 14th, Campinas, São Paulo Sept. 13–18, 1998 369–72 Riverside, CA: IOCV [Google Scholar]
  59. Garnier M, Jagoueix-Eveillard S, Cronje PR, Le Roux HF, Bove JM. 59.  2000. Genomic characterization of a Liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape province of South Africa. Proposal of “Candidatus Liberibacter africanus subsp. capensis.”. Int. J. Syst. Evol. Microbiol 50:62119–25 [Google Scholar]
  60. Glynn JM, Islam MS, Bai Y, Lan S, Wen A. 60.  et al. 2012. Multilocus sequence typing of “Candidatus Liberibacter solanacearum” isolates from North America and New Zealand. J. Plant Pathol. 94:1223–28 [Google Scholar]
  61. Gottwald TR. 61.  2010. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 48:119–39 [Google Scholar]
  62. Gottwald TR, Graham JH, Irey MS, McCollum TG, Wood BW. 62.  2012. Inconsequential effect of nutritional treatments on Huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Prot 36:73–82 [Google Scholar]
  63. Grafton-Cardwell EE, Stelinski LL, Stansly PA. 63.  2013. Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annu. Rev. Entomol. 58:413–32 [Google Scholar]
  64. Gutierrez AP, Ponti L. 64.  2013. Prospective analysis of the geographic distribution and relative abundance of Asian citrus psyllid (Hemiptera: Liviidae) and citrus greening disease in North America and the Mediterranean basin. Fla. Entomol. 96:41375–91 [Google Scholar]
  65. Haapalainen M. 65.  2014. Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Ann. Appl. Biol. 165:2172–98 [Google Scholar]
  66. Hansen AK, Trumble JT, Stouthamer R, Paine TD. 66.  2008. A new Huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl. Environ. Microbiol 74:185862–65 [Google Scholar]
  67. Hao G, Boyle M, Zhou L, Duan Y. 67.  2013. The intracellular citrus Huanglongbing bacterium, “Candidatus Liberibacter asiaticus” encodes two novel autotransporters. PLOS ONE 8:7e68921 [Google Scholar]
  68. Hao G, Pitino M, Ding F, Lin H, Stover E, Duan Y. 68.  2014. Induction of innate immune responses by flagellin from the intracellular bacterium, “Candidatus Liberibacter solanacearum. BMC Plant Biol 14:1211 [Google Scholar]
  69. Hao G, Stover E, Gupta G. 69.  2016. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB). Front. Plant Sci. 7:1078 [Google Scholar]
  70. Hartung JS, Paul C, Achor D, Brlansky RH. 70.  2010. Colonization of dodder, Cuscuta indecora, by “Candidatus Liberibacter asiaticus” and “Ca. L. americanus.”. Phytopathology 100:8756–62 [Google Scholar]
  71. Heo J, Blob B, Helariutta Y. 71.  2017. Differentiation of conductive cells: a matter of life and death. Curr. Opin. Plant Biol. 35:23–29 [Google Scholar]
  72. Hijaz FM, Manthey JA, Folimonova SY, Davis CL, Jones SE. 72.  et al. 2013. An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus. PLOS ONE 8:11e79485 [Google Scholar]
  73. Hilf ME. 73.  2011. Colonization of citrus seed coats by “Candidatus Liberibacter asiaticus”: implications for seed transmission of the bacterium. Phytopathology 101:101242–50 [Google Scholar]
  74. Hoffman MT, Doud MS, Williams L, Zhang M-Q, Ding F. 74.  et al. 2013. Heat treatment eliminates “Candidatus Liberibacter asiaticus” from infected citrus trees under controlled conditions. Phytopathology 103:115–22 [Google Scholar]
  75. Horton DR, Cooper WR, Munyaneza JE, Swisher KD, Echegaray ER. 75.  et al. 2015. A new problem and old questions: potato psyllid in the Pacific Northwest. Am. Entomol. 61:4234–44 [Google Scholar]
  76. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J. 76.  et al. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. PNAS 106:156416–21 [Google Scholar]
