The innate immune system of plants recognizes microbial pathogens and terminates their growth. However, recent findings suggest that at least one layer of this system is also engaged in cooperative plant-microbe interactions and influences host colonization by beneficial microbial communities. This immune layer involves sensing of microbe-associated molecular patterns (MAMPs) by pattern recognition receptors (PRRs) that initiate quantitative immune responses to control host-microbial load, whereas diversification of MAMPs and PRRs emerges as a mechanism that locally sculpts microbial assemblages in plant populations. This suggests a more complex microbial management role of the innate immune system for controlled accommodation of beneficial microbes and in pathogen elimination. The finding that similar molecular strategies are deployed by symbionts and pathogens to dampen immune responses is consistent with this hypothesis but implies different selective pressures on the immune system due to contrasting outcomes on plant fitness. The reciprocal interplay between microbiota and the immune system likely plays a critical role in shaping beneficial plant-microbiota combinations and maintaining microbial homeostasis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST. 1.  et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol 14:e1002352 [Google Scholar]
  2. Albert M, Jehle AK, Lipschis M, Mueller K, Zeng Y, Felix G. 2.  2010. Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models. Eur. J. Cell Biol. 89:200–7 [Google Scholar]
  3. Alcazar R, Garcia AV, Kronholm I, de Meaux J, Koornneef M. 3.  et al. 2010. Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat. Genet. 42:1135–39 [Google Scholar]
  4. Alcazar R, Parker JE. 4.  2011. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. . Trends Plant Sci. 16:666–75 [Google Scholar]
  5. Bai Y, Muller DB, Srinivas G, Garrido-Oter R, Potthoff E. 5.  et al. 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–69 [Google Scholar]
  6. Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY. 6.  et al. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. . Plant Cell 21:944–53 [Google Scholar]
  7. Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J. 7.  et al. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–6 [Google Scholar]
  8. Belhaj K, Cano LM, Prince DC, Kemen A, Yoshida K. 8.  et al. 2017. Arabidopsis late blight: infection of a nonhost plant by Albugo laibachii enables full colonization by Phytophthora infestans. . Cell. Microbiol.19 [Google Scholar]
  9. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. 9.  2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLOS Genet 10:e1004283 [Google Scholar]
  10. Boller T, Felix G. 10.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  11. Bonas U, Schulte R, Fenselau S, Minsavage GV, Staskawicz BJ, Stall RE. 11.  1991. Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol. Plant-Microbe Interact. 4:81–88 [Google Scholar]
  12. Bonfante P, Genre A. 12.  2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1:48 [Google Scholar]
  13. Bordenstein SR, Theis KR. 13.  2015. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLOS Biol 13:e1002226 [Google Scholar]
  14. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 14.  2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–38 [Google Scholar]
  15. Busby PE, Peay KG, Newcombe G. 15.  2016. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytol 209:1681–92 [Google Scholar]
  16. Cai R, Lewis J, Yan S, Liu H, Clarke CR. 16.  et al. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog. 7:e1002130 [Google Scholar]
  17. Camehl I, Sherameti I, Venus Y, Bethke G, Varma A. 17.  et al. 2010. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica. Arabidopsis thaliana. New Phytol. 185:1062–73 [Google Scholar]
  18. Castrillo G, Teixeira PJ, Paredes SH, Law TF. 18.  et al. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–18 [Google Scholar]
  19. Cesari S, Bernoux M, Moncuquet P, Kroj T, Dodds PN. 19.  2014. A novel conserved mechanism for plant NLR protein pairs: the “integrated decoy” hypothesis. Front. Plant Sci. 5:606 [Google Scholar]
  20. Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T. 20.  et al. 2015. Comparative genomics of pathogenic and nonpathogenic strains of Xanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6:1126 [Google Scholar]
  21. Chae E, Tran DTN, Weigel D. 21.  2016. Cooperation and conflict in the plant immune system. PLOS ONE 11:e1005452 [Google Scholar]
  22. Cheng C, Gao XQ, Feng BM, Sheen J, Shan LB, He P. 22.  2013. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 4:2530 [Google Scholar]
