Virus diseases of perennial trees and vines have characteristics not amenable to study using small model annual plants. Unique disease symptoms such as graft incompatibilities and stem pitting cause considerable crop losses. Also, viruses in these long-living plants tend to accumulate complex populations of viruses and strains. Considerable progress has been made in understanding the biology and genetics of (CTV) and in developing it into a tool for crop protection and improvement. The diseases in tree and vine crops have commonalities for which CTV can be used to develop a baseline. The purpose of this review is to provide a necessary background of systems and reagents developed for CTV that can be used for continued progress in this area and to point out the value of the CTV-citrus system in answering important questions on plant-virus interactions and developing new methods for controlling plant diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agranovsky AA. 1.  1996. Principles of molecular organization, expression, and evolution of closteroviruses: over the barriers. Adv. Virus Res. 47:119–58 [Google Scholar]
  2. Agüero J, Ruiz-Ruiz S, Vives MC, Velázquez K, Navarro L. 2.  et al. 2012. Development of viral vectors based on Citrus leaf blotch virus to express foreign proteins or analyze gene function in citrus plants. Mol. Plant-Microbe Interact. 25:1326–37 [Google Scholar]
  3. Agüero J, Vives MC, Velázquez K, Pina JA, Navarro L. 3.  et al. 2014. Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology 460–461:154–64 [Google Scholar]
  4. Albiach-Martí MR, Mawassi M, Gowda S, Satyanarayana T, Hilf ME. 4.  et al. 2000. Sequences of Citrus tristeza virus separated in time and space are essentially identical. J. Virol. 74:6856–65 [Google Scholar]
  5. Albiach-Martí MR, Robertson C, Gowda S, Tatineni S, Belliure B. 5.  et al. 2010. The pathogenicity determinants of Citrus tristeza virus causing the seedling yellows syndrome is located in the 3′-terminal region of the viral genome. Mol. Plant Pathol. 11:55–67 [Google Scholar]
  6. Ambrós S, El-Mohtar C, Ruiz-Ruiz S, Peña L, Guerri J. 6.  et al. 2011. Agroinoculation of Citrus tristeza virus causes systemic infection and symptoms in the presumed nonhost Nicotiana benthamiana. Mol. Plant-Microbe Interact. 24:1119–31 [Google Scholar]
  7. Ambrós S, Ruiz-Ruiz S, Peña L, Moreno P. 7.  2013. A genetic system for Citrus tristeza virus using the non-natural host Nicotiana benthamiana: an update. Front. Microbiol. 4:165 [Google Scholar]
  8. Ayllón MA, López C, Navas-Castillo J, Mawassi M, Dawson WO. 8.  et al. 1999. New defective RNAs from Citrus tristeza virus: evidence for a replicase-driven template switching mechanism in their generation. J. Gen. Virol. 80:817–21 [Google Scholar]
  9. Bar-Joseph M, Dawson WO. 9.  2008. Citrus tristeza virus. Encyclopedia of Virology, Evolutionary Biology of Viruses BWJ Mahy, MHV van Regenmortel 1161–84 Waltham, MA: Acad. Press, 3rd ed.. [Google Scholar]
  10. Bar-Joseph M, Garnsey SM, Gonsalves D. 10.  1979. The closteroviruses: a distinct group of elongated plants viruses. Adv. Virus Res. 25:93–168 [Google Scholar]
  11. Bar-Joseph M, Garnsey SM, Gonsalves D, Moscovitz M, Purcifull DE. 11.  et al. 1979. The use of enzyme-linked immunosorbent assay for detection of citrus tristeza virus. Phytopathology 69:190–94 [Google Scholar]
  12. Bar-Joseph M, Loebenstein G, Cohen J. 12.  1972. Further purification and characterization of particles associated with citrus tristeza disease. Virology 50:821–28 [Google Scholar]