  77. Hu J, Akula N, Wang N, Gottwald T, Wang N. 77.  et al. 2016. Development of a microemulsion formulation for antimicrobial SecA inhibitors. PLOS ONE 11:3e0150433 [Google Scholar]
  78. Hu J, Wang N. 78.  2016. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. Phytopathology 106:121495–503 [Google Scholar]
  79. Hung TH, Wu ML, Su HJ. 79.  2000. Identification of alternative hosts of the fastidious bacterium causing citrus greening disease. J. Phytopathol. 148:6321–26 [Google Scholar]
  80. Hunter WB, Glick E, Paldi N, Bextine BR. 80.  2012. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest. Entomol. 37:185–87 [Google Scholar]
  81. Ibanez F, Levy J, Tamborindeguy C. 81.  2014. Transcriptome analysis of “Candidatus Liberibacter solanacearum” in its psyllid vector, Bactericera cockerelli. . PLOS ONE 9:7e100955 [Google Scholar]
  82. Jagoueix S, Bove JM, Garnier M. 82.  1994. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the proteobacteria. Int. J. Syst. Bacteriol. 44:3379–86 [Google Scholar]
  83. Jain M, Fleites LA, Gabriel DW. 83.  2015. Prophage-encoded peroxidase in “Candidatus Liberibacter asiaticus” is a secreted effector that suppresses plant defenses. Mol. Plant-Microbe Interact. 28:121330–37 [Google Scholar]
  84. Jia H, Orbovic V, Jones JB, Wang N. 84.  2016. Modification of the PthA4 effector binding elements in type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol. J. 14:51291–301 [Google Scholar]
  85. Jia H, Wang N. 85.  2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLOS ONE 9:4e93806 [Google Scholar]
  86. Jia H, Zhang Y, Orbović V, Xu J, White FF. 86.  et al. 2016. Genome editing of the disease susceptibility gene csLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. https://doi.org/10.1111/pbi.12677 [Crossref] [Google Scholar]
  87. Johnson EG, Wu J, Bright DB, Graham JH. 87.  2014. Root loss on presymptomatic Huanglongbing affected trees is preceded by Candidatus Liberibacter asiaticus root infection but not phloem plugging. Plant Pathol 63:290–98 [Google Scholar]
  88. Jones JDG, Dangl JL. 88.  2006. The plant immune system. Nature 444:7117323–29 [Google Scholar]
  89. Katoh H, Miyata S, Inoue H, Iwanami T. 89.  2014. Unique features of a Japanese “Candidatus Liberibacter asiaticus” strain revealed by whole genome sequencing. PLOS ONE 9:9e106109 [Google Scholar]
  90. Kim J-S, Sagaram US, Burns JK, Li J-L, Wang N. 90.  2009. Response of sweet orange (Citrus sinensis) to “Candidatus Liberibacter asiaticus” infection: microscopy and microarray analyses. Phytopathology 99:150–57 [Google Scholar]
  91. Koh E-J, Zhou L, Williams DS, Park J, Ding N. 91.  et al. 2012. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus.”. Protoplasma 249:3687–97 [Google Scholar]
  92. Kunkel LO. 92.  1936. Heat treatment for the control of yellows and other virus diseases of peach. Phytopathology 26:809–30 [Google Scholar]
  93. Lee I-M, Bottner KD, Sun M. 93.  2009. An emerging potato purple top disease associated with a new 16SrIII group phytoplasma in Montana. Plant Dis 93:9970 [Google Scholar]
  94. Leonard MT, Fagen JR, Davis-Richardson AG, Davis MJ, Triplett EW. 94.  2012. Complete genome sequence of Liberibacter crescens BT-1. Stand. Genom. Sci. 7:2271–83 [Google Scholar]
  95. Letunic I, Bork P. 95.  2007. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–28 [Google Scholar]
  96. Levy J, Ravindran A, Gross D, Tamborindeguy C, Pierson E. 96.  2011. Translocation of “Candidatus Liberibacter solanacearum”, the zebra chip pathogen, in potato and tomato. Phytopathology 101:111285–91 [Google Scholar]
