Symbiotic nitrogen-fixing rhizobium bacteria and arbuscular mycorrhizal fungi use lipochitooligosaccharide (LCO) signals to communicate with potential host plants. Upon a compatible match, an intimate relation is established during which the microsymbiont is allowed to enter root (-derived) cells. Plants perceive microbial LCO molecules by specific LysM-domain-containing receptor-like kinases. These do not only activate a common symbiosis signaling pathway that is shared in both symbioses but also modulate innate immune responses. Recent studies revealed that symbiotic LCO receptors are closely related to chitin innate immune receptors, and some of these receptors even function in symbiosis as well as immunity. This raises questions about how plants manage to translate structurally very similar microbial signals into different outputs. Here, we describe the current view on chitin and LCO perception in innate immunity and endosymbiosis and question how LCOs might modulate the immune system. Furthermore, we discuss what it takes to become an endosymbiont.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akiyama K, Matsuzaki K, Hayashi H. 1.  2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27 [Google Scholar]
  2. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C. 2.  et al. 2008. Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res. 18:1472–83 [Google Scholar]
  3. Ane J, Baek J, Kalo P, Rosenberg C, Roe BA. 3.  et al. 2004. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–68 [Google Scholar]
  4. Angus AA, Hirsch AM. 4.  2010. Insights into the history of the legume-betaproteobacterial symbiosis. Mol. Ecol. 19:28–30 [Google Scholar]
  5. Antolín-Llovera M, Ried MK, Binder A, Parniske M. 5.  2012. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50:451–73 [Google Scholar]
  6. Antolín-Llovera M, Ried MK, Parniske M. 6.  2014. Cleavage of the symbiosis receptor-like kinase ectodomain promotes complex formation with nod factor receptor 5. Curr. Biol. 24:422–27 [Google Scholar]
  7. Aoki S, Ito M, Iwasaki W. 7.  2013. From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodIJ. Mol. Biol. Evol. 30:2494–508 [Google Scholar]
  8. Ardourel M, Demont N, Debellé F, Maillet F, De Billy F. 8.  et al. 1994. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–74 [Google Scholar]
  9. Arrighi J-F, Barre A, Ben Amor B, Bersoult A, Soriano LC. 9.  et al. 2006. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142:265–79 [Google Scholar]
  10. Ba S, Willems A, De Lajudie P, Jeder H, Quatrini P. 10.  et al. 2002. Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst. Appl. Microbiol. 145:130–45 [Google Scholar]
  11. Balestrini R, Bonfante P. 11.  2014. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front. Plant Sci. 5:237 [Google Scholar]
  12. Bartsev A, Deakin W, Boukli N. 12.  2004. NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defense reactions. Mol. Plant-Microbe Interact. 134:871–79 [Google Scholar]
  13. Behm JE, Geurts R, Kiers ET. 13.  2014. Parasponia: a novel system for studying mutualism stability. Trends Plant Sci. 19:757–63 [Google Scholar]
  14. Bellincampi D, Cervone F, Lionetti V. 14.  2014. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 5:228 [Google Scholar]
  15. Ben Amor B, Shaw S, Oldroyd G. 15.  2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J. 34:495–506 [Google Scholar]
  16. Ben C, Toueni M, Montanari S, Tardin MC, Fervel M, Negahi A. 16.  et al. 2012. Natural diversity in the model legume Medicago truncatula allows identifying distinct genetic mechanisms conferring partial resistance to Verticillium wilt. J. Exp. Bot. 63:695–709 [Google Scholar]
  17. Berendsen RL, Pieterse CMJ, Bakker PAHM. 17.  2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478–86 [Google Scholar]
  18. Blilou I, Ocampo JA, García-Garrido M. 18.  1999. Resistance of pea roots to endomycorrhizal fungus or rhizobium correlates with enhanced levels of endogenous salicylic acid. J. Exp. Bot. 50:1663–68 [Google Scholar]
  19. Boller T, Felix G. 19.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  20. Bontemps C, Elliott GN, Simon MF, Dos Reis Júnior FB, Gross E. 20.  et al. 2010. Burkholderia species are ancient symbionts of legumes. Mol. Ecol. 19:44–52 [Google Scholar]
  21. Boter M, Ruí O, Abdeen A. 21.  2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 2:1577–91 [Google Scholar]
  22. Boyd ES, Peters JW. 22.  2013. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4:201 [Google Scholar]
