Many plant epidemics that cause major economic losses cannot be controlled with pesticides. Among them, sharka epidemics severely affect prunus trees worldwide. Its causal agent, (PPV; genus ), has been classified as a quarantine pathogen in numerous countries. As a result, various management strategies have been implemented in different regions of the world, depending on the epidemiological context and on the objective (i.e., eradication, suppression, containment, or resilience). These strategies have exploited virus-free planting material, varietal improvement, surveillance and removal of trees in orchards, and statistical models. Variations on these management options lead to contrasted outcomes, from successful eradication to widespread presence of PPV in orchards. Here, we present management strategies in the light of sharka epidemiology to gain insights from this worldwide experience. Although focused on sharka, this review highlights more general levers and promising approaches to optimize disease control in perennial plants.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Astier S, Albouy J, Maury Y, Robaglia C, Lecoq H. 1.  2007. Principles of Plant Virology Enfield, NH: Sci. Publ. [Google Scholar]
  2. Atanasoff D. 2.  1933. Plum pox. A new virus disease. Annuaire de l'Université de Sofia 11:49–69This is the first article describing sharka symptoms and relating them to a viral disease, named sharka. [Google Scholar]
  3. Badenes ML, Byrne DH. 3.  2012. Fruit Breeding New York: Springer [Google Scholar]
  4. Baumgartnerova H, Slovakova L, Petrusova N. 4.  1998. Relationship between concentration of plum pox virus and content of pigments in virus-infected symptomatic apricot leaves. Acta Virol. 42:216–18 [Google Scholar]
  5. Betancourt M, Fereres A, Fraile A, Garcia-Arenal F. 5.  2008. Estimation of the effective number of founders that initiate an infection after aphid transmission of a multipartite plant virus. J. Virol. 82:12416–21 [Google Scholar]
  6. Bhardwaj SV, Thakur PD, Kohosla K, Sharma DR. 6.  1995. Detection of plum pox virus in India. Acta Hortic. 386:237–40 [Google Scholar]
  7. Blystad R-R, Knudsen R, Spetz C, Haugslien S, Orstad K. 7.  et al. 2010. Survey on Plum pox virus in Norway. Julius Kühn Arch. 427:351–52 [Google Scholar]
  8. Borron S, Dallot S, Bonnot F, Jevremovic D, Pichaud JP. 8.  et al. 2013. Combining experimental assays with epidemiological surveys to assess indicators of Plum pox virus epidemicity [poster]. 14e Rencontres de Virologie Végétale, Aussois, FranceJan. 13–17 Book of Abstracts85Based on aphid-mediated transmission experiments on peach, apricot, and plum, this conference poster shows that peach is both a better source and a better test plant for transmission with PPV-M than with PPV-D or PPV-Rec. [Google Scholar]
  9. Boscia D, Zeramdini H, Cambra M, Potere O, Gorris MT. 9.  et al. 1997. Production and characterization of a monoclonal antibody specific to the M serotype of plum pox potyvirus. Eur. J. Plant. Pathol. 103:477–80 [Google Scholar]
  10. Bustos S, Muñoz M. 10.  2013. (sharka) Dideron strain in Chile. International Plum Pox Virus Meeting, 2012 Can. J. Plant. Pathol. 35:133 [Google Scholar]
  11. Cambra M, Asensio M, Gorris MT, Pérez E, Camarasa E. 11.  et al. 1994. Detection of plum pox potyvirus using monoclonal antibodies to structural and non-structural proteins. EPPO Bull. 24:569–77 [Google Scholar]
  12. Cambra M, Capote N, Cambra MA, Llácer G, Botella P, López-Quílez A. 12.  2006. Epidemiology of sharka disease in Spain. EPPO Bull. 36:271–75 [Google Scholar]
  13. Cambra M, Capote N, Myrta A, Llácer G. 13.  2006. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36:202–4 [Google Scholar]