  97. Levy J, Tamborindeguy C. 97.  2014. Solanum habrochaites, a potential source of resistance against Bactericera cockerelli (Hemiptera: Triozidae) and “Candidatus Liberibacter solanacearum”. J. Econ. Entomol 107:31187–93 [Google Scholar]
  98. Li J, Pang Z, Trivedi P, Zhou X, Ying X,. 97a.  2017. Candidatus Liberibacter asiaticus” encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defenses. Mol. Plant-Microbe Interact https://doi.org/10.1094/MPMI-12-16-0257-R [Crossref] [Google Scholar]
  99. Li J, Trivedi P, Wang N. 98.  2016. Field evaluation of plant defense inducers for the control of citrus Huanglongbing. Phytopathology 106:137–46 [Google Scholar]
  100. Li W, Cong Q, Pei J, Kinch LN, Grishin N V. 99.  2012. The ABC transporters in Candidatus Liberibacter asiaticus. Proteins Struct. Funct. Bioinform. 80:112614–28 [Google Scholar]
  101. Liefting LW, Perez-Egusquiza ZC, Clover GRG, Anderson JAD. 100.  2008. A new “Candidatus Liberibacter” species in Solanum tuberosum in New Zealand. Plant Dis 92:101474 [Google Scholar]
  102. Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GRG. 101.  2009. A new “Candidatus Liberibacter” species associated with diseases of solanaceous crops. Plant Dis 93:3208–14 [Google Scholar]
  103. Liefting LW, Ward LI, Shiller JB, Clover GRG. 102.  2008. A new “Candidatus Liberibacter” species in Solanum betaceum (tamarillo) and Physalis peruviana (cape gooseberry) in New Zealand. Plant Dis 92:111588 [Google Scholar]
  104. Lin H, Gudmestad NC. 103.  2013. Aspects of pathogen genomics, diversity, epidemiology, vector dynamics, and disease management for a newly emerged disease of potato: zebra chip. Phytopathology 103:6524–37 [Google Scholar]
  105. Lin H, Islam MS, Bai Y, Wen A, Lan S. 104.  et al. 2012. Genetic diversity of “Candidatus Liberibacter solanacearum” strains in the United States and Mexico revealed by simple sequence repeat markers. Eur. J. Plant Pathol. 132:2297–308 [Google Scholar]
  106. Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL. 105.  et al. 2011. The complete genome sequence of “Candidatus Liberibacter solanacearum”, the bacterium associated with potato zebra chip disease. PLOS ONE 6:4e19135 [Google Scholar]
  107. Liu D, Trumble JT. 106.  2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomol. Exp. Appl. 123:135–42 [Google Scholar]
  108. Liu D, Trumble JT, Stouthamer R. 107.  2006. Genetic differentiation between eastern populations and recent introductions of potato psyllid (Bactericera cockerelli) into western North America. Entomol. Exp. Appl. 118:3177–83 [Google Scholar]
  109. Lopes SA, Luiz FQBF, Martins EC, Fassini CG, Sousa MC. 108.  et al. 2013. Candidatus Liberibacter asiaticus” titers in citrus and acquisition rates by Diaphorina citri are decreased by higher temperature. Plant Dis 97:121563–70 [Google Scholar]
  110. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav S-R. 109.  et al. 2013. The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55:4294–388 [Google Scholar]
  111. Machida-Hirano R. 110.  2015. Diversity of potato genetic resources. Breed. Sci 65:126–40 [Google Scholar]
  112. MacLean AM, Sugio A, Makarova O V, Findlay KC, Grieve VM. 111.  et al. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157:2831–41 [Google Scholar]
  113. Mafra V, Martins PK, Francisco CS, Ribeiro-Alves M, Freitas-Astúa J, Machado MA. 112.  2013. Candidatus Liberibacter americanus induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genom 14:1247 [Google Scholar]
  114. Martinelli F, Reagan RL, Uratsu SL, Phu ML, Albrecht U. 113.  et al. 2013. Gene regulatory networks elucidating Huanglongbing disease mechanisms. PLOS ONE 8:9e74256 [Google Scholar]
