When plants recognize potential opponents, invading pathogens, wound signals, or abiotic stress, they often switch to a primed state of enhanced defense. However, defense priming can also be induced by some natural or synthetic chemicals. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often linked to immunity and abiotic stress tolerance. This review covers recent advances in disclosing molecular mechanisms of priming. These include elevated levels of pattern-recognition receptors and dormant signaling enzymes, transcription factor HsfB1 activity, and alterations in chromatin state. They also comprise the identification of aspartyl-tRNA synthetase as a receptor of the priming activator β-aminobutyric acid. The article also illustrates the inheritance of priming, exemplifies the role of recently identified priming activators azelaic and pipecolic acid, elaborates on the similarity to defense priming in mammals, and discusses the potential of defense priming in agriculture.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ali M, Sugimoto K, Ramadan A, Arimura G-I. 1.  2013. Memory of plant communications for priming anti-herbivore responses. Sci. Rep. 3:1872 [Google Scholar]
  2. Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Z. 2.  2007. Epigenetic control of a transcription factor at the cross-section of two antagonistic pathways. Epigenetics 2:106–17 [Google Scholar]
  3. Aranega-Bou P, de la O Leyva M, Finiti I, García-Agistín P, González-Bosch C. 3.  2014. Priming of plant resistance by natural compounds. Hexanoic acid as a model. Front. Plant Sci. 5:488 [Google Scholar]
  4. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL. 4.  et al. 2002. MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–83 [Google Scholar]
  5. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. 5.  2002. The strobilurin fungicides. Pest Manag. Sci. 58:649–62 [Google Scholar]
  6. Beckers GJM, Conrath U. 6.  2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10:425–31 [Google Scholar]
  7. Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY. 7.  et al. 2009. Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–53 [Google Scholar]
  8. Berger SL. 8.  2007. The complex language of chromatin regulation during transcription. Nature 447:407–12 [Google Scholar]
  9. Bird A. 9.  2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21 [Google Scholar]
  10. Bruce TJA, Matthes MC, Napier JA, Pickett JA. 10.  2007. Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci. 173:603–8 [Google Scholar]
  11. Cameron DD, Neal AL, van Wees SCM, Ton J. 11.  2013. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 18:539–45 [Google Scholar]
  12. Cao H, Bowling SA, Gordon AS, Dong X. 12.  1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–92 [Google Scholar]
  13. Cecchini NM, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. 13.  2014. ALD1 regulates basal immune components and early inducible defense responses in Arabidopsis. Mol. Plant-Microbe Interact. 28:455–66 [Google Scholar]
  14. Chassot C, Buchala A, Schoonbeek HJ, Métraux JP, Lamotte O. 14.  2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 55:555–67 [Google Scholar]
  15. Chen C-W, Panzeri D, Yeh Y-H, Kadota Y, Huang P-Y. 15.  et al. 2014. The Arabidopsis malectin-like leucine-rich repeat receptor-like kinase IOS1 associated with pattern-recognition receptors FLS2 and EFR and is critical for priming of pattern-triggered immunity. Plant Cell 26:3201–19 [Google Scholar]
  16. Chester KS. 16.  1933. The problem of acquired physiological immunity in plants. Q. Rev. Biol. 8:275–324 [Google Scholar]
  17. Choi HK, Song GC, Yi H-S, Ryu C-M. 17.  2014. Field evaluation of the bacterial volatile derivative 3-pentenol in priming for induced resistance in pepper. J. Chem. Ecol. 40:882–92 [Google Scholar]
  18. Cohen YR. 18.  2002. β-Aminobutyric acid–induced resistance against plant pathogens. Plant Dis. 86:448–57 [Google Scholar]
  19. Conrath U. 19.  2009. Priming of induced plant defense responses. Adv. Bot. Res. 51:361–95 [Google Scholar]
  20. Conrath U. 20.  2011. Molecular aspects of defense priming. Trends Plant Sci. 16:524–31 [Google Scholar]
  21. Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G. 21.  et al. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062–71 [Google Scholar]