  14. Capote N, Bertolini E, Olmos A, Vidal E, Martinez MC, Cambra M. 14.  2009. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. Int. Microbiol. 12:1–6 [Google Scholar]
  15. Capote N, Cambra M, Llácer G, Petter F, Platts LG. 15.  et al. 2006. Current status of Plum pox virus and sharka disease worldwide. EPPO Bull. 36:205–18 [Google Scholar]
  16. Capote N, Cambra MA, Botella P, Gorris MT, Martinez MC. 16.  et al. 2010. Detection, characterization, epidemiology and eradication of Plum pox virus Marcus type in Spain. J. Plant. Pathol. 92:619–28 [Google Scholar]
  17. Centner TJ, Ferreira S. 17.  2012. Ability of governments to take actions to confront incursions of diseases - a case study: citrus canker in Florida. Plant Pathol. 61:821–28 [Google Scholar]
  18. Chan MS, Jeger MJ. 18.  1994. An analytical model of plant virus disease dynamics with roguing and replanting. J. Appl. Ecol. 31:413–27 [Google Scholar]
  19. Cottam EM, Thébaud G, Wadsworth J, Gloster J, Mansley L. 19.  et al. 2008. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc. R. Soc. B 275:887–95 [Google Scholar]
  20. 20. Counc. Eur. Union 2000. Council Directive 2000/29/EC of 8 May 2000 on Protective Measures Against the Introduction into the Community of Organisms Harmful to Plants or Plant Products and Against Their Spread Within the Community. Brussels, Belgium: Eur. UnionThis European Directive defines protective measures against the introduction into and spread within the EU of organisms harmful to plants or plant products. [Google Scholar]
  21. Crescenzi A, d'Aquino L, Comes S, Nuzzaci M, Piazzolla P. 21.  et al. 1997. Characterization of the sweet cherry isolate of plum pox potyvirus. Plant Dis. 81:711–14 [Google Scholar]
  22. Cunniffe NJ, Koskella B, Metcalf CJE, Parnell S, Gottwald TR, Gilligan CA. 22.  2015. Thirteen challenges in modelling plant diseases. Epidemics 10:6–10 [Google Scholar]
  23. Cunniffe NJ, Laranjeira FF, Neri FM, DeSimone RE, Gilligan CA. 23.  2014. Cost-effective control of plant disease when epidemiological knowledge is incomplete: modelling Bahia bark scaling of citrus. PLOS Comput. Biol. 10:e1003753 [Google Scholar]
  24. Dallot S, Bousalem M, Boeglin M, Renaud LY, Quiot JB. 24.  1997. Potential role of almond in sharka epidemics: susceptibility under controlled conditions to the main types of plum pox potyvirus and survey for natural infections in France. EPPO Bull. 27:539–46 [Google Scholar]
  25. Dallot S, Gottwald T, Labonne G, Quiot JB. 25.  2003. Spatial pattern analysis of sharka disease (Plum pox virus strain M) in peach orchards of southern France. Phytopathology 93:1543–52 [Google Scholar]
  26. Dallot S, Gottwald T, Labonne G, Quiot JB. 26.  2004. Factors affecting the spread of Plum pox virus strain M in peach orchards subjected to roguing in France. Phytopathology 94:1390–98 [Google Scholar]
  27. Dallot S, Labonne G, Quiot-Douine L, Boeglin M, Candresse T, Quiot JB. 27.  1998. Peculiar Plum pox potyvirus D-populations are epidemic in peach trees. Acta Hortic. 472:355–65 [Google Scholar]
  28. Damsteegt VD, Scorza R, Stone AL, Schneider WL, Webb K. 28.  et al. 2007. Prunus host range of Plum pox virus (PPV) in the United States by aphid and graft inoculation. Plant Dis. 91:18–23 [Google Scholar]
  29. Davis K, Rodoni B, Knox C, Sarec R, Moran J. 29.  2002. Detection of Plum poxpotyvirus in illegally imported plums intercepted at Sydney International Airport. Australas. Plant Pathol. 31:313–14 [Google Scholar]
  30. Decroocq S, Chague A, Lambert P, Roch G, Audergon JM. 30.  et al. 2014. Selecting with markers linked to the PPVres major QTL is not sufficient to predict resistance to Plum Pox Virus (PPV) in apricot. Tree Genet. Genomes 10:1161–70 [Google Scholar]