  23. Brewin NJ. 23.  2004. Plant cell wall remodelling in the rhizobium-legume symbiosis. CRC Crit. Rev. Plant Sci. 23:293–316 [Google Scholar]
  24. Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT. 24.  et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc. Natl. Acad. Sci. USA 109:13859–64 [Google Scholar]
  25. Buist G, Steen A, Kok J, Kuipers OP. 25.  2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol. Microbiol. 68:838–47 [Google Scholar]
  26. Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP. 26.  et al. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3:1–19 [Google Scholar]
  27. Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M. 27.  et al. 2011. Nuclear membranes control symbiotic calcium signaling of legumes. Proc. Natl. Acad. Sci. USA 108:14348–53 [Google Scholar]
  28. Cardenas L, Dominguez J, Santana O, Quint C. 28.  1996. The role of the nodI and nodJ genes in the transport of Nod metabolites in Rhizobium etli. Gene 173:183–87 [Google Scholar]
  29. Chabaud M, Genre A, Sieberer J, Faccio A, Novero M. 29.  et al. 2011. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol. 189:347–55 [Google Scholar]
  30. Charpentier M, Vaz Martins T, Granqvist E, Oldroyd GED, Morris RJ. 30.  2013. The role of DMI1 in establishing Ca2+ oscillations in legume symbioses. Plant Signal. Behav. 8:e22894 [Google Scholar]
  31. Cooper JE. 31.  2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J. Appl. Microbiol. 103:1355–65 [Google Scholar]
  32. Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA. 32.  et al. 2012. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159:1671–85 [Google Scholar]
  33. Darmon E, Leach. 33.  2014. Bacterial genome instability. Microbiol. Mol. Biol. Rev. 78:1–39 [Google Scholar]
  34. Davière J-M, Achard P. 34.  2013. Gibberellin signaling in plants. Development 140:1147–51 [Google Scholar]
  35. Deakin WJ, Broughton WJ. 35.  2009. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7:312–20 [Google Scholar]
  36. Delaux P, Bécard G, Combier J. 36.  2013. NSP1 is a component of the Myc signaling pathway. New Phytol. 199:59–65 [Google Scholar]
  37. Delaux P-M, Séjalon-Delmas N, Bécard G, Ané J-M. 37.  2013. Evolution of the plant-microbe symbiotic “toolkit”. Trends Plant Sci. 18:298–304 [Google Scholar]
  38. De Mita S, Streng A, Bisseling T, Geurts R. 38.  2014. Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. New Phytol. 201:961–72 [Google Scholar]
  39. Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. 39.  2012. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162 [Google Scholar]
  40. Doyle JJ. 40.  2011. Phylogenetic perspectives on the origins of nodulation. Mol. Plant-Microbe Interact. 24:1289–95 [Google Scholar]
  41. El Ghachtouli N, Martin-Tanguy J, Paynot M, Gianinazzi S. 41.  1996. First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS J. 385:189–92 [Google Scholar]
  42. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB. 42.  2002. A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–66 [Google Scholar]
  43. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S. 43.  et al. 2013. Lym2-dependent chitin perception limits molecular flux via plasmodesmata. Proc. Natl. Acad. Sci. USA 110:9166–70 [Google Scholar]
  44. Felix G, Duran JD, Volko S, Boller T. 44.  1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265–76 [Google Scholar]
  45. Ferguson BJ, Mathesius U. 45.  2014. Phytohormone regulation of legume-rhizobia interactions. J. Chem. Ecol. 40:770–90 [Google Scholar]
  46. Fernandez-Lopez M, Haeze WD, Mergaert P, Verplancke C, Prome J. 46.  et al. 1996. Role of NodI and NodJ in lipo-oligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol. Microbiol. 20:993–1000 [Google Scholar]
  47. Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F, De Lorenzo G. 47.  2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4:49 [Google Scholar]
  48. Fliegmann J, Canova S, Lachaud C, Uhlenbroich S, Gasciolli V. 48.  et al. 2013. Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. ACS Chem. Biol. 8:1900–6 [Google Scholar]
  49. Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. 49.  2013. Della proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. USA 110:E5025–34 [Google Scholar]
  50. Foo E, Ferguson BJ, Reid JB. 50.  2014. Common and divergent roles of plant hormones in nodulation and arbuscular mycorrhizal symbioses. Plant Signal. Behav. 9:e29593 [Google Scholar]