  115. Martinelli F, Uratsu SL, Albrecht U, Reagan RL, Phu ML. 114.  et al. 2012. Transcriptome profiling of citrus fruit response to Huanglongbing disease. PLOS ONE 7:5e38039 [Google Scholar]
  116. Massonié G, Garnier M, Bove JM. 115.  1976. Transmission of Indian citrus decline by Trioza erytreae (Del Guercio), the vector of South African greening. Proc. Conf. Int. Organ. Citrus Virol., 7th, Athens18–20 Riverside, CA: IOCV [Google Scholar]
  117. Matos LA, Hilf ME, Chen J, Folimonova SY, da Graça J. 116.  et al. 2013. Validation of “variable number of tandem repeat”-based approach for examination of “Candidatus Liberibacter asiaticus” diversity and its applications for the analysis of the pathogen populations in the areas of recent introduction. PLOS ONE 8:11e78994 [Google Scholar]
  118. McCutcheon JP, Moran NA. 117.  2011. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:113 [Google Scholar]
  119. Munyaneza JE. 118.  2012. Zebra chip disease of potato: biology, epidemiology, and management. Am. J. Potato Res. 89:5329–50 [Google Scholar]
  120. Munyaneza JE, Crosslin JM, Buchman JL. 119.  2009. Seasonal occurrence and abundance of the potato psyllid, Bactericera cockerelli, in south central Washington. Am. J. Potato Res. 86:6513–18 [Google Scholar]
  121. Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A. 120.  2010. Association of “Candidatus Liberibacter solanacearum” with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe. J. Econ. Entomol 103:41060–70 [Google Scholar]
  122. Murphy AF, Rondon SI, Jensen AS. 121.  2013. First repot of potato psyllids, Bactericera cockerelli, overwintering in the Pacific Northwest. Am. J. Potato Res. 90:294–96 [Google Scholar]
  123. Mustafa T, Alvarez JM, Munyaneza JE. 122.  2015. Effect of cyantraniliprole on probing behavior of the potato psyllid (Hemiptera: Triozidae) as measured by the electrical penetration graph technique. J. Econ. Entomol. 108:62529–35 [Google Scholar]
  124. Mustafa T, Horton DR, Cooper WR, Swisher KD, Zack RS. 123.  et al. 2015. Use of electrical penetration graph technology to examine transmission of “Candidatus Liberibacter solanacearum” to potato by three haplotypes of potato psyllid (Bactericera cockerelli; Hemiptera: Triozidae). PLOS ONE 10:9e0138946 [Google Scholar]
  125. Nakabachi A, Nikoh N, Oshima K, Inoue H, Ohkuma M. 124.  et al. 2013. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector. PLOS ONE 8:12e82612 [Google Scholar]
  126. Narouei-Khandan HA, Halbert SE, Worner SP, van Bruggen AHC. 125.  2016. Global climate suitability of citrus Huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. Eur. J. Plant Pathol. 144:3655–70 [Google Scholar]
  127. Navarre DA, Shakya R, Holden J, Crosslin JM. 126.  2009. LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. Am. J. Potato Res. 86:288–95 [Google Scholar]
  128. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S. 127.  2013. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:8691–93 [Google Scholar]
  129. Nelson WR, Fisher TW, Munyaneza JE. 128.  2011. Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. Eur. J. Plant Pathol. 130:15–12 [Google Scholar]
  130. Nelson WR, Sengoda VG, Alfaro-Fernandez AO, Font MI, Crosslin JM, Munyaneza JE. 129.  2013. A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur. J. Plant Pathol. 135:4633–39 [Google Scholar]
  131. Newman M-A, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM. 130.  2002. Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant J 29:4487–95 [Google Scholar]