  31. Decroocq V, Badenes ML, Neumuller M. 31.  2011. Breeding for resistance to Plum pox virus. Virus and Virus-Like Diseases of Pome and Stone Fruits A Hadidi, M Barba, T Candresse, W Jelkmann 401–6 Saint-Paul, USA: APS Press [Google Scholar]
  32. Decroocq V, Foulongne M, Lambert P, Le Gall O, Mantin C. 32.  et al. 2005. Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol. Genet. Genomics 272:680–89 [Google Scholar]
  33. Eckel RVW, Lampert EP. 33.  1996. Relative attractiveness of tobacco etch virus-infected and healthy flue-cured tobacco plants to aphids (Homoptera: Aphididae). J. Econ. Entomol. 89:1017–27 [Google Scholar]
  34. 34. EPPO 2014. PQR: EPPO Plant Quarantine Data Retrieval System Paris, Fr: EPPO https://www.eppo.int/DATABASES/pqr/pqr.htm [Google Scholar]
  35. 35. EPPO 2001. Schemes for the production of healthy plants for planting. Certification scheme for almond, apricot, peach and plum, PM 4/30. EPPO Bull. 31:463–78 [Google Scholar]
  36. Etienne M, Du Toit DR, Pollard S. 36.  2011. ARDI: a co-construction method for participatory modeling in natural resources management. Ecol. Soc. 16:44 [Google Scholar]
  37. Fabre F, Rousseau E, Mailleret L, Moury B. 37.  2012. Durable strategies to deploy plant resistance in agricultural landscapes. New Phytol. 193:1064–75 [Google Scholar]
  38. Faivre R, Ioos B, Mahévas S, Makowski D, Monod H. 38.  2013. Analyse de Sensibilité et Exploration de Modèles Versailles, France: Editions Quae [Google Scholar]
  39. 39. FAO 2012. Diagnostic Protocols for Regulated Pests, DP2: Plum pox virus. Rome, Italy: FAO [Google Scholar]
  40. 40. FAO 2013. Glossary of Phytosanitary Terms Rome, Italy: FAOThis list of definitions provides an internationally recognized vocabulary for construction and implementation of phytosanitary measures. [Google Scholar]
  41. Fereres A, Moreno A. 41.  2009. Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res. 141:158–68 [Google Scholar]
  42. Filipe JAN, Cobb RC, Meentemeyer RK, Lee CA, Valachovic YS. 42.  et al. 2012. Landscape epidemiology and control of pathogens with cryptic and long-distance dispersal: sudden oak death in northern Californian forests. PLOS Comput. Biol. 8:e1002328 [Google Scholar]
  43. Fraser C, Riley S, Anderson RM, Ferguson NM. 43.  2004. Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101:6146–51 [Google Scholar]
  44. Fraser RW, Cook DC, Mumford JD, Wilby A, Waage JK. 44.  2006. Managing outbreaks of invasive species: eradication versus suppression. Int. J. Pest Manag. 52:261–68 [Google Scholar]
  45. Fujiwara Y, Saito N, Kasugai K, Tsukamoto T, Aihara F. 45.  2011. Occurrence and eradication strategies of Plum pox virus in Japan. Acta Hortic. 899:165–70 [Google Scholar]
  46. García-Arenal F, McDonald BA. 46.  2003. An analysis of the durability of resistance to plant viruses. Phytopathology 93:941–52 [Google Scholar]
  47. García JA, Cambra M. 47.  2007. Plum pox virus and sharka disease. Plant Viruses 1:69–79 [Google Scholar]
  48. García JA, Glasa M, Cambra M, Candresse T. 48.  2014. Plum pox virus and sharka: a model potyvirus and a major disease. Mol. Plant Pathol. 15:226–41 [Google Scholar]
  49. Gildow F, Damsteegt V, Stone A, Schneider W, Luster D, Levy L. 49.  2004. Plum pox in North America: identification of aphid vectors and a potential role for fruit in virus spread. Phytopathology 94:868–74 [Google Scholar]
  50. Gilligan CA. 50.  2002. An epidemiological framework for disease management. Adv. Bot. Res. 38:1–64 [Google Scholar]
  51. Glasa M, Boeglin M, Labonne G. 51.  2004. Aphid transmission of natural recombinant Plum pox virus isolates to different Prunus spp.: a contribution for understanding the epidemiology of an atypical PPV. Acta Hortic. 657:217–20 [Google Scholar]