  23. Choi HW, Manohar M, Manosalva P, Tian M, Moreau M, Klessig DF. 23.  2016. Activation of plant innate immunity by extracellular high mobility group box 3 and its inhibition by salicylic acid. PLOS Pathog 12:e1005518 [Google Scholar]
  24. Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R. 24.  et al. 2013. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200:847–60 [Google Scholar]
  25. Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 25.  2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101 [Google Scholar]
  26. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S. 26.  et al. 2016. Plant compartment and biogeography affect microbiome composition in cultivated and native agave species. New Phytol 209:798–811 [Google Scholar]
  27. Coll NS, Epple P, Dangl JL. 27.  2011. Programmed cell death in the plant immune system. Cell Death Differ 18:1247–56 [Google Scholar]
  28. Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. 28.  2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97–119 [Google Scholar]
  29. Cook DE, Mesarich CH, Thomma BP. 29.  2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541–63 [Google Scholar]
  30. Cooper AJ, Latunde-Dada AO, Woods-Tor A, Lynn J, Lucas JA. 30.  et al. 2008. Basic compatibility of Albugo candida in Arabidopsis thaliana and Brassica juncea causes broad-spectrum suppression of innate immunity. Mol. Plant-Microbe Interact. 21:745–56 [Google Scholar]
  31. Coyte KZ, Schluter J, Foster KR. 31.  2015. The ecology of the microbiome: networks, competition, and stability. Science 350:663–66 [Google Scholar]
  32. Cui H, Tsuda K, Parker JE. 32.  2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487–511 [Google Scholar]
  33. Deakin WJ, Broughton WJ. 33.  2009. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7:312–20 [Google Scholar]
  34. Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D. 34.  et al. 2008. Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol. Plant 1:423–45 [Google Scholar]
  35. Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E. 35.  et al. 2017. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11:43–55 [Google Scholar]
  36. Dong S, Stam R, Cano LM, Song J, Sklenar J. 36.  et al. 2014. Effector specialization in a lineage of the Irish potato famine pathogen. Science 343:552–55 [Google Scholar]
  37. Doornbos RF, Geraats BP, Kuramae EE, Van Loon LC, Bakker PA. 37.  2011. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Mol. Plant-Microbe Interact. 24:395–407 [Google Scholar]
  38. Douglas AE, Werren JH. 38.  2016. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7:e02099 [Google Scholar]
  39. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK. 39.  et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–20 [Google Scholar]
  40. Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T. 40.  et al. 2015. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele. Appl. Environ. Microbiol. 81:6710–17 [Google Scholar]
  41. Felix G, Boller T. 41.  2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:6201–8 [Google Scholar]
  42. Felix G, Duran JD, Volko S, Boller T. 42.  1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–76 [Google Scholar]
  43. Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TC. 43.  2012. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. PNAS 109:19374–79 [Google Scholar]
  44. Franzenburg S, Walter J, Kunzel S, Wang J, Baines JF. 44.  et al. 2013. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. PNAS 110:E3730–38 [Google Scholar]
  45. Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C. 45.  et al. 2010. In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. PNAS 107:18067–72 [Google Scholar]
  46. Frey P, Prior P, Marie C, Kotoujansky A, Trigalet-Demery D, Trigalet A. 46.  1994. Hrp mutants of Pseudomonas solanacearum as potential biocontrol agents of tomato bacterial wilt. Appl. Environ. Microbiol. 60:3175–81 [Google Scholar]
  47. Geil RD, Peterson RL, Guinel FC. 47.  2001. Morphological alterations of pea (Pisum sativum cv. Sparkle) arbuscular mycorrhizas as a result of exogenous ethylene treatment. Mycorrhiza 11:137–43 [Google Scholar]
  48. Glynou K, Ali T, Buch AK, Kia SH, Ploch S. 48.  et al. 2015. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ. Microbiol. 18:2418–34 [Google Scholar]
  49. Gomez-Gomez L, Felix G, Boller T. 49.  1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–84 [Google Scholar]
  50. Gourion B, Berrabah F, Ratet P, Stacey G. 50.  2015. Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–94 [Google Scholar]
  51. Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T. 51.  2012. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17:495–502 [Google Scholar]
  52. Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G. 52.  et al. 2015. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–16 [Google Scholar]