  132. Nissinen AI, Haapalainen M, Jauhiainen L, Lindman M, Pirhonen M. 131.  2014. Different symptoms in carrots caused by male and female carrot psyllid feeding and infection by “Candidatus Liberibacter solanacearum.”. Plant Pathol 63:4812–20 [Google Scholar]
  133. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. 132.  2016. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat. Rev. Microbiol. 14:6337–45 [Google Scholar]
  134. Pagliai FA, Gonzalez CF, Lorca GL. 133.  2015. Identification of a ligand binding pocket in LdtR from Liberibacter asiaticus. . Front. Microbiol. 6:1314 [Google Scholar]
  135. Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF. 134.  2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:5847113–16 [Google Scholar]
  136. Phahladira MNB, Viljoen R, Pietersen G. 135.  2012. Widespread occurrence of “Candidatus Liberibacter africanus subspecies capensis” in Calodendrum capense in South Africa. Eur. J. Plant Pathol 134:139–47 [Google Scholar]
  137. Pitino M, Armstrong CM, Cano LM, Duan Y. 136.  2016. Transient expression of Candidatus Liberibacter asiaticus effector induces cell death in Nicotiana benthamiana. . Front. Plant Sci. 7:982 [Google Scholar]
  138. Pitman AR, Drayton GM, Kraberger SJ, Genet RA, Scott IAW. 137.  2011. Tuber transmission of “Candidatus Liberibacter solanacearum” and its association with zebra chip on potato in New Zealand. Eur. J. Plant Pathol. 129:3389–98 [Google Scholar]
  139. Popa O, Dagan T. 138.  2011. Trends and barriers to lateral gene transfer in prokaryotes. Curr. Opin. Microbiol. 14:5615–23 [Google Scholar]
  140. Prager SM, Vindiola B, Kund GS, Byrne FJ, Trumble JT. 139.  2013. Considerations for the use of neonicotinoid pesticides in management of Bactericera cockerelli (Šulk) (Hemiptera: Triozidae). Crop Prot 54:84–91 [Google Scholar]
  141. Prasad S, Xu J, Zhang Y, Wang N. 140.  2016. SEC-translocon dependent extracytoplasmic proteins of Candidatus Liberibacter asiaticus. Front. Microbiol. 7:1–9 [Google Scholar]
  142. Price MN, Dehal PS, Arkin AP. 141.  2010. FastTree 2: approximately maximum-likelihood trees for large alignments. PLOS ONE 5:e9490 [Google Scholar]
  143. Puttamuk T, Zhou L, Thaveechai N, Zhang S, Armstrong CM, Duan Y. 142.  2014. Genetic diversity of Candidatus Liberibacter asiaticus based on two hypervariable effector genes in Thailand. PLOS ONE 9:12e112968 [Google Scholar]
  144. Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R. 143.  et al. 2011. Candidatus Liberibacter europaeus” sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environ. Microbiol 13:2414–26 [Google Scholar]
  145. Ramadugu C, Keremane ML, Halbert SE, Duan YP, Roose ML. 144.  et al. 2016. Long-term field evaluation reveals Huanglongbing resistance in Citrus relatives. Plant Dis 100:91858–69 [Google Scholar]
  146. Rashed A, Wallis CM, Paetzold L, Workneh F, Rush CM. 145.  2013. Zebra chip disease and potato biochemistry: tuber physiological changes in response to “Candidatus Liberibacter solanacearum” infection over time. Phytopathology 103:5419–26 [Google Scholar]
  147. Richardson ML, Hall DG. 146.  2013. Resistance of Poncirus and Citrus×Poncirus germplasm to the Asian citrus psyllid. Crop Sci 53:183–88 [Google Scholar]
  148. Roberts R, Pietersen G. 147.  2016. A novel subspecies of “Candidatus Liberibacter africanus” found on native Teclea gerrardii (Family: Rutaceae) from South Africa. Antonie Van Leeuwenhoek 110:437 [Google Scholar]
  149. Roberts R, Steenkamp ET, Pietersen G. 148.  2015. Three novel lineages of “Candidatus Liberibacter africanus” associated with native rutaceous hosts of Trioza erytreae in South Africa. Int. J. Syst. Evol. Microbiol 65:Pt. 2723–31 [Google Scholar]
