Crop pests and pathogens (CPPs) present a growing threat to food security and ecosystem management. The interactions between plants and their natural enemies are influenced by environmental conditions and thus global warming and climate change could affect CPP ranges and impact. Observations of changing CPP distributions over the twentieth century suggest that growing agricultural production and trade have been most important in disseminating CPPs, but there is some evidence for a latitudinal bias in range shifts that indicates a global warming signal. Species distribution models using climatic variables as drivers suggest that ranges will shift latitudinally in the future. The rapid spread of the Colorado potato beetle across Eurasia illustrates the importance of evolutionary adaptation, host distribution, and migration patterns in affecting the predictions of climate-based species distribution models. Understanding species range shifts in the framework of ecological niche theory may help to direct future research needs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams IP, Miano DW, Kinyua ZM, Wangai A, Kimani E. 1.  et al. 2013. Use of next-generation sequencing for the identification and characterization of maize chlorotic mottle virus and sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathol. 62:4741–49 [Google Scholar]
  2. Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF. 2.  et al. 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLOS Pathog. 10:1e1003903 [Google Scholar]
  3. Alyokhin A, Udalov M, Benkovskaya G. 3.  2013. The Colorado potato beetle. Insect Pests of Potato A Alyokhin, CVP Giordanengo 11–29 San Diego: Academic [Google Scholar]
  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 4.  2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:10535–44 [Google Scholar]
  5. Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL. 5.  et al. 2013. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3:9827–32 [Google Scholar]
  6. Aukema JE, McCullough DG, Holle BV, Liebhold AM, Britton K, Frankel SJ. 6.  2010. Historical accumulation of nonindigenous forest pests in the continental United States. BioScience 60:11886–97 [Google Scholar]
  7. Bacon SJ, Aebi A, Calanca P, Bacher S. 7.  2014. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers. Distrib. 20:84–94 [Google Scholar]
  8. Bacon SJ, Bacher S, Aebi A. 8.  2012. Gaps in border controls are related to quarantine alien insect invasions in Europe. PLOS ONE 7:10e47689 [Google Scholar]
  9. Baker RHA, Sansford CE, Jarvis CH, Cannon RJC, MacLeod A, Walters KFA. 9.  2000. The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric. Ecosyst. Environ. 82:1–357–71 [Google Scholar]
  10. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP. 10.  et al. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222:111810–19 [Google Scholar]
  11. Bebber DP, Holmes T, Gurr SJ. 11.  2014. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23:1398–407 [Google Scholar]
  12. Bebber DP, Holmes T, Smith D, Gurr SJ. 12.  2014. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202:3901–10 [Google Scholar]
  13. Bebber DP, Ramotowski MAT, Gurr SJ. 13.  2013. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3:985–88 [Google Scholar]
  14. Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K. 14.  et al. 2013. A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5:171–99 [Google Scholar]
  15. Beck J. 15.  2013. Predicting climate change effects on agriculture from ecological niche modeling: Who profits, who loses?. Clim. Change 116:2177–89 [Google Scholar]
  16. Berzitis EA, Minigan JN, Hallett RH, Newman JA. 16.  2014. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20:2778–92 [Google Scholar]
  17. Booth TH, Nix HA, Busby JR, Hutchinson MF. 17.  2014. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current maxent studies. Divers. Distrib. 20:11–9 [Google Scholar]
  18. Bregaglio S, Cappelli G, Donatelli M. 18.  2012. Evaluating the suitability of a generic fungal infection model for pest risk assessment studies. Ecol. Model. 247:58–63 [Google Scholar]
  19. Bregaglio S, Donatelli M, Confalonieri R. 19.  2013. Fungal infections of rice, wheat, and grape in Europe in 2030–2050. Agron. Sustain. Dev. 33:4767–76 [Google Scholar]
  20. Bregaglio S, Donatelli M, Confalonieri R, Acutis M, Orlandini S. 20.  2011. Multi metric evaluation of leaf wetness models for large-area application of plant disease models. Agric. For. Meteorol. 151:91163–72 [Google Scholar]