  52. Glasa M, Prikhodko Y, Predajna L, Nagyova A, Shneyder Y. 52.  et al. 2013. Characterization of sour cherry isolates of Plum pox virus from the Volga basin in Russia reveals a new cherry strain of the virus. Phytopathology 103:972–79 [Google Scholar]
  53. Gottwald T. 53.  2006. Epidemiology of sharka disease in North America. EPPO Bull. 36:279–86 [Google Scholar]
  54. Gottwald T, Llácer G, Hermoso de Mendoza A, Cambra A. 54.  1995. Analysis of the spatial spread of sharka (Plum pox virus) in apricot and peach orchards in Eastern Spain. Plant Dis. 79:266–78 [Google Scholar]
  55. Gottwald TR, Wierenga E, Luo WQ, Parnell S. 55.  2013. Epidemiology of Plum pox “D” strain in Canada and the USA. Can. J. Plant Pathol. 35:442–57 [Google Scholar]
  56. Graham JH, Gottwald TR, Cubero J, Achor DS. 56.  2004. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol. Plant Pathol. 5:1–15 [Google Scholar]
  57. Harris KF. 57.  1977. An ingestion-egestion hypothesis of noncirculative virus transmission. Aphids as Virus Vectors KF Harris, K Maramorosch 165–220 London: Academic [Google Scholar]
  58. Hartmann W, Neumüller M. 58.  2006. Breeding for resistance: breeding for Plum pox virus resistant plums (Prunus domestica L.) in Germany. EPPO Bull. 36:332–36 [Google Scholar]
  59. Holt J, Colvin J, Muniyappa V. 59.  1999. Identifying control strategies for tomato leaf curl virus disease using an epidemiological model. J. Appl. Ecol. 36:625–33 [Google Scholar]
  60. Hughes G, Gottwald TR, Levy L. 60.  2002. The use of hierarchical sampling in the surveillance program for Plum pox virus incidence in the United States. Plant Dis. 86:259–63 [Google Scholar]
  61. Hughes G, McRoberts N, Madden LV, Gottwald TR. 61.  1997. Relationships between disease incidence at two levels in a spatial hierarchy. Phytopathology 87:542–50 [Google Scholar]
  62. İlbağı H, Çıtır A. 62.  2014. Detection and partial molecular characterization of Plum pox virus on almond trees in Turkey. Phytoparasitica 42:485–91 [Google Scholar]
  63. James D, Thompson D. 63.  2006. Hosts and symptoms of Plum pox virus: ornamental and wild Prunus species. EPPO Bull. 36:222–24 [Google Scholar]
  64. Jones RAC. 64.  2014. Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects. Ann. Appl. Biol. 164:320–47 [Google Scholar]
  65. 65. JORF 2011. Arrêté du 17 mars 2011 relatif à la lutte contre le Pum Pox Virus, agent causal de la maladie de la Sharka, sur les végétaux sensibles du genre Prunus. JORF n°0067 du 20 mars 2011. République Française. Paris, France. NOR: AGRG1105295AThis national decree defines the modalities of compulsory sharka management in France. [Google Scholar]
  66. Kamenova I. 66.  1997. An overview of plum pox virus strain variation. Biotechnol. Biotechnol. Equip. 11:A10–18 [Google Scholar]
  67. Kang BC, Yeam I, Jahn MM. 67.  2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43:581–621 [Google Scholar]
  68. Kegler H, Hartmann W. 68.  1998. Present status of controlling conventional strains of Plum pox virus. Plant Virus Disease Control A Hadidi, RK Khetarpal, H Koganezawa 616–28 St. Paul, MN: APS Press [Google Scholar]
  69. Kennedy JS, Thomas AAG. 69.  1974. Behaviour of some low-flying aphids in wind. Ann. Appl. Biol. 76:143–59 [Google Scholar]
  70. Kerlan C, Dunez J. 70.  1979. Différenciation biologique et sérologique des souches du virus de la sharka. Ann. Phytopathol. 11:241–50 [Google Scholar]
  71. Klinkowski M. 71.  1970. Catastrophic plant diseases. Annu. Rev. Phytopathol. 8:37–60 [Google Scholar]
  72. Labonne G, Dallot S. 72.  2006. Epidemiology of sharka disease in France. EPPO Bull. 36:267–70 [Google Scholar]
  73. Labonne G, Lauriaut F, Yvon M, Quiot JB. 73.  1994. Dissémination du plum pox potyvirus par les pucerons: analyse des vecteurs potentiels du virus dans un verger d'abricotiers. EPPO Bull. 24:681–90 [Google Scholar]