  150. Rush CM, Workneh F, Rashed A. 149.  2015. Significance and epidemiological aspects of late-season infections in the management of potato zebra chip. Phytopathology 105:7929–36 [Google Scholar]
  151. Schultz KM, Merten JA, Klug CS. 150.  2011. Effects of the L511P and D512G mutations on the Escherichia coli ABC transporter MsbA. Biochemistry 50:132594–602 [Google Scholar]
  152. Schumann A, Singerman A. 151.  2016. The economics of citrus undercover production systems and whole tree thermotherapy. Citrus Ind 2016:14–18 [Google Scholar]
  153. Secor GA, Rivera VV, Abad JA, Lee I-M, Clover GRG. 152.  et al. 2009. Association of “Candidatus Liberibacter solanacearum” with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Dis 93:6574–83 [Google Scholar]
  154. Segers K, Anné J. 153.  2011. Traffic jam at the bacterial Sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. Chem. Biol. 18:6685–98 [Google Scholar]
  155. Sengoda VG, Munyaneza JE, Crosslin JM, Buchman JL, Pappu HR. 154.  2010. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. Am. J. Potato Res. 87:141–49 [Google Scholar]
  156. Serikawa RH, Backus EA, Rogers ME. 155.  2012. Effects of soil-applied imidacloprid on Asian citrus psyllid (Hemiptera: Psyllidae) feeding behavior. J. Econ. Entomol. 105:51492–502 [Google Scholar]
  157. Shan Q, Wang Y, Li J, Zhang Y, Chen K. 156.  et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31:8686–88 [Google Scholar]
  158. Shen W, Cevallos-Cevallos JM, Nunes da Rocha U, Arevalo HA, Stansly PA. 157.  et al. 2013. Relation between plant nutrition, hormones, insecticide applications, bacterial endophytes, and Candidatus Liberibacter Ct values in citrus trees infected with Huanglongbing. Eur. J. Plant Pathol. 137:4727–42 [Google Scholar]
  159. Shi J, Pagliaccia D, Morgan R, Qiao Y, Pan S. 158.  et al. 2014. Novel diagnosis for citrus stubborn disease by detection of a Spiroplasma citri–secreted protein. Phytopathology 104:2188–95 [Google Scholar]
  160. Shokrollah H, Abdullah TL, Sijam K, Abdullah SNA. 159.  Ultrastructures of Candidatus Liberibacter asiaticus and its damage in Huanglongbing (HLB) infected citrus. Afr. J. Biotechnol. 9:365897–901 [Google Scholar]
  161. Slisz AM, Breksa AP, Mishchuk DO, McCollum G, Slupsky CM. 160.  2012. Metabolomic analysis of citrus infection by “Candidatus Liberibacter” reveals insight into pathogenicity. J. Proteome Res. 11:84223–30 [Google Scholar]
  162. Stansly PA, Arevalo HA, Qureshi JA, Jones MM, Hendricks K. 161.  et al. 2014. Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by Huanglongbing. Pest Manag. Sci. 70:3415–26 [Google Scholar]
  163. Stover E, Stange RR Jr., McCollum TG, Jaynes J, Irey M, Mirkov E. 162.  2013. Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to Huanglongbing and citrus canker. J. Am. Soc. Hortic. Sci. 138:142–48 [Google Scholar]
  164. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. 163.  2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. PNAS 108:48E1254–63 [Google Scholar]
  165. Sutcliffe IC. 164.  2010. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:10464–70 [Google Scholar]
  166. Swisher KD, Henne DC, Crosslin JM. 165.  2014. Identification of a fourth haplotype of Bactericera cockerelli (Hemiptera: Triozidae) in the United States. J. Insect Sci. 14:1161 [Google Scholar]
  167. Tahzima R, Maes M, Achbani EH, Swisher KD, Munyaneza JE, De Jonghe K. 166.  2014. First report of “Candidatus Liberibacter solanacearum” on carrot in Africa. Plant Dis 98:101426 [Google Scholar]