  51. Fraysse N, Couderc F, Poinsot V. 51.  2003. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur. J. Biochem. 270:1365–80 [Google Scholar]
  52. Gage DJ. 52.  2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68:280–300 [Google Scholar]
  53. Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F. 53.  2012. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 69:510–28 [Google Scholar]
  54. Genin S, Boucher C. 54.  2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu. Rev. Phytopathol. 42:107–34 [Google Scholar]
  55. Genre A, Chabaud M, Balzergue C, Puech-Pagés V, Novero M. 55.  et al. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 198:179–89 [Google Scholar]
  56. Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. 56.  2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–99 [Google Scholar]
  57. Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 57.  2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol. 149:1424–34 [Google Scholar]
  58. Geurts R, Heidstra R, Hadri A, Downie JA, Franssen H. 58.  et al. 1997. Sym2 of pea is involved in a nodulation factor–perception mechanism that controls the infection process in the epidermis. Plant Physiol. 115:351–59 [Google Scholar]
  59. Gimenez-Ibanez S, Boter M, Fernández-Barbero G, Chini A, Rathjen JP, Solano R. 59.  2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLOS Biol. 12:e1001792 [Google Scholar]
  60. Glazebrook J. 60.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  61. Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F. 61.  et al. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr. Biol. 22:2236–41 [Google Scholar]
  62. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y. 62.  et al. 2009. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol. 9:10 [Google Scholar]
  63. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA. 63.  et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94 [Google Scholar]
  64. Groth M, Takeda N, Perry J, Uchida H, Dräxl S. 64.  et al. 2010. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–26 [Google Scholar]
  65. Gutjahr C. 65.  2014. Phytohormone signaling in arbuscular mycorhiza development. Curr. Opin. Plant Biol. 20:26–34 [Google Scholar]
  66. Gutjahr C, Parniske M. 66.  2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell Dev. Biol. 29:593–617 [Google Scholar]
  67. Haney CH, Long SR. 67.  2010. Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc. Natl. Acad. Sci. USA 107:478–83 [Google Scholar]
  68. Haney CH, Riely BK, Tricoli DM, Cook DR, Ehrhardt DW, Long SR. 68.  2011. Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the Medicago truncatula receptor kinase LYK3. Plant Cell 23:2774–87 [Google Scholar]
  69. Hardham AR, Takemoto D, White RG. 69.  2008. Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol. 8:63 [Google Scholar]
  70. Hauvermale AL, Ariizumi T, Steber CM. 70.  2012. Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol. 160:83–92 [Google Scholar]
  71. Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M. 71.  et al. 2014. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc. Natl. Acad. Sci. USA 111:E404–13 [Google Scholar]
  72. Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S. 72.  et al. 2006. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol. 142:1739–50 [Google Scholar]
  73. Herrera Medina M, Gagnon H, Piche Y, Ocampo JA, Garcia Garrido J, Vierheilig H. 73.  2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164:993–98 [Google Scholar]
  74. Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H. 74.  2011. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol. 157:2023–43 [Google Scholar]
  75. Horváth B, Yeun LH, Domonkos A, Halasz G, Gobbato E. 75.  et al. 2011. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol. Plant-Microbe Interact. 11:1345–58 [Google Scholar]
  76. Hou X, Lee LYC, Xia K, Yan Y, Yu H. 76.  2010. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19:884–94 [Google Scholar]
  77. Iizasa E, Mitsutomi M, Nagano Y. 77.  2010. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J. Biol. Chem. 285:2996–3004 [Google Scholar]
  78. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H. 78.  et al. 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–31 [Google Scholar]
  79. Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P. 79.  2012. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc. Natl. Acad. Sci. USA 109:8316–21 [Google Scholar]