  22. Conrath U, Pieterse CMJ, Mauch-Mani B. 22.  2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210–16 [Google Scholar]
  23. De la Cruz X, Lois S, Sánchez-Molina S, Martínez-Balbás MA. 23.  2005. Do protein motifs read the histone code?. BioEssays 27:164–75 [Google Scholar]
  24. Dempsey DA, Klessig DF. 24.  2012. SOS: too many signals for systemic acquired resistance?. Trends Plant Sci. 17:538–45 [Google Scholar]
  25. Ding Y, Fromm M, Avramova Z. 25.  2012. Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat. Commun. 3:740 [Google Scholar]
  26. Eberharter A, Becker PB. 26.  2002. Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep. 3:224–29 [Google Scholar]
  27. Feng S, Jacobsen SE, Reik W. 27.  2010. Epigenetic reprogramming in plant and animal development. Science 330:622–27 [Google Scholar]
  28. Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J. 28.  2001. NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant-Microbe Interact. 14:1114–24 [Google Scholar]
  29. Frost CJ, Mescher MC, Carlson JE, De Moraes CM. 29.  2008. Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol. 146:818–24 [Google Scholar]
  30. Fu ZQ, Dong X. 30.  2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839–63 [Google Scholar]
  31. Gozzo F, Faoro F. 31.  2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agric. Food Chem. 61:12473–91 [Google Scholar]
  32. Griebel T, Zeier J. 32.  2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 147:790–801 [Google Scholar]
  33. Hayes MP, Freeman SL, Donnelly RP. 33.  1995. IFN-γ priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and mRNA stability. Cytokine 7:427–35 [Google Scholar]
  34. Hayes MP, Wang J, Norcross MA. 34.  1995. Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-γ of lipopolysaccharide-inducible p35 and p40 genes. Blood 86:646–50 [Google Scholar]
  35. Helms AM, De Moraes CM, Tooker JF, Mescher MC. 35.  2013. Exposure of Solidago altissima plants to volatile emissions of an insect antagonist (Eurosta solidaginis) deters subsequent herbivory. Proc. Natl. Acad. Sci. USA 110:199–204 [Google Scholar]
  36. Helms AM, De Moraes CM, Mescher MC, Tooker JF. 36.  2014. The volatile emission of Eurosta solidaginis primes herbivore-induced volatile production in Solidago altissima and does not directly deter insect feeding. BMC Plant Biol. 14:173 [Google Scholar]
  37. Herms S, Seehaus K, Koehle H, Conrath U. 37.  2002. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv. tabaci. Plant Physiol. 130:120–27 [Google Scholar]
  38. Hilfiker O, Groux R, Bruessow F, Kiefer K, Zeier J, Reymond P. 38.  2014. Insect eggs induce a systemic acquired resistance in Arabidopsis. Plant J. 80:1085–94 [Google Scholar]
  39. Hoehenwarter W, Thomas M, Nukarinen E, Egelhofer V, Röhrig H. 39.  et al. 2013. Identification of novel in vivo MAP kinase substrates in Arabidopsis thaliana through use of tandem metal oxide affinity chromatography. Mol. Cell. Proteomics 12.2:369–80 [Google Scholar]
  40. Holmes J, Rueber D. 40.  2015. Soybean yield response to Headline fungicide application. Ames, IA: Iowa State Univ. North. Res. Demonstr. Farm. http://www.ag.iastate.edu/farms/05reports/n/SoybeanYield.pdf
  41. Hon GC, Rajagopal N, Shen Y, McClearly DF, Yue F. 41.  et al. 2013. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Gen. 45:1198–207 [Google Scholar]
  42. Huber R, Ritter D, Hering T, Hillmer A-K, Kensy F. 42.  et al. 2009. Robo-Lector: a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb. Cell Fact. 8:1–15 [Google Scholar]
  43. Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y. 43.  et al. 2002. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7:301–8 [Google Scholar]
  44. Ikeda M, Mitsuda N, Ohme-Takagi M. 44.  2011. Arabidopsis HsfB1 and HsfB2 act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol. 157:1243–54 [Google Scholar]
  45. Isaacs A, Burke DC. 45.  1958. Mode of action of interferon. Nature 182:1073–74 [Google Scholar]
  46. Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L. 46.  et al. 2001. β-Aminobutyric acid–induced resistance in plants. Eur. J. Plant Pathol. 107:29–37 [Google Scholar]