  21. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES. 21.  et al. 2011. The pace of shifting climate in marine and terrestrial ecosystems. Science 334:6056652–55 [Google Scholar]
  22. Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A. 22.  et al. 2014. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507:492–95 [Google Scholar]
  23. Carnegie AJ, Lidbetter JR. 23.  2012. Rapidly expanding host range for Puccinia psidii sensu lato in Australia. Australas. Plant Pathol. 41:113–29 [Google Scholar]
  24. Chakraborty S. 24.  2013. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19:71985–2000 [Google Scholar]
  25. Chakraborty S, Newton AC. 25.  2011. Climate change, plant diseases and food security: an overview. Plant Pathol. 60:12–14 [Google Scholar]
  26. Chakraborty S, Tiedemann AV, Teng PS. 26.  2000. Climate change: potential impact on plant diseases. Environ. Pollut. 108:3317–26 [Google Scholar]
  27. Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 27.  2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:60451024–26 [Google Scholar]
  28. Coakley SM, Scherm H, Chakraborty S. 28.  1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37:1399–426 [Google Scholar]
  29. Colwell RK, Rangel TF. 29.  2009. Hutchinson's duality: the once and future niche. Proc. Natl. Acad. Sci. USA 106:Suppl. 219651–58 [Google Scholar]
  30. Dark P, Gent H. 30.  2001. Pests and diseases of prehistoric crops: a yield “honeymoon” for early grain crops in Europe?. Oxf. J. Archaeol. 20:159–78 [Google Scholar]
  31. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P. 31.  et al. 2011. The era-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137:656553–97 [Google Scholar]
  32. Delgado R, Morillo E, Buitrón J, Bustamante A, Sotomayor I. 32.  2014. First report of Moko disease caused by Ralstonia solanacearum race 2 in plantain (Musa AAB) in Ecuador. New Dis. Rep. 30:23 [Google Scholar]
  33. Desprez-Loustau M-L, Courtecuisse R, Robin C, Husson C, Moreau P-A. 33.  et al. 2010. Species diversity and drivers of spread of alien fungi (sensu lato) in Europe with a particular focus on France. Biol. Invasions 12:1157–72 [Google Scholar]
  34. Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D. 34.  et al. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2:2121–24 [Google Scholar]
  35. De Waele D, Elsen A. 35.  2007. Challenges in tropical plant nematology. Annu. Rev. Phytopathol. 45:1457–85 [Google Scholar]
  36. Dobrowski SZ, Abatzoglou J, Swanson AK, Greenberg JA, Mynsberge AR. 36.  et al. 2013. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19:1241–51 [Google Scholar]
  37. Dormann CF, Schymanski SJ, Cabral J, Chuine I, Graham C. 37.  et al. 2012. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39:122119–31 [Google Scholar]
  38. Eastburn DM, McElrone AJ, Bilgin DD. 38.  2011. Influence of atmospheric and climatic change on plant-pathogen interactions. Plant Pathol. 60:154–69 [Google Scholar]
  39. Elith J, Kearney M, Phillips S. 39.  2010. The art of modelling range-shifting species. Methods Ecol. Evol. 1:4330–42 [Google Scholar]
  40. Elith J, Leathwick JR. 40.  2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:1677–97 [Google Scholar]
  41. Elith J, Simpson J, Hirsch M, Burgman MA. 41.  2013. Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust. Australas. Plant Pathol. 42:143–51 [Google Scholar]
  42. Eschen R, Holmes T, Smith D, Roques A, Santini A, Kenis M. 42.  2014. Likelihood of establishment of tree pests and diseases based on their worldwide occurrence as determined by hierarchical cluster analysis. For. Ecol. Manag. 315:103–11 [Google Scholar]
  43. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K. 43.  et al. 2011. Socioeconomic legacy yields an invasion debt. Proc. Natl. Acad. Sci. USA 108:1203–7 [Google Scholar]
  44. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 44.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:7393186–94 [Google Scholar]
  45. Fitt BDL, Fraaije BA, Chandramohan P, Shaw MW. 45.  2011. Impacts of changing air composition on severity of arable crop disease epidemics. Plant Pathol. 60:144–53 [Google Scholar]
  46. Garrett KA. 46.  2013. Agricultural impacts: big data insights into pest spread. Nat. Clim. Change 3:11955–57 [Google Scholar]
  47. Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE. 47.  2006. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44:1489–509 [Google Scholar]
  48. Ghini R, Bettiol W, Hamada E. 48.  2011. Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol. 60:1122–32 [Google Scholar]