  74. Labonne G, Quiot JB. 74.  2001. Aphids can acquire plum pox virus from infected fruits. Acta Hortic. 550:79–83 [Google Scholar]
  75. Labonne G, Quiot JB. 75.  2006. The behaviour of alate aphids inside a Prunus orchard: an element to take into account in plum pox virus spread?. Acta Hortic. 701:427–31 [Google Scholar]
  76. Labonne G, Yvon M, Quiot JB, Avinent L, Llácer G. 76.  1995. Aphids as potential vectors of Plum pox virus: comparison of methods of testing and epidemiological consequences. Acta Hortic. 386:207–18 [Google Scholar]
  77. Lebas BSM, Ochoa-Corona FM, Elliott DR, Double B, Smales T, Wilson JA. 77.  2006. Control and monitoring: quarantine situation of Plum pox virus in New Zealand. EPPO Bull. 36:296–301 [Google Scholar]
  78. Le Page C, Bazile D, Becu N, Bommel P, Bousquet F. 78.  et al. 2013. Agent-based modelling and simulation applied to environmental management: a review. Simulating Social Complexity: A Handbook B Edmonds, R Meyer 499–540 Berlin, Ger: Springer [Google Scholar]
  79. Llácer G. 79.  2006. Hosts and symptoms of Plum pox virus: herbaceous hosts. EPPO Bull. 36:227–28 [Google Scholar]
  80. Llácer G, Cambra M. 80.  2006. Hosts and symptoms of Plum pox virus: fruiting Prunus species. EPPO Bull. 36:219–21 [Google Scholar]
  81. Long JA, Robertson C, Nathoo FS, Nelson TA. 81.  2012. A Bayesian space-time model for discrete spread processes on a lattice. Spat. Spatiotempor. Epidemiol. 3:151–62 [Google Scholar]
  82. Lopez-Moya JJ, Fernandez-Fernandez MR, Cambra M, García JA. 82.  2000. Biotechnological aspects of plum pox virus. J. Biotechnol. 76:121–36 [Google Scholar]
  83. Madden LV, Hughes G, van den Bosch F. 83.  2007. Temporal analysis I: quantifying and comparing epidemics. The Study of Plant Disease Epidemics63–116 St. Paul, MN: APS Press [Google Scholar]
  84. Marn MV, Mavric I, Urbancic-Zemljic M, Skerlavaj V. 84.  2004. Detection of Plum pox potyvirus in weeds. Acta Hortic. 657:251–54 [Google Scholar]
  85. Martinez-Gomez P, Dicenta F, Audergon JM. 85.  2000. Behaviour of apricot (Prunus armeniaca L.) cultivars in the presence of sharka (plum pox potyvirus): a review. Agronomie 20:407–22 [Google Scholar]
  86. Mauck K, Bosque-Pérez NA, Eigenbrode SD, De Moraes CM, Mescher MC. 86.  2012. Transmission mechanisms shape pathogen effects on host-vector interactions: evidence from plant viruses. Funct. Ecol. 26:1162–75 [Google Scholar]
  87. Mavrodieva V, James D, Williams K, Negi S, Varga A. 87.  et al. 2013. Molecular analysis of a Plum pox virus W isolate in plum germplasm hand carried into the USA from the Ukraine shows a close relationship to a Latvian isolate. Plant Dis. 97:44–52 [Google Scholar]
  88. Mollentze N, Nel LH, Townsend S, le Roux K, Hampson K. 88.  et al. 2014. A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data. Proc. R. Soc. B 281:20133251 [Google Scholar]
  89. Monfreda C, Ramankutty N, Foley JA. 89.  2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22:GB1022 [Google Scholar]
  90. Moury B, Fabre F, Senoussi R. 90.  2007. Estimation of the number of virus particles transmitted by an insect vector. Proc. Natl. Acad. Sci. USA 104:17891–96 [Google Scholar]
  91. Mumford RA. 91.  2006. Control and monitoring: control of Plum pox virus in the United Kingdom. EPPO Bull. 36:315–18 [Google Scholar]
  92. Myrta A, Di Terlizzi B, Savino V, Martelli GP. 92.  2006. Control and monitoring: monitoring and eradication of Plum pox virus in south-east Italy over 15 years. EPPO Bull. 36:309–11 [Google Scholar]
  93. Myrta A, Potere O, Boscia D, Candresse T, Cambra M, Savino V. 93.  1998. Production of a monoclonal antibody specific to the El Amar strain of plum pox virus. Acta Virol. 42:248–50 [Google Scholar]