  47. Jaskiewicz M, Conrath U, Peterhänsel C. 47.  2011. Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep. 12:50–55 [Google Scholar]
  48. Jonak C, Okrész L, Bögre L, Hirt H. 48.  2002. Complexity, cross-talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol. 5:415–24 [Google Scholar]
  49. Jones JDG, Dangl JL. 49.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  50. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. 50.  2009. Priming in systemic plant immunity. Science 324:89–91 [Google Scholar]
  51. Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K. 51.  2004. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13:33–43 [Google Scholar]
  52. Katz VA, Thulke OU, Conrath U. 52.  1998. A benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiol. 117:1333–39 [Google Scholar]
  53. Kauss H, Krause K, Jeblick W. 53.  1992. Methyl-JA conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses. Biochem. Biophys. Res. Comm. 189:304–8 [Google Scholar]
  54. Kauss H, Theisinger-Hinkel E, Mindermann R, Conrath U. 54.  1992. Dichloroisonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. Plant J. 2:655–60 [Google Scholar]
  55. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J. 55.  et al. 1994. Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 32:439–59 [Google Scholar]
  56. Kim J, Felton GW. 56.  2013. Priming of antiherbivore defensive responses in plants. Insect Sci. 20:273–78 [Google Scholar]
  57. Kim J, Tooker JF, Luthe DS, De Moraes CM, Felton GW. 57.  2012. Insect eggs can enhance wound response in plants: a study system of tomato Solanum lycopersicum L. and Helicoverpa zea Boddie. PLOS ONE 7:e37420 [Google Scholar]
  58. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC. 58.  et al. 2012. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA 109:17537–42 [Google Scholar]
  59. Koehle H, Conrath U, Herms S, Schlundt T, Johnson N, Stammler G. 59.  2003. Method for immunizing plants against bacterioses. Patent WO2003075663
  60. Koehle H, Conrath U, Seehaus K, Niedenbrueck M, Tavares-Rodrigues M-A. 60.  et al. 2006. Method of inducing virus tolerance of plants. US Patent 20060172887
  61. Kohler A, Schwindling S, Conrath U. 61.  2002. Benzothiadiazole-induced priming for potentiated responses to pathogen infection, wounding, and infiltration of water into leaves requires the NPR1/NIM1 gene in Arabidopsis. Plant Physiol. 128:1046–56 [Google Scholar]
  62. Kuć J. 62.  1987. Translocated signals for plant immunization. Ann. N. Y. Acad. Sci. 494:221–23 [Google Scholar]
  63. Lamarck JB. 63.  1809. Philosophie Zoologique, Ou Exposition des Considérations Relatives a L'histoire Naturelle des Animaux London: Macmillan [Google Scholar]
  64. Lassowskat I, Böttcher C, Eschen-Lippold L, Scheel D, Lee J. 64.  2014. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front. Plant Sci. 5:554 [Google Scholar]
  65. Lee DE, Lee IJ, Han O, Baik MG, Han SS, Back K. 65.  2004. Pathogen resistance of transgenic rice expressing mitogen-activated protein kinase 1, MK1, from Capsicum annuum. Mol. Cell 17:81–85 [Google Scholar]
  66. Leeman M, van Pelt JA, Hendrickx MJ, Scheffer RJ, Bakker PAHM, Schippers B. 66.  1995. Biocontrol of Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:1301–5 [Google Scholar]
  67. Li H, Xu H, Zhou Y, Zhang J, Long C. 67.  et al. 2007. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–3 [Google Scholar]
  68. Li J, Zhao-Hui C, Batoux M, Nekrasov V, Roux M. 68.  et al. 2009. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc. Natl. Acad. Sci. USA 106:15973–78 [Google Scholar]
  69. Liu P-P, von Dahl CC, Klessig DF. 69.  2011. The extent to which methyl salicylate is required for signaling systemic acquired resistance is dependent on exposure to light after infection. Plant Physiol. 157:2216–26 [Google Scholar]
  70. Luger K, Mäder A, Richmond RK, Sargent DF, Richmond TJ. 70.  1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60 [Google Scholar]
  71. Luna E, Bruce TJA, Roberts MR, Flors V, Ton J. 71.  2012. Next-generation systemic acquired resistance. Plant Physiol. 158:844–53 [Google Scholar]
  72. Luna E, van Hulten M, Zhang Y, Berkowitz O, López A. 72.  et al. 2014. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat. Chem. Biol. 10:450–56 [Google Scholar]