  13. Bar-Joseph M, Loebenstein G. 13.  1973. Effects of strain, source plant, and temperature on the transmissibility of citrus tristeza virus by the melon aphid. Phytopathology 63:716–20 [Google Scholar]
  14. Bar-Joseph M, Mawassi M. 14.  2013. The defective RNAs of Closteroviridae. Front. Microbiol. 4:132 [Google Scholar]
  15. Bar-Joseph M, Nitzan Y. 15.  1991. The spread and distribution of citrus tristeza virus isolates in sour orange seedlings. Proc. Int. Organ. Citrus Virol. 11:162–65 [Google Scholar]
  16. Bergua M, Zwart MP, El-Mohtar C, Shilts T, Elena S, Folimonova SY. 16.  2014. A viral protein mediates superinfection exclusion at the whole-organism level but is not required for exclusion at the cellular level. J. Virol. 88:11327–38 [Google Scholar]
  17. Bové C, Vogel R, Albertini D, Bové JM. 17.  1988. Discovery of a strain of tristeza virus (K) inducing no symptoms in Mexican lime. Proc. Int. Organ. Citrus Virol. 10:14–16 [Google Scholar]
  18. Brlansky RH, Garnsey SM, Lee RF, Purcifull DE. 18.  1984. Application of citrus tristeza virus antisera in labeled antibody, immunoelectron microscopical, and sodium dodecyl sulfate-immunodiffusion tests. Proc. Int. Organ. Citrus Virol. 9:337–42 [Google Scholar]
  19. Brlansky RH, Lee RF, Garnsey SM. 19.  1988. In situ immunofluorescence for the detection of citrus tristeza virus inclusion bodies. Plant Dis. 72:1039–41 [Google Scholar]
  20. Cambra M, Camarasa E, Gorris MT, Garnsey SM, Carbonell E. 20.  1991. Comparison of different immunosorbent assays for citrus tristeza virus (CTV) using CTV-specific monoclonal and polyclonal antibodies. Proc. Int. Organ. Citrus Virol. 11:38–45 [Google Scholar]
  21. Che X, Dawson WO, Bar-Joseph M. 21.  2003. Defective RNAs of Citrus tristeza virus analogous to Crinivirus genomic RNAs. Virology 310:298–309 [Google Scholar]
  22. Comellas M. 22.  2009. Estudio de la interacción entre naranjo amargo y el virus de la tristeza de los cítricos PhD Thesis, Univ. Politéc. Valéncia, Valencia, Spain [Google Scholar]
  23. Costa AS, Müller GW. 23.  1980. Tristeza controlled by cross protection, a U. S.-Brazil cooperative success. Plant Dis. 64:538–41 [Google Scholar]
  24. Dawson WO, Folimonova SY. 24.  2013. Virus-based transient expression vectors for woody crops: a new frontier for vector design and use. Annu. Rev. Phytopathol. 51:321–37 [Google Scholar]
  25. Dickson EC, Johnson MM, Flock RA, Laird EF. 25.  1956. Flying aphid populations in southern California citrus groves and their relation to the transmission of the tristeza virus. Phytopathology 46:204–10 [Google Scholar]
  26. Dickson RC, Flock RA, Johnson MMcD. 26.  1951. Insect transmission of citrus quick-decline virus. J. Econ. Entomol. 44:172–76 [Google Scholar]
  27. Dodds JA, Bar-Joseph M. 27.  1983. Double-stranded RNA from plants infected with closteroviruses. Phytopathology 73:419–23 [Google Scholar]
  28. Dolja VV, Kreuze JF, Valkonen JPT. 28.  2006. Comparative and functional genomics of closteroviruses. Virus Res. 117:38–51 [Google Scholar]
  29. Fagoaga C, López C, Moreno P, Navarro L, Flores R, Peña L. 29.  2005. Viral-like symptoms induced by the ectopic expression of the p23 of Citrus tristeza virus are citrus specific and do not correlate with the pathogenicity of the virus strain. Mol. Plant-Microbe Interact. 18:435–45 [Google Scholar]