  53. Hacquard S, Kracher B, Hiruma K, Munch PC, Garrido-Oter R. 53.  et al. 2016. Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi. Nat. Commun. 7:11362 [Google Scholar]
  54. Hanemian M, Zhou B, Deslandes L, Marco Y, Tremousaygue D. 54.  2013. Hrp mutant bacteria as biocontrol agents: toward a sustainable approach in the fight against plant pathogenic bacteria. Plant Signal. Behav. 8:10e25678 [Google Scholar]
  55. Hauck P, Thilmony R, He SY. 55.  2003. A Pseudomonas syringae type III effector suppresses cell wall–based extracellular defense in susceptible. Arabidopsis plants. PNAS 100:8577–82 [Google Scholar]
  56. Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K. 56.  et al. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. PNAS 104:12217–22 [Google Scholar]
  57. Heidrich K, Tsuda K, Blanvillain-Baufume S, Wirthmueller L, Bautor J, Parker JE. 57.  2013. Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Front. Plant Sci. 4:403 [Google Scholar]
  58. Heil M, Land WG. 58.  2014. Danger signals: damaged-self recognition across the tree of life. Front. Plant Sci. 5:578 [Google Scholar]
  59. Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao Z. 59.  et al. 2016. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2:16128 [Google Scholar]
  60. Hiruma K, Gerlach N, Sacristan S, Nakano RT, Hacquard S. 60.  et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:464–74 [Google Scholar]
  61. Horton MW, Bodenhausen N, Beilsmith K, Meng DZ, Muegge BD. 61.  et al. 2014. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5:5320 [Google Scholar]
  62. Huang HC, Schuurink R, Denny TP, Atkinson MM, Baker CJ. 62.  et al. 1988. Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J. Bacteriol. 170:4748–56 [Google Scholar]
  63. Innerebner G, Knief C, Vorholt JA. 63.  2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77:3202–10 [Google Scholar]
  64. Jacobs JM, Milling A, Mitra RM, Hogan CS, Ailloud F. 64.  et al. 2013. Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid–mediated defenses during tomato pathogenesis. mBio 4:e00875–13 [Google Scholar]
  65. Jones JD, Dangl JL. 65.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  66. Jones JD, Vance RE, Dangl JL. 66.  2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:6316aaf6395 [Google Scholar]
  67. Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O. 67.  et al. 2009. Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol. Microbiol. 71:92–106 [Google Scholar]
  68. Karasov TL, Horton MW, Bergelson J. 68.  2014. Genomic variability as a driver of plant-pathogen coevolution?. Curr. Opin. Plant Biol. 18:24–30 [Google Scholar]
  69. Kennedy TA, Naeem S, Howe KM, Knops JM, Tilman D, Reich P. 69.  2002. Biodiversity as a barrier to ecological invasion. Nature 417:636–38 [Google Scholar]
  70. Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J. 70.  et al. 2012. Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. . PLOS ONE 7:e35502 [Google Scholar]
  71. Kloppholz S, Kuhn H, Requena N. 71.  2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–9 [Google Scholar]
  72. Kniskern JM, Traw MB, Bergelson J. 72.  2007. Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana. . Mol. Plant-Microbe Interact. 20:1512–22 [Google Scholar]
  73. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW. 73.  et al. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47:410–15 [Google Scholar]
  74. Kroj T, Chanclud E, Michel-Romiti C, Grand X, Morel JB. 74.  2016. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol 210:618–26 [Google Scholar]
  75. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D. 75.  et al. 2010. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28:365–69 [Google Scholar]
  76. Lahrmann U, Strehmel N, Langen G, Frerigmann H, Leson L. 76.  et al. 2015. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity. New Phytol 207:841–57 [Google Scholar]
  77. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J. 77.  et al. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–64 [Google Scholar]
  78. Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC. 78.  2009. A type I–secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–53 [Google Scholar]
  79. Lefebvre F, Joly DL, Labbe C, Teichmann B, Linning R. 79.  et al. 2013. The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Plant Cell 25:1946–59 [Google Scholar]
  80. Lehti-Shiu MD, Zou C, Hanada K, Shiu SH. 80.  2009. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26 [Google Scholar]
  81. Le Roux C, Huet G, Jauneau A, Camborde L, Tremousaygue D. 81.  et al. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074–88 [Google Scholar]
  82. Li X, Lin H, Zhang W, Zou Y, Zhang J. 82.  et al. 2005. Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. PNAS 102:12990–95 [Google Scholar]