  80. Jarsch IK, Konrad SS, Stratil TF, Urbanus SL, Szymanski W. 80.  et al. 2014. Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell 26:1698–711 [Google Scholar]
  81. Jones JDG, Dangl JL. 81.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  82. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N. 82.  et al. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103:11086–91 [Google Scholar]
  83. Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM. 83.  et al. 2005. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–89 [Google Scholar]
  84. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH. 84.  et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl. Acad. Sci. USA 103:359–64 [Google Scholar]
  85. Kazan K, Lyons R. 85.  2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–309 [Google Scholar]
  86. Ke D, Fang Q, Chen C, Zhu H, Chen T. 86.  et al. 2012. The small GTPase ROP6 interacts with NFR5 and is involved in nodule formation in Lotus japonicus. Plant Physiol. 159:131–43 [Google Scholar]
  87. Kloppholz S, Kuhn H, Requena N. 87.  2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–9 [Google Scholar]
  88. Kosuta S, Chabaud M, Gough C, Dénairé J, Barker DG. 88.  2003. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 131:952–62 [Google Scholar]
  89. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ. 89.  et al. 2008. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc. Natl. Acad. Sci. USA 105:9823–28 [Google Scholar]
  90. Krause A, Doerfel A, Göttfert M. 90.  2002. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol Plant-Microbe Interact. 15:1228–35 [Google Scholar]
  91. Kuhn H, Kuester H, Requena N. 91.  2010. Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol. 185:716–33 [Google Scholar]
  92. Lauressergues D, Delaux P-M, Formey D, Lelandais-Briere C, Fort S. 92.  et al. 2012. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J. 72:512–22 [Google Scholar]
  93. Lefebvre B, Klaus-Heisen D, Pietraszewska-Bogiel A, Hervé C, Camut S. 93.  et al. 2012. Role of N-glycosylation sites and CXC motifs in trafficking of Medicago truncatula Nod factor perception protein to plasma membrane. J. Biol. Chem. 287:10812–23 [Google Scholar]
  94. Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C. 94.  et al. 2010. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc. Natl. Acad. Sci. USA 107:2343–48 [Google Scholar]
  95. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G. 95.  et al. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–84 [Google Scholar]
  96. Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J. 96.  et al. 2013. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341:1384–87 [Google Scholar]
  97. Liang Y, Tóth K, Cao Y, Tanaka K, Espinoza C, Stacey G. 97.  2014. Lipochitooligosaccharide recognition: an ancient story. New Phytol. 204:289–96 [Google Scholar]
  98. Limpens E, Bisseling T. 98.  2014. Cyclops: a new vision on rhizobium-induced nodule organogenesis. Cell Host Microbe 15:127–29 [Google Scholar]
  99. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R. 99.  2003. LysM domain receptor kinases regulating rhizobial Nod factor–induced infection. Science 302:630–33 [Google Scholar]
  100. Lin K, Limpens E, Zhang Z, Ivanov S, Saunders DGO. 100.  et al. 2014. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus. PLOS Genet. 10:e1004078 [Google Scholar]
  101. Liu T, Liu Z, Song C, Hu Y, Han Z. 101.  et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–64 [Google Scholar]
  102. Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S. 102.  et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–65 [Google Scholar]
  103. Lopez-Gomez M, Sandal N, Stougaard J, Boller T. 103.  2012. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 63:393–401 [Google Scholar]
  104. López-Ráez JA, Verhage A, Fernández I, García JM, Azcón-Aguilar C. 104.  et al. 2010. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J. Exp. Bot. 61:2589–601 [Google Scholar]
  105. Lorquin J, Lortet G, Ferro M, Mear N, Boivin C. 105.  1997. Sinorhizobium teranga bv. acacia ORS1073 and Rhizobium sp. strain ORS1001, two distantly related Acacia-nodulating strains, produce similar Nod factors that are O carbamoylated, N methylated, and mainly sulfated. J. Bacteriol. 179:3079–83 [Google Scholar]
  106. Madsen EB, Antolín-Llovera M, Grossmann C, Ye J, Vieweg S. 106.  et al. 2011. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J. 65:404–17 [Google Scholar]
  107. Madsen EB, Madsen LH, Radutoiu S, Sato S, Kaneko T. 107.  et al. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–40 [Google Scholar]