  94. 94. NAPPO 2004. Guidelines for Phytosanitary Action Following Detection of Plum pox virus. Ottawa, Can: NAPPOThese guidelines outline recommendations prior to allowing the import of PPV-susceptible plants for planting and propagation by NAPPO members. [Google Scholar]
  95. 95. NAPPO 2009. Guidelines for the Movement of Stone and Pome Fruit Trees and Grapevines into a NAPPO Member Country. Ottawa, Can: NAPPOThese guidelines outline recommendations prior to allowing the import and movement of stone and pome fruit trees and grapevines by/among NAPPO membersp. [Google Scholar]
  96. Nault LR. 96.  1997. Arthropod transmission of plant viruses: a new synthesis. Ann. Entomol. Soc. Am. 90:521–41 [Google Scholar]
  97. Nemchinov L, Hadidi A. 97.  1996. Characterization of the sour cherry strain of plum pox virus. Phytopathology 86:575–80 [Google Scholar]
  98. Németh M. 98.  1994. History and importance of plum pox in stone-fruit production. EPPO Bull. 24:525–36 [Google Scholar]
  99. Németh MV. 99.  1986. Plum pox (Sharka). Virus, Mycoplasma and Rickettsia Diseases of Fruit Trees463–79 Budapest, Hung: Akademiai Kiaido [Google Scholar]
  100. Neri FM, Cook AR, Gibson GJ, Gottwald TR, Gilligan CA. 100.  2014. Bayesian analysis for inference of an emerging epidemic: citrus canker in urban landscapes. PLOS Comput. Biol. 10:e1003587 [Google Scholar]
  101. Neumuller M, Hartmann W. 101.  2008. The phenotypically quantitative nature of hypersensitivity of European plum (Prunus domestica L.) against the Plum pox virus and its description using the hypersensitivity index. Hortic. Sci. 35:50–64 [Google Scholar]
  102. Neumuller M, Muhlberger L, Siegler H, Hartmann W, Treutter D. 102.  2013. New rootstocks with resistance to Plum pox virus for Prunus domestica and other stone fruit species: the “Docera” and “Dospina” rootstock series. Acta Hortic. 985:155–65 [Google Scholar]
  103. Palmisano F, Boscia D, Minafra A, Myrta A, Candresse T. 103.  2012. An atypical Albanian isolate of Plum pox virus could be the progenitor of the Marcus strain. Petria 103:224 [Google Scholar]
  104. Papaïx J, Adamczyk-Chauvat K, Bouvier A, Kiêu K, Touzeau S. 104.  et al. 2014. Pathogen population dynamics in agricultural landscapes: the Ddal modelling framework. Infect. Genet. Evol. 27:509–20 [Google Scholar]
  105. Parnell S, Gottwald TR, Gilks WR, van den Bosch F. 105.  2012. Estimating the incidence of an epidemic when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305:30–36 [Google Scholar]
  106. Parnell S, Gottwald TR, Gilligan CA, Cunniffe NJ, van den Bosch F. 106.  2010. The effect of landscape pattern on the optimal eradication zone of an invading epidemic. Phytopathology 100:638–44 [Google Scholar]
  107. Parnell S, Gottwald TR, Riley T, van den Bosch F. 107.  2014. A generic risk-based surveying method for invading plant pathogens. Ecol. Appl. 24:779–90 [Google Scholar]
  108. Parry M, Gibson GJ, Parnell S, Gottwald TR, Irey MS. 108.  et al. 2014. Bayesian inference for an emerging arboreal epidemic in the presence of control. Proc. Natl. Acad. Sci. USA 111:6258–62 [Google Scholar]
  109. Pasquini G, Barba M. 109.  2006. The question of seed transmissibility of Plum pox virus. EPPO Bull. 36:287–92 [Google Scholar]
  110. Perring TM, Gruenhagen NM, Farrar CA. 110.  1999. Management of plant viral diseases through chemical control of insect vectors. Annu. Rev. Entomol. 44:457–81 [Google Scholar]
  111. Pickett JA, Wadhams LJ, Woodcock CM, Hardie J. 111.  1992. The chemical ecology of aphids. Annu. Rev. Entomol. 37:67–90 [Google Scholar]
  112. 112. Plant Prot. Serv 2011. Pest Risk Analysis for Plum pox virus. Wageningen, Neth: Minist. Econ. Aff. Agric. Innovat. [Google Scholar]