  73. Mackaness GB. 73.  1964. The immunological basis of acquired cellular resistance. J. Exp. Med. 120:105–20 [Google Scholar]
  74. Mackaness GB. 74.  1969. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J. Exp. Med. 129:973–92 [Google Scholar]
  75. Maeda T, Ishiwari H. 75.  2012. Tiadinil, a plant activator of systemic acquired resistance, boosts the production of herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi in the tea plant Camellia sinensis. Exp. Appl. Acarol. 58:247–58 [Google Scholar]
  76. Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RK. 76.  2002. A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis. Nature 419:399–403 [Google Scholar]
  77. Meng Z, Zhang S. 77.  2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245–66 [Google Scholar]
  78. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K. 78.  et al. 1996. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93:765–69 [Google Scholar]
  79. Molina A, Hunt MD, Ryals JA. 79.  1998. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10:1903–14 [Google Scholar]
  80. Molinier J, Ries G, Zipfel C, Hohn B. 80.  2006. Transgenerational memory of stress in plants. Nature 442:1046–49 [Google Scholar]
  81. Nakagami H, Pitzschke A, Hirt H. 81.  2005. Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci. 10:339–46 [Google Scholar]
  82. Návarová H, Bernsdorff F, Döring A-C, Zeier J. 82.  2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–41 [Google Scholar]
  83. Nelissen H, Boccardi TM, Himanen K, van Lijsebettens M. 83.  2007. Impact of core histone modifications on transcriptional regulation and plant growth. Crit. Rev. Plant Sci. 26:243–63 [Google Scholar]
  84. Netea MG, Quintin J, van der Meer JWM. 84.  2011. Trained immunity: a memory for innate host defense. Cell Host Microbe 9:355–61 [Google Scholar]
  85. Noutoshi Y, Ikeda M, Saito T, Osada H, Shirasu K. 85.  2012. Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana. Front. Plant Sci. 3:245 [Google Scholar]
  86. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD. 86.  2001. Arabidopsis and the heat stress transcription factor world: How many heat stress transcription factors do we need?. Cell Stress Chaperones 6:177–89 [Google Scholar]
  87. O'Shaughnessy EC, Palani S, Collins JJ, Sarkar CA. 87.  2011. Tunable signal processing in synthetic MAP kinase cascades. Cell 144:119–31 [Google Scholar]
  88. Ogawa M, Kadowaki A, Yamada T, Kadooka O. 88.  2011. Applied development of a novel fungicide Isotianil (Stout®). Sumitomo Kagaku 1:1–15 [Google Scholar]
  89. Pajerowska-Mukhtar KM, Wang W, Tada Y, Oka N, Tucker CL. 89.  et al. 2012. The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Curr. Biol. 22:103–12 [Google Scholar]
  90. Park S-W, Kaimoyo E, Kumar D, Mosher S, Klessig DF. 90.  2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–16 [Google Scholar]
  91. Pastor V, Balmer A, Gamir J, Flors V, Mauch-Mani B. 91.  2014. Preparing to fight back: generation and storage of priming compounds. Front. Plant Sci. 5:295 [Google Scholar]
  92. Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V. 92.  2013. Primed plants do not forget. Environ. Exp. Bot. 94:46–56 [Google Scholar]
  93. Pavet V, Quintero C, Cecchini NM, Rosa AL, Alvarez ME. 93.  2006. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19:577–87 [Google Scholar]
  94. Pick T, Jaskiewicz M, Peterhänsel C, Conrath U. 94.  2012. Heat shock factor HsfB1 primes gene transcription and systemic acquired resistance in Arabidopsis. Plant Physiol. 159:52–55 [Google Scholar]
  95. Pieterse CMJ, van Pelt JA, Ton J, Parchmann S, Mueller MJ. 95.  et al. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to JA and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57:123–34 [Google Scholar]
  96. Pieterse CMJ, van Wees SC, Hoffland E, van Pelt JA, van Loon LC. 96.  1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–37 [Google Scholar]
  97. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, van Wees SCM, Bakker PA. 97.  2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75 [Google Scholar]
  98. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM. 98.  et al. 2005. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–27 [Google Scholar]