  108. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB. 108.  et al. 2010. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat. Commun. doi:10.1038/ncomms1009 [Google Scholar]
  109. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A. 109.  et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63 [Google Scholar]
  110. Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U. 110.  2010. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22:3177–87 [Google Scholar]
  111. Marchetti M, Capela D, Glew M, Cruveiller S, Chane-Woon-Ming B. 111.  et al. 2010. Experimental evolution of a plant pathogen into a legume symbiont. PLOS Biol. 8:e1000280 [Google Scholar]
  112. Marchetti M, Jauneau A, Capela D, Remigi P, Gris C. 112.  et al. 2014. Shaping bacterial symbiosis with legumes by experimental evolution. Mol. Plant-Microbe Interact. 27:956–64 [Google Scholar]
  113. Marie C, Broughton WJ, Deakin WJ. 113.  2001. Rhizobium type III secretion systems: legume charmers or alarmers?. Curr. Opin. Plant Biol. 4:336–42 [Google Scholar]
  114. Martinez-Abarca F, Herrera-Cervera JA, Bueno P, Sanjuan J, Bisseling T, Olivares J. 114.  1998. Involvement of salicylic acid in the establishment of the Rhizobium meliloti–alfalfa symbiosis. Mol. Plant-Microbe Interact. 11:153–55 [Google Scholar]
  115. Masson-Boivin C, Giraud E, Perret X, Batut J. 115.  2009. Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes?. Trends Microbiol. 17:458–66 [Google Scholar]
  116. Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S. 116.  et al. 2010. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell 22:3474–88 [Google Scholar]
  117. Mellersh D, Parniske M. 117.  2006. Common symbiosis genes of Lotus japonicus are not required for intracellular accommodation of the rust fungus Uromyces loti. New Phytol. 170:641–44 [Google Scholar]
  118. Mendes R, Garbeva P, Raaijmakers JM. 118.  2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634–63 [Google Scholar]
  119. Messinese E, Mun J, Yeun LH, Jayaraman D, Rougé P. 119.  et al. 2007. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol. Plant-Microbe Interact. 20:912–21 [Google Scholar]
  120. Miransari M, Abrishamchi A, Khoshbakht K, Niknam V. 120.  2014. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit. Rev. Biotechnol. 34:123–33 [Google Scholar]
  121. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K. 121.  et al. 2007. Cerk1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:19613–18 [Google Scholar]
  122. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K. 122.  et al. 2014. Bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55:1864–72 [Google Scholar]
  123. Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA. 123.  et al. 2014. Nod factor receptors form heteromeric complexes and are essential for intracellular infection in Medicago nodules. Plant Cell 26:4188–99 [Google Scholar]
  124. Nadal M, Paszkowski U. 124.  2013. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 16:473–79 [Google Scholar]
  125. Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M. 125.  et al. 2011. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-rhizobium symbiosis. Plant J. 65:169–80 [Google Scholar]
  126. Narusaka Y, Shinya T, Narusaka M, Motoyama N, Shimada H. 126.  et al. 2013. Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal. Behav. 8:10–12 [Google Scholar]
  127. Navarro L, Bari R, Achard P, Lisón P, Nemri A. 127.  et al. 2008. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 18:650–55 [Google Scholar]
  128. Okazaki S, Kaneko T, Sato S, Saeki K. 128.  2013. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system. Proc. Natl. Acad. Sci. USA 110:17131–36 [Google Scholar]
  129. Oldroyd GED. 129.  2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252–63 [Google Scholar]
  130. Op den Camp R, Streng A, De Mita S, Cao Q, Polone E. 130.  et al. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. Science 331:909–12 [Google Scholar]
  131. Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A. 131.  et al. 2012. Nonlegume Parasponia andersonii deploys a broad rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol. Plant-Microbe Interact. 25:954–63 [Google Scholar]
  132. Paparella C, Savatin DV, Marti L, De Lorenzo G, Ferrari S. 132.  2014. The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 regulates the cross talk between immunity and abscisic acid responses. Plant Physiol. 165:262–76 [Google Scholar]