  113. Plantegenest M, Le May C, Fabre F. 113.  2007. Landscape epidemiology of plant diseases. J. R. Soc. Interface 4:963–72 [Google Scholar]
  114. Pleydell D, Thébaud G, Soubeyrand S, Dallot S, Grizard S. 114.  et al. 2011. Estimating risk factors for virus dissemination from incomplete epidemiological surveillance data. 13èmes Rencontres de Virologie Végétale, Aussois, FranceJan. 16–20 Book of Abstracts44This conference talk presented preliminary estimates of key parameters of sharka spread using a mechanistic SEIR dissemination model. [Google Scholar]
  115. Quiot JB, Labonne G, Boeglin M, Adamolle C, Renaud LY, Candresse T. 115.  1995. Behaviour of two isolates of Plum pox virus inoculated on peach and apricot trees: first results. Acta Hortic. 386:290–97 [Google Scholar]
  116. Ramel ME, Gugerli P, Bünter M. 116.  2006. Control and monitoring: eradication of Plum pox virus in Switzerland. EPPO Bull. 36:312–14 [Google Scholar]
  117. Revers F, Le Gall O, Candresse T, Maule AJ. 117.  1999. New advances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant-Microbe Interact. 12:367–76 [Google Scholar]
  118. Rimbaud L, Dallot S, Delauney A, Borron S, Soubeyrand S. 118.  et al. 2015. Assessing the mismatch between incubation and latency for a vector-borne plant disease: the case of sharka. Phytopathology. In press Describes the fact that after PPV-M inoculation of young peach, the first symptoms appear on leaves one day before they rapidly become infectious. [Google Scholar]
  119. Rimbaud L, Delaunay A, Soubeyrand S, Jacquot E, Thébaud G. 119.  2015. Model-based optimization of an experimental protocol to assess the mismatch between incubation and latency periods for Plum pox virus. Acta Hortic. 1063:159–66Through numerical simulations of different scenarios, this article presents an optimized protocol to estimate precisely a mismatch between incubation and latency for vector-borne plant diseases. [Google Scholar]
  120. Robinet C, Kehlenbeck H, Kriticos DJ, Baker RHA, Battisti A. 120.  et al. 2012. A suite of models to support the quantitative assessment of spread in pest risk analysis. PLOS ONE 7:e43366 [Google Scholar]
  121. Rodoni B, Merriman P, Moran J, Whattam M. 121.  2006. Control and monitoring: phytosanitary situation of Plum pox virus in Australia. EPPO Bull. 36:293–95 [Google Scholar]
  122. Rubio M, Pascal T, Bachellez A, Lambert P. 122.  2010. Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet. Genomes 6:291–304 [Google Scholar]
  123. Salvaudon L, De Moraes CM, Mescher MC. 123.  2013. Outcomes of co-infection by two potyviruses: implications for the evolution of manipulative strategies. Proc. R. Soc. B 280:20122959 [Google Scholar]
  124. Schneider WL, Damsteegt VD, Gildow FE, Stone AL, Sherman DJ. 124.  et al. 2011. Molecular, ultrastructural, and biological characterization of Pennsylvania isolates of Plum pox virus. Phytopathology 101:627–36 [Google Scholar]
  125. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E. 125.  et al. 2011. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12:938–54 [Google Scholar]
  126. Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J. 126.  et al. 2013. Genetic engineering of Plum pox virus resistance: “HoneySweet” plum-from concept to product. Plant Cell Tiss. Org. Cult. 115:1–12 [Google Scholar]
  127. 127. SharCo 2009. Deliverable DA1.1: Overview on the Current Implementation of European Directives Northbrook, IL: SharCo [Google Scholar]
  128. Shukla DD, Ward CW, Brunt AA. 128.  1994. The Potyviridae Oxon, UK: CABI [Google Scholar]
  129. Sisterson MS, Stenger DC. 129.  2013. Roguing with replacement in perennial crops: conditions for successful disease management. Phytopathology 103:117–28 [Google Scholar]
  130. Sochor J, Babula P, Adam V, Krska B, Kizek R. 130.  2012. Sharka: the past, the present and the future. Viruses 4:2853–901 [Google Scholar]