  30. Fagoaga C, Pensabene-Bellavia G, Moreno P, Navarro L, Flores R, Peña L. 30.  2011. Ectopic expression of the p23 protein of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol. Plant Pathol. 12:898–910 [Google Scholar]
  31. Fawcett HS, Wallace JM. 31.  1946. Evidence of the virus nature of citrus quick decline. Calif. Citrogr. 32:88–89 [Google Scholar]
  32. Febres VJ, Niblett CL, Lee RF, Moore GA. 32.  2003. Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Rep. 21:421–28 [Google Scholar]
  33. Folimonov AS, Folimonova SY, Bar-Joseph M, Dawson WO. 33.  2007. A stable RNA virus-based vector for citrus trees. Virology 368:205–16 [Google Scholar]
  34. Folimonova SY, Folimonov AS, Tatineni S, Dawson WO. 34.  2008. Citrus tristeza virus: survival at the edge of the movement continuum. J. Virol. 82:6546–56 [Google Scholar]
  35. Folimonova SY, Robertson CJ, Shilts T, Folimonov AS, Hilf ME. 35.  et al. 2010. Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J. Virol. 84:1314–25 [Google Scholar]
  36. Fraser L. 36.  1952. Seedling yellows, an unreported virus disease of citrus. Agric. Gaz. N.S.W. 63:125–31 [Google Scholar]
  37. Gandía M, Conesa A, Ancillo G, Gadea J, Forment J. 37.  et al. 2007. Transcriptional response of Citrus aurantifolia to infection by Citrus tristeza virus. Virology 367:298–306 [Google Scholar]
  38. Garnsey SM, Civerolo EL, Gumpf DJ, Paul C, Lee RF. 38.  et al. 2005. Biological characterization of an international collection of Citrus tristeza virus (CTV) isolates. Proc. Int. Organ. Citrus Virol. 16:75–93 [Google Scholar]
  39. Garnsey SM, Gonsalves D, Purcifull DE. 39.  1977. Mechanical transmission of citrus tristeza virus. Phytopathology 67:965–68 [Google Scholar]
  40. Garnsey SM, Gonsalves D, Purcifull DE. 40.  1979. Rapid diagnosis of citrus tristeza virus infection by SDS immune-diffusion procedures. Phytopathology 69:88–95 [Google Scholar]
  41. Garnsey SM, Müller GW. 41.  1988. Efficiency of mechanical transmission of citrus tristeza virus. Proc. Int. Organ. Citrus Virol. 10:46–54 [Google Scholar]
  42. Garnsey SM, Permar TA, Cambra M, Henderson CT. 42.  1993. Direct tissue blotting immunoassay (DTBIA) for detection of citrus tristeza virus (CTV). Proc. Int. Organ. Citrus Virol. 12:39–50 [Google Scholar]
  43. Ghorbel R, López C, Moreno P, Navarro L, Flores R, Peña L. 43.  2001. Transgenic citrus plants expressing the Citrus tristeza virus p23 protein exhibit viral-like symptoms. Mol. Plant Pathol. 2:27–36 [Google Scholar]
  44. Gottwald TR, Abreu-Rodríguez E, Yokomi RK, Stansly PA, Riley TK. 44.  2002. Effects of chemical control of aphid vectors and of cross-protection on increase and spread of citrus tristeza virus. Proc. Int. Organ. Citrus Virol. 15:117–30 [Google Scholar]
  45. Gottwald TR, Garnsey SM, Cambra M, Moreno P, Irey M, Borbon J. 45.  1996. Differential effects of Toxoptera citricida versus Aphis gossypii on temporal increase and spatial patterns of spread of citrus tristeza. Proc. Int. Organ. Citrus Virol. 13:120–29 [Google Scholar]
  46. Gottwald TR, Garnsey SM, Sediles-Jean A, Rojas-Solís A. 46.  1996. Co-diffusion of serologically distinct isolates of citrus tristeza virus vectored by Toxoptera citricida in northern Costa Rica. Proc. Int. Organ. Citrus Virol. 13:112–19 [Google Scholar]
  47. Gottwald TR, Gibson GJ, Garnsey SM, Irey M. 47.  1999. Examination of the effect of aphid vector population composition on the spatial dynamics of citrus tristeza virus spread by stochastic modeling. Phytopathology 89:603–8 [Google Scholar]