  168. Teixeira DC, Saillard C, Eveillard S, Danet JL, da Costa PI. 167.  et al. 2005. Candidatus Liberibacter americanus”, associated with citrus Huanglongbing (greening disease) in São Paulo state, Brazil. Int. J. Syst. Evol. Microbiol. 55:1857–62 [Google Scholar]
  169. Teixeira DC, Wulff NA, Martins EC, Kitajima EW, Bassanezi R. 168.  et al. 2008. A phytoplasma closely related to the pigeon pea witches’-broom phytoplasma (16Sr IX) is associated with citrus Huanglongbing symptoms in the state of São Paulo, Brazil. Phytopathology 98:9977–84 [Google Scholar]
  170. Teresani G, Bertolini E, Alfaro-Fernandez A, Martínez C, Tanaka FAO. 169.  et al. 2014. Association of “Candidatus Liberibacter solanacearum” with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104:8804–11 [Google Scholar]
  171. Teresani G, Hernández E, Bertolini E, Siverio F, Marroquín C. 170.  et al. 2015. Search for potential vectors of “Candidatus Liberibacter solanacearum”: population dynamics in host crops. Span. J. Agric. Res. 13:1e1002 [Google Scholar]
  172. Thinakaran J, Pierson E, Kunta M, Munyaneza JE, Rush CM, Henne DC. 171.  2015. Silverleaf nightshade (Solanum elaeagnifolium), a reservoir host for “Candidatus Liberibacter solanacearum”, the putative causal agent of zebra chip disease of potato. Plant Dis 99:7910–15 [Google Scholar]
  173. Thomas KL, Jones DC, Kumarasinghe LB, Richmond JE, Gill GSC, Bullians MS. 172.  2011. Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. . N. Z. Plant Prot. 64:259–68 [Google Scholar]
  174. Thompson S, Fletcher JD, Ziebell H, Beard S, Panda P. 173.  et al. 2013. First report of “Candidatus Liberibacter europaeus” associated with psyllid infested scotch broom. New Dis. Rep. 27:6 [Google Scholar]
  175. Thompson SM, Johnson CP, Lu AY, Frampton RA, Sullivan KL. 174.  et al. 2015. Genomes of “Candidatus Liberibacter solanacearum” haplotype A from New Zealand and the United States suggest significant genome plasticity in the species. Phytopathology 105:7863–71 [Google Scholar]
  176. Tyler HL, Roesch LFW, Gowda S, Dawson WO, Triplett EW. 175.  2009. Confirmation of the sequence of “Candidatus Liberibacter asiaticus” and assessment of microbial diversity in Huanglongbing-infected citrus phloem using a metagenomic approach. Mol. Plant-Microbe Interact. 22:121624–34 [Google Scholar]
  177. Vahling-Armstrong CM, Zhou H, Benyon L, Morgan JK, Duan Y. 176.  2012. Two plant bacteria, S. meliloti and Ca. Liberibacter asiaticus, share functional znuABC homologues that encode for a high affinity zinc uptake system. PLOS ONE 7:5e37340 [Google Scholar]
  178. Vereijssen J SI. 177.  2013. Psyllid can overwinter on non-crop host plants. N. Z. Grow. 68:114–15 [Google Scholar]
  179. von Wintersdorff CJH, Penders J, van Niekerk JM, Mills ND, Majumder S. 178.  et al. 2016. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7:173 [Google Scholar]
  180. Vuorisalo T, Hutchings MJ. 179.  1996. On plant sectoriality, or how to combine the benefits of autonomy and integration. Vegetatio 127:3 [Google Scholar]
  181. Walter AJ, Duan YP, Hall DG. 180.  2012. Titers of “Ca. Liberibacter asiaticus” in Murraya paniculata and Murraya-reared Diaphorina citri are much lower than in citrus and citrus-reared psyllids. HortScience 47:1449–52 [Google Scholar]
  182. Wang N, Trivedi P. 181.  2013. Citrus Huanglongbing: A newly relevant disease presents unprecedented challenges. Phytopathology 103:7652–65 [Google Scholar]
  183. Wen A, Mallik I, Alvarado VY, Pasche JS, Wang X. 182.  et al. 2009. Detection, distribution, and genetic variability of “Candidatus Liberibacter” species associated with zebra complex disease of potato in North America. Plant Dis 93:111102–15 [Google Scholar]