  131. Sosnowski MR, Fletcher JD, Daly AM, Rodoni BC, Viljanen-Rollinson SLH. 131.  2009. Techniques for the treatment, removal and disposal of host material during programmes for plant pathogen eradication. Plant Pathol. 58:621–35 [Google Scholar]
  132. Soubeyrand S, Held L, Höhle M, Sache I. 132.  2008. Modelling the spread in space and time of an airborne plant disease. J. R. Stat. Soc. C 57:253–72 [Google Scholar]
  133. Speich P. 133.  2006. Control and monitoring: Plum pox virus quarantine situation in France. EPPO Bull. 36:307–8 [Google Scholar]
  134. Stobbs LW, Van Driel L, Whybourne K, Carlson C, Tulloch M, Van Lier J. 134.  2005. Distribution of Plum pox virus in residential sites, commercial nurseries, and native plant species in the Niagara Region, Ontario, Canada. Plant Dis. 89:822–27 [Google Scholar]
  135. Subr Z, Glasa M. 135.  2008. Plum pox virus variability detected by the advanced analytical methods. Acta Virol. 52:75–89 [Google Scholar]
  136. Subr Z, Glasa M. 136.  2013. Unfolding the secrets of plum pox virus: from epidemiology to genomics. Acta Virol. 57:217–28 [Google Scholar]
  137. Sutic D. 137.  1971. Etat des recherches sur le virus de la sharka. Annales de Phytopathologie Supplement:161–70 [Google Scholar]
  138. Tsuda S, Sano T. 138.  2014. Threats to Japanese agriculture from newly emerged plant viruses and viroids. J. Gen. Plant Pathol. 80:2–14 [Google Scholar]
  139. Urtubia C, Devia J, Castro A, Zamora P, Aquirre C. 139.  et al. 2008. Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Rep. 27:1333–40 [Google Scholar]
  140. Vanderveken JJ. 140.  1977. Oils and other inhibitors of nonpersistent virus transmission. Aphids as Virus Vectors KF Harris, K Maramorosch 435–54 London: Academic [Google Scholar]
  141. Varga A, James D. 141.  2006. Use of reverse transcription loop-mediated isothermal amplification for the detection of Plum pox virus. J. Virol. Methods 138:184–90 [Google Scholar]
  142. Verhoeven JTJ, Roenhorst JW, Jongedijk GP. 142.  2008. Occurrence and control of Plum pox virus in the Netherlands. Acta Hortic. 781:197–202 [Google Scholar]
  143. Vidal E, Moreno A, Bertolini E, Cambra M. 143.  2012. Estimation of the accuracy of two diagnostic methods for the detection of Plum pox virus in nursery blocks by latent class models. Plant Pathol. 61:413–22 [Google Scholar]
  144. Vidal E, Zagrai L, Milusheva S, Bozhkova V, Tasheva-Terzieva E. 144.  et al. 2013. Horticultural mineral oil treatments in nurseries during aphid flights reduce Plum pox virus incidence under different ecological conditions. Ann. Appl. Biol. 162:299–308 [Google Scholar]
  145. Wang A, Sanfacon H, Stobbs LW, James D, Thompson D. 145.  et al. 2006. Plum pox virus in Canada: progress in research and future prospects for disease control. Can. J. Plant Pathol. 28:182–96 [Google Scholar]
  146. Wang RY, Pirone TP. 146.  1996. Mineral oil interferes with retention of tobacco etch potyvirus in the stylets of Myzus persicae. Phytopathology 86:820–23 [Google Scholar]
  147. Wang XH, Kohalmi SE, Svircev A, Wang AM, Sanfacon H, Tian LN. 147.  2013. Silencing of the host factor eIF(iso)4E gene confers Plum pox virus resistance in plum. PLOS ONE 8:e50627 [Google Scholar]
  148. Welliver R, Valley K, Richwine N, Clement G, Albright D. 148.  2014. Expelling a Plant Pest Invader: The Pennsylvania Plum Pox Eradication Program, a Case Study in Regulatory Cooperation Harrisburg, PA: Pa. Dep. Agric. [Google Scholar]
  149. Ypma RJF, Bataille AMA, Stegeman A, Koch G, Wallinga J, van Ballegooijen WM. 149.  2012. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc. R. Soc. B 279:444–50 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error