  83. Lindgren PB. 83.  1997. The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35:129–52 [Google Scholar]
  84. Liu Z, Wu Y, Yang F, Zhang Y, Chen S. 84.  et al. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS 110:6205–10 [Google Scholar]
  85. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L. 85.  et al. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66:513–45 [Google Scholar]
  86. Lozano-Duran R, Zipfel C. 86.  2015. Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci 20:12–19 [Google Scholar]
  87. Macho AP, Zipfel C. 87.  2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:263–72 [Google Scholar]
  88. Maekawa T, Kufer TA, Schulze-Lefert P. 88.  2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12:817–26 [Google Scholar]
  89. Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL. 89.  2014. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5:e00682–13 [Google Scholar]
  90. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM. 90.  et al. 2010. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–38 [Google Scholar]
  91. Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. 91.  2016. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14:760–73 [Google Scholar]
  92. Matsuo Y, Imagawa H, Nishizawa M, Shizuri Y. 92.  2005. Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307:1598 [Google Scholar]
  93. Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S. 93.  2003. Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. . Environ. Microbiol. 5:25–35 [Google Scholar]
  94. McCann HC, Nahal H, Thakur S, Guttman DS. 94.  2012. Identification of innate immunity elicitors using molecular signatures of natural selection. PNAS 109:4215–20 [Google Scholar]
  95. McMullan M, Gardiner A, Bailey K, Kemen E, Ward BJ. 95.  et al. 2015. Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. eLife 4:e04550 [Google Scholar]
  96. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M. 96.  et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–100 [Google Scholar]
  97. Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD. 97.  et al. 2010. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22:973–90 [Google Scholar]
  98. Mithen R, Bennett R, Marquez J. 98.  2010. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074–86 [Google Scholar]
  99. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K. 99.  et al. 2014. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol 55:1864–72 [Google Scholar]
  100. Mohr TJ, Liu H, Yan S, Morris CE, Castillo JA. 100.  et al. 2008. Naturally occurring nonpathogenic isolates of the plant pathogen Pseudomonas syringae lack a type III secretion system and effector gene orthologues. J. Bacteriol. 190:2858–70 [Google Scholar]
  101. Mozgova I, Wildhaber T, Liu Q, Abou-Mansour E, L'Haridon F. 101.  et al. 2015. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat. Plants 1:15127 [Google Scholar]
  102. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J. 102.  et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 [Google Scholar]
  103. Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R. 103.  et al. 2012. Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151:1358–69 [Google Scholar]
  104. Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmuller R. 104.  2012. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol. . Plant-Microbe Interact. 25:1186–97 [Google Scholar]
  105. Okazaki S, Kaneko T, Sato S, Saeki K. 105.  2013. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. PNAS 110:17131–36 [Google Scholar]
  106. Oldroyd GE. 106.  2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252–63 [Google Scholar]
  107. Oldroyd GE, Engstrom EM, Long SR. 107.  2001. Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. . Plant Cell 13:1835–49 [Google Scholar]
  108. Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J. 108.  2009. The role of microbial signals in plant growth and development. Plant Signal. Behav. 4:701–12 [Google Scholar]
  109. Ouchi S, Oku H, Hibino C. 109.  1976. Localization of induced resistance and susceptibility in barley leaves inoculated with powdery mildew fungus. Phytopathology 66:901–5 [Google Scholar]
  110. Partida-Martinez LP, Heil M. 110.  2011. The microbe-free plant: fact or artifact?. Front. Plant Sci. 2:100 [Google Scholar]
  111. Pfeilmeier S, Saur IM, Rathjen JP, Zipfel C, Malone JG. 111.  2016. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity. Mol. Plant Pathol. 17:521–31 [Google Scholar]
  112. Pfund C, Tans-Kersten J, Dunning FM, Alonso JM, Ecker JR. 112.  et al. 2004. Flagellin is not a major defense elicitor in Ralstoniasolanacearum cells or extracts applied to Arabidopsis thaliana. . Mol. Plant-Microbe Interact. 17:696–706 [Google Scholar]