  184. Westbrook CJ, Hall DG, Stover E, Duan YP, Lee RF. 183.  2011. Colonization of citrus and citrus-related germplasm by Diaphorina citri (Hemiptera: Psyllidae). HortScience 46:997–1005 [Google Scholar]
  185. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW. 184.  et al. 2015. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33:111162–64 [Google Scholar]
  186. Wulff NA, Zhang S, Setubal JC, Almeida NF, Martins EC. 185.  et al. 2014. The complete genome sequence of “Candidatus Liberibacter americanus”, associated with citrus Huanglongbing. Mol. Plant-Microbe Interact. 27:2163–76 [Google Scholar]
  187. Wuriyanghan H, Rosa C, Falk BW. 186.  2011. Oral delivery of double-stranded RNAs and siRNAs induces RNAi effects in the potato/tomato psyllid, Bactericerca cockerelli. . PLOS ONE 6:11e27736 [Google Scholar]
  188. Xia Y, Ouyang G, Sequeira RA, Takeuchi Y, Baez I, Chen J. 187.  2011. A review of Huanglongbing (citrus greening) management in citrus using nutritional approaches in China. Plant Health Prog https://doi.org/10.1094/PHP-2010-1003-01-RV [Crossref] [Google Scholar]
  189. Yan Q, Sreedharan A, Wei S, Wang J, Pelz-Stelinski K. 188.  et al. 2013. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect. Mol. Plant Pathol. 14:4391–404 [Google Scholar]
  190. Yang C, Powell CA, Duan Y, Shatters R, Zhang M. 189.  et al. 2015. Antimicrobial nanoemulsion formulation with improved penetration of foliar spray through citrus leaf cuticles to control citrus Huanglongbing. PLOS ONE 10:7e0133826 [Google Scholar]
  191. Yao J, Saenkham P, Levy J, Ibanez F, Noroy C. 190.  et al. 2016. Interactions “Candidatus Liberibacter solanacearum”–Bactericera cockerelli: haplotype effect on vector fitness and gene expression analyses. Front. Cell. Infect. Microbiol 6:62 [Google Scholar]
  192. Zhang M, Guo Y, Powell CA, Doud MS, Yang C, Duan Y. 191.  2014. Effective antibiotics against “Candidatus Liberibacter asiaticus” in HLB-affected citrus plants identified via the graft-based evaluation. PLOS ONE 9:11e111032 [Google Scholar]
  193. Zhang S, Flores-Cruz Z, Zhou L, Kang B-H, Fleites LA. 192.  et al. 2011. Ca. Liberibacter asiaticus” carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. Mol. Plant-Microbe Interact. 24:4458–68 [Google Scholar]
  194. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J. 193.  et al. 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7:12617 [Google Scholar]
  195. Zheng Z, Bao M, Wu F, Chen J, Deng X. 194.  2016. Predominance of single prophage carrying a CRISPR/Cas system in “Candidatus Liberibacter asiaticus” strains in southern China. PLOS ONE 11:1e0146422 [Google Scholar]
  196. Zheng Z-L, Zhao Y. 195.  2013. Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to “Candidatus Liberibacter asiaticus” infection. BMC Genom 14:127 [Google Scholar]
  197. Zhong Y, Cheng C-Z, Jiang N-H, Jiang B, Zhang Y-Y. 196.  et al. 2015. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection. PLOS ONE 10:6e0126973 [Google Scholar]
  198. Zipfel C, Robatzek S. 197.  2010. Pathogen-associated molecular pattern-triggered immunity: Veni, vidi...?. Plant Physiol 154:551–54 [Google Scholar]
  199. Zou H, Gowda S, Zhou L, Hajeri S, Chen G, Duan Y. 198.  2012. The destructive citrus pathogen, “Candidatus Liberibacter asiaticus” encodes a functional flagellin characteristic of a pathogen-associated molecular pattern. PLOS ONE 7:9e46447 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035513
Loading
/content/journals/10.1146/annurev-phyto-080516-035513
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error