  99. Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C. 99.  2009. Priming plant defenses against pathogens by arbuscular mycorrhizal fungi. Mycorrhizas: Functional Processes and Ecological Impact C Azcón-Aguilar, JM Barea, S Gianinazzi, V Gianinazzi-Pearson 137–49 Berlin/Heidelberg: Springer [Google Scholar]
  100. Ptashne M. 100.  2013. Faddish stuff: epigenetics and the inheritance of acquired characteristics. FASEB J. 27:1–2 [Google Scholar]
  101. Quintin J, Saeed S, Martens JH, Giamarellos-Bourboulis EJ, Ifrim DC. 101.  et al. 2012. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12:223–32 [Google Scholar]
  102. Rai M, Acharya D, Singh A, Varma A. 102.  2001. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–28 [Google Scholar]
  103. Ramadan A, Muroi A, Arimura G. 103.  2011. Herbivore-induced maize volatiles serve as priming cues for resistance against post-attack by the specialist armyworm Mythimna separata. J. Plant Interact. 6:155–58 [Google Scholar]
  104. Rana S. 104.  2013. Biopesticides acquire mainstream status. Agrow World Crop. Prot. News 662:1–5 [Google Scholar]
  105. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R. 105.  et al. 2012. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol. 158:854–63 [Google Scholar]
  106. Ren D, Liu Y, Yang K-Y, Han L, Mao G. 106.  et al. 2008. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 105:5638–43 [Google Scholar]
  107. Ruess W, Mueller K, Knauf-Beiter G, Kunz W, Staub T. 107.  1996. Plant activator CGA 245704: an innovative approach for disease control in cereals and tobacco. Proc. Brighton Crop Prot. Conf. Pests and Dis., Brighton, UK Novemb 18–2153–60 Farnham, UK: British Crop Prot. Counc. [Google Scholar]
  108. Ruthenburg AJ, Allis CD, Wysocka J. 108.  2007. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell 25:15–30 [Google Scholar]
  109. Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD. 109.  1996. Systemic acquired resistance. Plant Cell 8:1809–19 [Google Scholar]
  110. Schenk ST, Hernández-Reyes C, Samans B, Stein E, Neumann C. 110.  et al. 2014. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26:2708–23 [Google Scholar]
  111. Schmieden V, Betz H. 111.  1995. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds. Mol. Pharmacol. 48:919–27 [Google Scholar]
  112. Schroder K, Sweet MJ, Hume DA. 112.  2006. Signal integration between IFNc and TLR signaling pathways in macrophages. Immunobiological 211:511–24 [Google Scholar]
  113. Shoresh M, Gal-On A, Leibman D, Chet I. 113.  2006. Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol. 142:1169–79 [Google Scholar]
  114. Siegrist J, Mühlenbeck S, Buchenauer H. 114.  1998. Cultured parsley cells, a model system for the rapid testing of abiotic and natural substances as inducers of systemic acquired resistance. Physiol. Mol. Plant Pathol. 53:223–38 [Google Scholar]
  115. Singh P, Yekondi S, Chen P-W, Tsai C-H, Yu C-W. 115.  et al. 2014. Environmental history modulates Arabidopsis pattern-triggered immunity in a histone acetyltransferase1-dependent manner. Plant Cell 26:2676–88 [Google Scholar]
  116. Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B. 116.  2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158:835–43 [Google Scholar]
  117. Song JT, Lu H, McDowell JM, Greenberg JT. 117.  2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant J. 40:200–12 [Google Scholar]
  118. Spoel SH, Dong X. 118.  2012. How do plants achieve immunity? Defense without specialized immune cells. Nat. Rev. 12:89–100 [Google Scholar]
  119. Stamets P. 119.  2014. MycoGrow™: Mycorrhizal Fungi for Healthy Gardens. Olympia, WA: Fungi Perfecti LLC http://www.fungi.com/shop/fungi-for-healthy-gardens-and-garden-supplies.html [Google Scholar]
  120. Stennis MJ, Chandra S, Ryan CA, Low PS. 120.  1998. Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiol. 117:1031–36 [Google Scholar]
  121. Stewart WE II, Gosser LB, Lockart RZ Jr. 121.  1971. Priming: a nonantiviral function of interferon. J. Virol. 7:792–801 [Google Scholar]
  122. Su H. 122.  2012. Regalia® bioprotectant in plant disease management. Outlooks Pest Manag. 23:30–34 [Google Scholar]
  123. Sun JC, Beilke JN, Lanier LL. 123.  2009. Adaptive immune features of natural killer cells. Nature 457:557–61 [Google Scholar]