  48. Gowda S, Satyanarayana T, Ayllón MA, Moreno P, Flores R, Dawson WO. 48.  2003. The conserved structures of the 5′ nontranslated region of Citrus tristeza virus are involved in replication and virion assembly. Virology 317:50–64 [Google Scholar]
  49. Guerri J, Moreno P, Muñoz N, Martínez ME. 49.  1991. Variability among Spanish citrus tristeza virus isolates revealed by double-stranded-RNA analysis. Plant Pathol. 40:38–44 [Google Scholar]
  50. Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S. 50.  2014. Citrus tristeza virus–based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). J. Biotechnol. 176:42–49 [Google Scholar]
  51. Harper SJ. 51.  2013. Citrus tristeza virus: evolution of complex and varied genotypic groups. Front. Microbiol. 4:93 [Google Scholar]
  52. Harper SJ, Cowell SJ, Robertson CJ, Dawson WO. 52.  2014. Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology 460–461:91–99 [Google Scholar]
  53. Hermoso de Mendoza A, Ballester-Olmos JF, Piña JA. 53.  1984. Transmission of citrus tristeza virus by aphids (Homoptera, Aphididae) in Spain. Proc. Int. Organ. Citrus Virol. 9:23–27 [Google Scholar]
  54. Hermoso de Mendoza A, Ballester-Olmos JF, Pina JA. 54.  1988. Comparative aphid transmission of a common citrus tristeza virus isolate and a seedling yellows isolate recently introduced into Spain. Proc. Int. Organ. Citrus Virol. 10:68–70 [Google Scholar]
  55. Hermoso de Mendoza A, Ballester-Olmos JF, Pina JA, Serra J, Fuertes C. 55.  1988. Differences in transmission efficiency of citrus tristeza virus by Aphis gossypii using sweet orange, mandarin or lemon trees as donor or receptor host plants. Proc. Int. Organ. Citrus Virol. 10:62–64 [Google Scholar]
  56. Hilf ME, Karasev AV, Pappu HR, Gumpf DJ, Niblett CL, Garnsey SM. 56.  1995. Characterization of citrus tristeza virus subgenomic RNAs in infected tissue. Virology 208:576–82 [Google Scholar]
  57. Hilf ME, Mavrodieva VA, Garnsey SM. 57.  2005. Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: characterization and distribution of CTV genotypes and association with symptoms. Phytopathology 95:909–17 [Google Scholar]
  58. Karasev AV. 58.  2000. Genetic diversity and evolution of closteroviruses. Annu. Rev. Phytopathol. 38:293–324 [Google Scholar]
  59. Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME. 59.  et al. 1995. Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–20 [Google Scholar]
  60. Karasev AV, Hilf ME, Garnsey SM, Dawson WO. 60.  1997. Transcriptional strategy of closteroviruses: mapping the 5′ termini of the citrus tristeza virus subgenomic RNAs. J. Virol. 71:6233–36 [Google Scholar]
  61. Kitajima EW, Silva DM, Oliveira AR, Müller GW, Costa AS. 61.  1963. Thread-like particles associated with tristeza disease of citrus. Nature 201:1011–12 [Google Scholar]
  62. Lee RF, Keremane M. 62.  2013. Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 4:259 [Google Scholar]
  63. López C, Ayllón MA, Navas-Castillo J, Guerri J, Moreno P, Flores R. 63.  1998. Molecular variability of the 5′ and 3′ terminal regions of citrus tristeza virus RNA. Phytopathology 88:685–91 [Google Scholar]
  64. Lu R, Folimonov A, Shintaku M, Li W-X, Falk BW. 64.  et al. 2004. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc. Natl. Acad. Sci. USA 101:15742–47 [Google Scholar]
  65. Martín S, Sambade A, Rubio L, Vives MC, Moya P. 65.  et al. 2009. Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. J. Gen. Virol. 90:1527–38 [Google Scholar]