  133. Parniske M. 133.  2000. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?. Curr. Opin. Plant Biol. 3:320–28 [Google Scholar]
  134. Parniske M. 134.  2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763–75 [Google Scholar]
  135. Peiter E, Sun J, Heckmann AB, Venkateshwaran M, Riely BK. 135.  et al. 2007. The Medicago truncatula DMI1 protein modulates cytosolic calcium signaling. Plant Physiol. 145:192–203 [Google Scholar]
  136. Pel MJC, Pieterse CMJ. 136.  2013. Microbial recognition and evasion of host immunity. J. Exp. Bot. 64:1237–48 [Google Scholar]
  137. Perret X, Staehelin C, Broughton WJ. 137.  2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64:180–201 [Google Scholar]
  138. Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V. 138.  2010. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol. Chem. 285:28902–11 [Google Scholar]
  139. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 139.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  140. Pietraszewska-Bogiel A, Lefebvre B, Koini M a, Klaus-Heisen D, Takken FLW. 140.  et al. 2013. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLOS ONE 8:e65055 [Google Scholar]
  141. Popp C, Ott T. 141.  2011. Regulation of signal transduction and bacterial infection during root nodule symbiosis. Curr. Opin. Plant Biol. 14:458–67 [Google Scholar]
  142. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y. 142.  et al. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–92 [Google Scholar]
  143. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E. 143.  et al. 2007. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J. 26:3923–35 [Google Scholar]
  144. Raymond J, Siefert JL, Staples CR, Blankenship RE. 144.  2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21:541–54 [Google Scholar]
  145. Redecker D, Kodner R, Graham LE. 145.  2000. Glomalean fungi from the Ordovician. Science 289:1920–21 [Google Scholar]
  146. Remy W, Taylor TN, Hass H, Kerp H. 146.  1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. USA 91:11841–43 [Google Scholar]
  147. Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S. 147.  2015. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol. 206:497–500 [Google Scholar]
  148. Rey T, Nars A, Bonhomme M, Bottin A, Balzergue S. 148.  et al. 2013. Nfp, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytol. 198:875–86 [Google Scholar]
  149. Rey T, Schornack S. 149.  2013. Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biol. 14:121 [Google Scholar]
  150. Ried MK, Antolín-Llovera M, Parniske M. 150.  2014. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. Elife 25:3 [Google Scholar]
  151. Riely BK, Lougnon G, Ané J-M, Cook DR. 151.  2007. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J. 49:208–16 [Google Scholar]
  152. Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L. 152.  et al. 2011. Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant Physiol. 155:721–34 [Google Scholar]
  153. Saad MM, Crèvecoeur M, Masson-Boivin C, Perret X. 153.  2012. The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala. Appl. Environ. Microbiol. 78:7476–79 [Google Scholar]
  154. Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H. 154.  et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–24 [Google Scholar]
  155. Sawada H, Kuykendall LD, Young JM. 155.  2003. Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J. Gen. Microbiol. 49:155–79 [Google Scholar]
  156. Shibuya N, Minami E. 156.  2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59:223–33 [Google Scholar]
  157. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N. 157.  et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204–14 [Google Scholar]
  158. Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K. 158.  et al. 2012. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol. 53:1696–706 [Google Scholar]
  159. Sieberer BJ, Chabaud M, Fournier J, Timmers ACJ, Barker DG. 159.  2012. A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant J. 69:822–30 [Google Scholar]
  160. Singh S, Parniske M. 160.  2012. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. Curr. Opin. Plant Biol. 15:444–53 [Google Scholar]
  161. Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E. 161.  et al. 2007. Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol. 145:183–91 [Google Scholar]