  113. Pick T, Jaskiewicz M, Peterhansel C, Conrath U. 113.  2012. Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis. Plant Physiol 159:52–55 [Google Scholar]
  114. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 114.  2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75 [Google Scholar]
  115. Plett JM, Daguerre Y, Wittulsky S, Vayssieres A, Deveau A. 115.  et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccariabicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–304 [Google Scholar]
  116. Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V. 116.  et al. 2011. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 21:1197–203 [Google Scholar]
  117. Plett JM, Khachane A, Ouassou M, Sundberg B, Kohler A, Martin F. 117.  2014. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots. New Phytol. 202:270–86 [Google Scholar]
  118. Pozo MJ, Azcon-Aguilar C. 118.  2007. Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10:393–98 [Google Scholar]
  119. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E. 119.  et al. 2007. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–35 [Google Scholar]
  120. Ranf S, Gisch N, Schaffer M, Illig T, Westphal L. 120.  et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. . Nat. Immunol. 16:426–33 [Google Scholar]
  121. Richards CL, Rosas U, Banta J, Bhambhra N, Purugganan MD. 121.  2012. Genome-wide patterns of Arabidopsis gene expression in nature. PLOS Genet 8:482–95 [Google Scholar]
  122. Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L'Haridon F. 122.  2016. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–43 [Google Scholar]
  123. Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N. 123.  et al. 1997. Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. PNAS 94:3459–64 [Google Scholar]
  124. Rooks MG, Garrett WS. 124.  2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16:341–52 [Google Scholar]
  125. Round JL, Lee SM, Li J, Tran G, Jabri B. 125.  et al. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–77 [Google Scholar]
  126. Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A. 126.  et al. 2011. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23:2440–55 [Google Scholar]
  127. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX. 127.  et al. 2003. Bacterial volatiles promote growth in Arabidopsis. . PNAS 100:4927–32 [Google Scholar]
  128. Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. 128.  2015. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. PNAS 112:E5013–20 [Google Scholar]
  129. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C. 129.  et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–100 [Google Scholar]
  130. Saur IM, Kadota Y, Sklenar J, Holton NJ, Smakowska E. 130.  et al. 2016. NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. . PNAS 113:3389–94 [Google Scholar]
  131. Selosse MA, Bessis A, Pozo MJ. 131.  2014. Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol 22:607–13 [Google Scholar]
  132. Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ. 132.  2012. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. . Plant Cell 24:2470–82 [Google Scholar]
  133. Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF. 133.  2006. Within-species flagellin polymorphism in Xanthomonas campestris pv. campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18:764–79 [Google Scholar]
  134. Sun Y, Li L, Macho AP, Han Z, Hu Z. 134.  et al. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–28 [Google Scholar]
  135. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S. 135.  et al. 2014. Endemism and functional convergence across the North American soil mycobiome. PNAS 111:6341–46 [Google Scholar]
  136. Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. 136.  2014. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. Plant Cell 26:4171–87 [Google Scholar]
  137. Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H. 137.  et al. 2016. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–510 [Google Scholar]
  138. Thomma BP, Nurnberger T, Joosten MH. 138.  2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15 [Google Scholar]
  139. Tintor N, Ross A, Kanehara K, Yamada K, Fan L. 139.  et al. 2013. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. PNAS 110:6211–16 [Google Scholar]
  140. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A. 140.  et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS 110:20117–22 [Google Scholar]
  141. Tsuda K, Katagiri F. 141.  2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459–65 [Google Scholar]
  142. Tsukui T, Eda S, Kaneko T, Sato S, Okazaki S. 142.  et al. 2013. The type III secretion system of Bradyrhizobium japonicum USDA122 mediates symbiotic incompatibility with Rj2 soybean plants. Appl. Environ. Microbiol. 79:1048–51 [Google Scholar]