  66. Mawassi M, Gafny R, Gagliardi D, Bar-Joseph M. 66.  1995. Populations of citrus tristeza virus contain smaller-than-full-length particles which encapsidate sub-genomic RNA molecules. J. Gen. Virol. 76:651–59 [Google Scholar]
  67. Mawassi M, Karasev AV, Mietkiewska E, Gafny R, Lee RF. 67.  et al. 1995. Defective RNA molecules associated with citrus tristeza virus. Virology 208:383–87 [Google Scholar]
  68. Mawassi M, Mietkiewska E, Hilf ME, Ashoulin L, Karasev AV. 69.  et al. 1995. Multiple species of defective RNAs in plants infected with citrus tristeza virus. Virology 214:264–68 [Google Scholar]
  69. Mawassi M, Satyanarayana T, Albiach-Martí MR, Gowda S, Ayllón MA. 70.  et al. 2000. The fitness of Citrus tristeza virus defective RNAs is affected by the lengths of their 5′- and 3′-termini and by the coding capacity. Virology 275:42–56 [Google Scholar]
  70. Mawassi M, Satyanarayana T, Gowda S, Albiach-Martí MR, Robertson C, Dawson WO. 71.  2000. Replication of heterologous combinations of helper and defective RNA of citrus tristeza virus. Virology 267:360–69 [Google Scholar]
  71. McClean APD. 72.  1960. Seedling yellows in South African citrus trees. S. Afr. J. Agric. Sci. 3:259–79 [Google Scholar]
  72. McClean APD, Van der Plank JE. 73.  1955. The role of seedling yellows and stem pitting in tristeza of citrus. Phytopathology 45:222–24 [Google Scholar]
  73. Meneghini M. 74.  1946. Sobre a natureza e transmissibilidade do doençiatristezados citrus. O Biol. 12:285–87 [Google Scholar]
  74. Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L. 75.  2008. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol. Plant Pathol. 9:251–68 [Google Scholar]
  75. Müller GW, Rodriguez O, Costa AS. 76.  1968. A tristeza virus complex severe to sweet orange varieties. Proc. Int. Organ. Citrus Virol. 4:64–71 [Google Scholar]
  76. Nikolaeva OV, Karasev AV, Gumpf DJ, Lee RF, Garnsey SM. 77.  1995. Production of polyclonal antisera to the coat protein of citrus tristeza virus expressed in Escherichia coli: application for immunodiagnosis. Phytopathology 85:691–94 [Google Scholar]
  77. Pappu HR, Karasev AV, Anderson EJ, Pappu SS, Hilf ME. 78.  et al. 1994. Nucleotide sequence and organization of eight 3′ open reading frames of the citrus tristeza closterovirus genome. Virology 199:35–46 [Google Scholar]
  78. Peremyslov VV, Andreev IA, Prokhnevsky AI, Duncan GH, Taliansky ME, Dolja VV. 79.  2004. Complex molecular architecture of beet yellows virus particles. Proc. Natl. Acad. Sci. USA 101:5030–35 [Google Scholar]
  79. Raccah B, Loebenstein G, Bar-Joseph M. 80.  1976. Transmission of citrus tristeza virus by the melon aphid. Phytopathology 66:1102–4 [Google Scholar]
  80. Raccah B, Loebenstein G, Singer S. 81.  1980. Aphid-transmissibility variants of citrus tristeza virus in infected citrus trees. Phytopathology 70:89–93 [Google Scholar]
  81. Rocha-Peña MA, Lee RF, Lastra R, Niblett CL, Ochoa-Corona FM. 82.  et al. 1995. Citrus tristeza virus and its aphid vector Toxoptera citricida. Plant Dis. 79:437–45 [Google Scholar]
  82. Roistacher CN, Bar-Joseph M. 83.  1984. Transmission of tristeza and seedling yellows tristeza by small population of Aphis gossypii. Plant Dis. 68:494–96 [Google Scholar]
  83. Roistacher CN, Dodds JA. 84.  1993. Failure of 100 mild Citrus tristeza virus isolates from California to cross protect against a challenge by severe sweet orange stem pitting isolates. Proc. Int. Organ. Citrus Virol. 12:100–7 [Google Scholar]