  162. Smit P, Raedts J, Portyanko V, Debellé F, Gough C. 162.  et al. 2005. Nsp1 of the GRAS protein family is essential for rhizobial Nod factor–induced transcription. Science 308:1789–91 [Google Scholar]
  163. Spaink HP, Wijfjes AHM, Lugtenberg BJJ. 163.  1995. Rhizobium NodI and NodJ proteins play a role in the efficiency of secretion of lipochitin oligosaccharides. J. Appl. Microbiol. 177:6276–81 [Google Scholar]
  164. Sprent JI. 164.  2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174:11–25 [Google Scholar]
  165. Stacey G, Bickley C, Alvin M, Kim S. 165.  2006. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol. 141:1473–81 [Google Scholar]
  166. Stacey G, Shibuya N. 166.  1997. Chitin recognition in rice and legumes. Plant Soil 194:161–69 [Google Scholar]
  167. Stracke S, Kistner C, Yoshida S, Mulder L, Sato S. 167.  et al. 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–62 [Google Scholar]
  168. Streng A, Op den Camp R, Bisseling T, Geurts R. 168.  2011. Evolutionary origin of rhizobium Nod factor signaling. Plant Signal. Behav. 6:1510–14 [Google Scholar]
  169. Svistoonoff S, Hocher V, Gherbi H. 169.  2014. Actinorhizal root nodule symbioses: What is signalling telling on the origins of nodulation?. Curr. Opin. Plant Biol. 20:11–18 [Google Scholar]
  170. Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M. 170.  2013. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol. 54:1711–23 [Google Scholar]
  171. Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A. 171.  et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA 110:20117–22 [Google Scholar]
  172. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T. 172.  et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200 [Google Scholar]
  173. Vandamme P, Coenye T. 173.  2004. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int. J. Syst. Evol. Microbiol. 54:2285–89 [Google Scholar]
  174. Van Spronsen PC, Tak T, Rood AMM, van Brussel AAN, Kijne JW, Boot KJM. 174.  2003. Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Mol. Plant-Microbe Interact. 16:83–91 [Google Scholar]
  175. Wan J, Tanaka K, Zhang X-C, Son GH, Brechenmacher L. 175.  et al. 2012. Lyk4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. 160:396–406 [Google Scholar]
  176. Wan J, Zhang X-C, Neece D, Ramonell KM, Clough S. 176.  et al. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–81 [Google Scholar]
  177. Wang B, Yeun L, Xue J, Liu Y. 177.  2010. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol. 186:514–25 [Google Scholar]
  178. Wassem R, Kobayashi H, Kambara K, Le Quéré A, Walker GC. 178.  et al. 2008. TtsI regulates symbiotic genes in Rhizobium species NGR234 by binding to tts boxes. Mol. Microbiol. 68:736–48 [Google Scholar]
  179. Weerasinghe RR, Bird DM, Allen NS. 179.  2005. Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. Proc. Natl. Acad. Sci. USA 102:3147–52 [Google Scholar]
  180. Weiss D, Ori N. 180.  2007. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144:1240–46 [Google Scholar]
  181. Wild M, Davière J-M, Cheminant S, Regnault T, Baumberger N. 181.  et al. 2012. The Arabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–19 [Google Scholar]
  182. Willmann R, Lajunen HM, Erbs G, Newman M, Kolb D, Tsuda K. 182.  2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA 108:19824–29 [Google Scholar]
  183. Xiao T, Schilderink S, Moling S, Deinum EE, Kondorosi E. 183.  et al. 2014. Fate map of Medicago truncatula root nodules. Development 141:3517–28 [Google Scholar]
  184. Yang D, Yao J, Mei C, Tong X, Zeng L. 184.  et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc. Natl. Acad. Sci. USA 109:E1192–200 [Google Scholar]
  185. Yano K, Yoshida S, Müller J, Singh S, Banba M. 185.  et al. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc. Natl. Acad. Sci. USA 105:20540–45 [Google Scholar]
  186. Young JPW, Haukka KE. 186.  1996. Diversity and phylogeny of rhizobia. New Phytol. 133:87–94 [Google Scholar]
  187. Yu N, Luo D, Zhang X, Liu J, Wang W. 187.  et al. 2014. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res. 24:130–33 [Google Scholar]
  188. Zamioudis C, Pieterse. 188.  2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–50 [Google Scholar]
  189. Zhang X, Dong W, Sun J, Feng F, Deng Y. 189.  et al. 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J. 81:258–67 [Google Scholar]
  190. Zhang X-C, Wu X, Findley S, Wan J, Libault M. 190.  et al. 2007. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol. 144:623–36 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error