  143. Vacher C, Hampe A, Porte AJ, Sauer U, Compant S, Morris CE. 143.  2016. The phyllosphere: microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47:1–24 [Google Scholar]
  144. van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. 144.  2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. PNAS 109:1159–64 [Google Scholar]
  145. Vasse J, Genin S, Frey P, Boucher C, Brito B. 145.  2000. The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Mol. Plant-Microbe Interact. 13:259–67 [Google Scholar]
  146. Vega A, Canessa P, Hoppe G, Retamal I, Moyano TC. 146.  et al. 2015. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytiscinerea in response to nitrogen availability in Solanum lycopersicum. . Front. Plant Sci. 6:911 [Google Scholar]
  147. Vetter M, Karasov TL, Bergelson J. 147.  2016. Differentiation between MAMP triggered defenses in Arabidopsis thaliana. . PLOS Genet. 12:e1006068 [Google Scholar]
  148. Vetter MM, Kronholm I, He F, Haweker H, Reymond M. 148.  et al. 2012. Flagellin perception varies quantitatively in Arabidopsis thaliana and its relatives. Mol. Biol. Evol. 29:1655–67 [Google Scholar]
  149. Vogel C, Bodenhausen N, Gruissem W, Vorholt JA. 149.  2016. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212:192–207 [Google Scholar]
  150. Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. 150.  2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7:12151 [Google Scholar]
  151. Wang L, Albert M, Einig E, Furst U, Krust D, Felix G. 151.  2016. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat. Plants 2:16185 [Google Scholar]
  152. Wang W, Barnaby JY, Tada Y, Li H, Tor M. 152.  et al. 2011. Timing of plant immune responses by a central circadian regulator. Nature 470:110–26 [Google Scholar]
  153. Wawra S, Fesel P, Widmer H, Timm M, Seibel J. 153.  et al. 2016. The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat. Commun. 7:13188 [Google Scholar]
  154. Wei Z, Yang T, Friman VP, Xu Y, Shen Q, Jousset A. 154.  2015. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6:8413 [Google Scholar]
  155. Wessling R, Epple P, Altmann S, He Y, Yang L. 155.  et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–75 [Google Scholar]
  156. Whipps JM. 156.  2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487–511 [Google Scholar]
  157. Wichard T. 157.  2015. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front. Plant Sci. 6:86 [Google Scholar]
  158. Xin XF, Nomura K, Aung K, Velasquez AC, Yao J. 158.  et al. 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524–29 [Google Scholar]
  159. Yamaguchi Y, Huffaker A. 159.  2011. Endogenous peptide elicitors in higher plants. Curr. Opin. Plant Biol. 14:351–57 [Google Scholar]
  160. Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA. 160.  2010. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–22 [Google Scholar]
  161. Yang S, Tang F, Gao M, Krishnan HB, Zhu H. 161.  2010. R gene–controlled host specificity in the legume-rhizobia symbiosis. PNAS 107:18735–40 [Google Scholar]
  162. Yasuda M, Miwa H, Masuda S, Takebayashi Y, Sakakibara H, Okazaki S. 162.  2016. Effector-triggered immunity determines host genotype–specific incompatibility in legume-rhizobium symbiosis. Plant Cell Physiol 57:1791–800 [Google Scholar]
  163. Zaluga J, Stragier P, Baeyen S, Haegeman A, Van Vaerenbergh J. 163.  et al. 2014. Comparative genome analysis of pathogenic and non-pathogenic Clavibacter strains reveals adaptations to their lifestyle. BMC Genom 15:392 [Google Scholar]
  164. Zamioudis C, Pieterse CM. 164.  2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–50 [Google Scholar]
  165. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J. 165.  et al. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6:2e02527–14 [Google Scholar]
  166. Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S. 166.  2016. Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. PNAS 113:E7996–8005 [Google Scholar]
  167. Zhang C, Xie QG, Anderson RG, Ng GN, Seitz NC. 167.  et al. 2013. Crosstalk between the circadian clock and innate immunity in Arabidopsis. . PLOS Pathog. 9:e1003370 [Google Scholar]
  168. Zhang X, Dong W, Sun J, Feng F, Deng Y. 168.  et al. 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–67 [Google Scholar]
  169. Zhu Y, Qian WQ, Hua J. 169.  2010. Temperature modulates plant defense responses through NB-LRR proteins. PLOS Pathog 6:e1000844 [Google Scholar]
  170. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD. 170.  et al. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–67 [Google Scholar]
  171. Zuccaro A, Lahrmann U, Guldener U, Langen G, Pfiffi S. 171.  et al. 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. . PLOS Pathog. 7:e1002290 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error