  124. Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT. 124.  2014. Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling. Plant Cell 26:4171–87 [Google Scholar]
  125. Thielert W. 125.  2006. A unique product: the story of the imidacloprid stress shield. Pflanzenschutz-Nachrichten Bayer 59:73–86 [Google Scholar]
  126. Thulke OU, Conrath U. 126.  1998. Salicylic acid has a dual role in the activation of defense-related genes in parsley. Plant J. 14:35–42 [Google Scholar]
  127. Ton J, Jakab G, Toquin V, Flors V, Iavicoli A. 127.  et al. 2005. Dissecting the beta-aminobutyric acid–induced priming phenomenon in Arabidopsis. Plant Cell 17:987–99 [Google Scholar]
  128. Ueda A, Li P, Feng Y, Vikram M, Kim S. 128.  et al. 2008. The Arabidopsis thaliana carboxyl-terminal domain phosphatase-like 2 regulates plant growth, stress and auxin responses. Plant Mol. Biol. 67:683–97 [Google Scholar]
  129. Van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J. 129.  2006. Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 103:5602–7 [Google Scholar]
  130. Vanyushin BF, Ashapkin VV. 130.  2011. DNA methylation in higher plants: past, present and future. Biochim. Biophys. Acta 1809:360–68 [Google Scholar]
  131. Vermeulen M, Mulder KW, Denissov S, Pijnappel WWMP, van Schaik FMA. 131.  et al. 2007. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131:58–69 [Google Scholar]
  132. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. 132.  2008. Functions of natural killer cells. Nat. Immunol. 9:503–10 [Google Scholar]
  133. Vlot AC, Dempsey DA, Klessig DF. 133.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  134. Vogel-Adghough D, Stahl E, Návarová H, Zeier J. 134.  2013. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Signal. Behav. 8:e26366 [Google Scholar]
  135. Von Koskull-Döring P, Scharf KD, Nover L. 135.  2007. The diversity of plant heat stress transcription factors. Trends Plant Sci. 12:452–57 [Google Scholar]
  136. Walters DR, Paterson L, Walsh DJ, Havis ND. 136.  2008. Priming for plant defense in barley provides benefits only under high disease pressure. Physiol. Mol. Plant Pathol. 73:95–100 [Google Scholar]
  137. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL. 137.  et al. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–94 [Google Scholar]
  138. Wildermuth MC, Dewdney J, Wu G, Ausubel FM. 138.  2002. Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–65 [Google Scholar]
  139. Worrall D, Holroyd GH, Moore JP, Glowacz M, Croft P. 139.  et al. 2011. Treating seeds with activators of plant defense generates long-lasting priming of resistance to pests and pathogens. New Phytol. 193:770–78 [Google Scholar]
  140. Wu C-C, Singh P, Chen M-C, Zimmerli L. 140.  2010. L-glutamine inhibits beta-aminobutyric acid–induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 6:995–1002 [Google Scholar]
  141. Yasuda M, Kusajima M, Nakajima M, Akutsu K, Kudo T, Yoshida S. 141.  2006. Thiadiazole carboxylic acid moiety of tiadinil, SV-03, induces systemic acquired resistance in tobacco without salicylic acid accumulation. J. Pestic. Sci. 31:329–34 [Google Scholar]
  142. Yoshioka K, Nakashita H, Klessig DF, Yamaguchi I. 142.  2001. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25:149–57 [Google Scholar]
  143. Yu K, Soares JM, Mandal MK, Wang C, Chanda B. 143.  et al. 2013. A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic acid–induced systemic immunity. Cell Rep. 3:1266–78 [Google Scholar]
  144. Zhang J, Shao F, Li Y, Cui H, Chen L. 144.  et al. 2007. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–85 [Google Scholar]
  145. Zhang X. 145.  2008. The epigenetic landscape of plants. Science 320:489–92 [Google Scholar]
  146. Zhang Y, Reinberg D. 146.  2001. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15:2343–60 [Google Scholar]
  147. Zhang Z, Wu Y, Gao M, Zhang J, Kong Q. 147.  et al. 2012. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11:253–63 [Google Scholar]
  148. Zimmerli L, Jakab G, Métraux J-P, Mauch-Mani B. 148.  2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920–25 [Google Scholar]
  149. Zipfel C. 149.  2014. Plant pattern-recognition receptors. Trends Immunol. 35:345–51 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error