  84. Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C. 85.  et al. 2013. Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. Mol. Plant-Microbe Interact. 26:306–18 [Google Scholar]
  85. Sambade A, Ambrós S, López C, Ruiz-Ruiz S, Hermoso de Mendoza A. 86.  et al. 2007. Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Arch. Virol. 152:1115–26 [Google Scholar]
  86. Satyanarayana T, Gowda S, Ayllón MA, Albiach-Martí MR, Dawson WO. 87.  2002. Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology 300:140–52 [Google Scholar]
  87. Satyanarayana T, Gowda S, Ayllón MA, Dawson WO. 88.  2004. Closterovirus bipolar virion: evidence for initiation of assembly by minor coat protein and its restriction to the genomic RNA 5′ region. Proc. Natl. Acad. Sci. USA 101:799–804 [Google Scholar]
  88. Satyanarayana T, Gowda S, Boyko VP, Albiach-Martí MR, Mawassi M. 89.  et al. 1999. An engineered closterovirus RNA replicon and analysis of heterologous terminal sequences for replication. Proc. Natl. Acad. Sci. USA 96:7433–38 [Google Scholar]
  89. Satyanarayana T, Gowda S, Mawassi M, Albiach-Martí MR, Ayllón MA. 90.  et al. 2000. Closterovirus HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–65 [Google Scholar]
  90. Scott KA, Hlela Q, Zablocki O, Read D, van Vuuren S, Pietersen G. 91.  2012. Genotype composition of populations of grapefruit cross-protecting Citrus tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Arch. Virol. 158:27–37 [Google Scholar]
  91. Soler N, Fagoaga C, López C, Moreno P, Navarro L. 92.  et al. 2015. Symptoms induced by transgenic expression of p23 from Citrus tristeza virus in phloem-associated cells of Mexican lime mimic virus infection without the aberrations accompanying constitutive expression. Mol. Plant Pathol. 16388–99 [Google Scholar]
  92. Tatineni S, Dawson WO. 93.  2012. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J. Virol. 86:7850–57 [Google Scholar]
  93. Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. 94.  2008. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout citrus trees. Virology 376:297–307 [Google Scholar]
  94. Tatineni S, Robertson C, Garnsey SM, Dawson WO. 95.  2011. A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc. Natl. Acad. Sci. USA 108:17366–71 [Google Scholar]
  95. van Vuuren SP, Collins RP, da Graça JV. 96.  1993. Evaluation of citrus tristeza virus isolates for cross protection of grapefruit in South Africa. Plant Dis. 77:24–28 [Google Scholar]
  96. Vives MC, Rubio L, López C, Navas-Castillo J, Albiach-Martí MR. 97.  et al. 1999. The complete genome sequence of the major component of a mild citrus tristeza virus isolate. J. Gen. Virol. 80:811–16 [Google Scholar]
  97. Vives MC, Rubio L, Sambade A, Mirkov E, Moreno P, Guerri J. 98.  2005. Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology 331:232–37 [Google Scholar]
  98. Wallace JM, Drake RJ. 99.  1972. Studies on recovery of citrus plants from seedling yellows and the resulting protection against reinfection. Proc. Int. Organ. Citrus Virol. 5:127–36 [Google Scholar]
  99. Weng Z, Barthelson R, Gowda S, Hilf ME, Dawson WO. 100.  et al. 2007. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLOS ONE 2:e917 [Google Scholar]
  100. Yokomi RK, Garnsey SM. 101.  1987. Transmission of citrus tristeza virus by Aphis gossypii and Aphis citricola in Florida. Phytophylactica 19:169–72 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error