  49. Gijon-Hernandez A, Teliz-Ortiz D, Mejia-Sanchez D, De La Torre-Almaraz R, Cardenas-Soriano E. 49.  et al. 2011. Leaf stripe and stem rot caused by Burkholderia gladioli, a new maize disease in Mexico. J. Phytopathol. 159:5377–81 [Google Scholar]
  50. Gilioli G, Pasquali S, Parisi S, Winter S. 50.  2014. Modelling the potential distribution of Bemisia tabaci in Europe in light of the climate change scenario. Pest Manag. Sci. 70:101611–23 [Google Scholar]
  51. Gouache D, Bensadoun A, Brun F, Pagé C, Makowski D, Wallach D. 51.  2013. Modelling climate change impact on Septoria tritici blotch (stb) in France: accounting for climate model and disease model uncertainty. Agric. For. Meteorol. 170:242–52 [Google Scholar]
  52. Grapputo A, Boman S, Lindström L, Lyytinen A, Mappes J. 52.  2005. The voyage of an invasive species across continents: genetic diversity of North American and European Colorado potato beetle populations. Mol. Ecol. 14:144207–19 [Google Scholar]
  53. Guo Q, Sax DF, Qian H, Early R. 53.  2012. Latitudinal shifts of introduced species: possible causes and implications. Biol. Invasions 14:3547–56 [Google Scholar]
  54. Hansen J, Ruedy R, Sato M, Lo K. 54.  2010. Global surface temperature change. Rev. Geophys. 48:4RG4004 [Google Scholar]
  55. Harris I, Jones PD, Osborn TJ, Lister DH. 55.  2014. Updated high-resolution grids of monthly climatic observations: the CRU TS3.10 dataset. Int. J. Climatol. 34:3623–42 [Google Scholar]
  56. Helfer S. 56.  2013. Rust fungi and global change. New Phytol. 201:770–80 [Google Scholar]
  57. Hiiesaar K, Jõgar K, Williams IH, Kruus E, Metspalu L. 57.  et al. 2013. Factors affecting development and overwintering of second generation Colorado potato beetle (Coleoptera: Chrysomelidae) in Estonia in 2010. Acta Agric. Scand. Sect. B 63:6506–15 [Google Scholar]
  58. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 58.  2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25:151965–78 [Google Scholar]
  59. Huang D, Haack RA, Zhang R. 59.  2011. Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLOS ONE 6:9e24733 [Google Scholar]
  60. Huang D, Zhang R, Kim KC, Suarez AV. 60.  2012. Spatial pattern and determinants of the first detection locations of invasive alien species in mainland China. PLOS ONE 7:2e31734 [Google Scholar]
  61. Hubert JG, Pinel-Galzi A, Dibwe D, Cinyabuguma E, Kaboré A. 61.  et al. 2013. First report of Rice yellow mottle virus on rice in the Democratic Republic of Congo. Plant Dis. 97:121664 [Google Scholar]
  62. 62. IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge Univ. Press1,535 [Google Scholar]
  63. Izzo VM, Armstrong J, Hawthorne D, Chen Y. 63.  2014. Time of the season: the effect of host photoperiodism on diapause induction in an insect herbivore, Leptinotarsa decemlineata. Ecol. Entomol. 39:175–82 [Google Scholar]
  64. Izzo VM, Hawthorne DJ, Chen YH. 64.  2014. Geographic variation in winter hardiness of a common agricultural pest, Leptinotarsa decemlineata, the Colorado potato beetle. Evol. Ecol. 28:3505–20 [Google Scholar]
  65. Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A. 65.  2011. Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLOS ONE 6:9e24528 [Google Scholar]
  66. Jeger MJ, Pautasso M. 66.  2008. Plant disease and global change: the importance of long-term data sets. New Phytol. 177:18–11 [Google Scholar]
  67. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP. 67.  2012. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J. Geophys. Res. Atmos. 117:D5D05127 [Google Scholar]
  68. Jönsson AM, Pulatov B, Linderson M-L, Hall K. 68.  2013. Modelling as a tool for analysing the temperature-dependent future of the Colorado potato beetle in Europe. Glob. Change Biol. 19:1043–55 [Google Scholar]
  69. Juroszek P, von Tiedemann A. 69.  2013. Plant pathogens, insect pests and weeds in a changing global climate: a review of approaches, challenges, research gaps, key studies and concepts. J. Agric. Sci. 151:163–88 [Google Scholar]
  70. Kearney M, Porter W. 70.  2009. Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecol. Lett. 12:4334–50 [Google Scholar]
  71. Kocmánková E, Trnka M, Eitzinger J, Dubrovský M, Štěpánek P. 71.  et al. 2011. Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: a novel approach. J. Agric. Sci. 149:185–95 [Google Scholar]
  72. Kocmánková E, Trnka M, Eitzinger J, Formayer H, Dubrovský M. 72.  et al. 2010. Estimating the impact of climate change on the occurrence of selected pests in the Central European region. Clim. Res. 44:195–105 [Google Scholar]
  73. Kriticos DJ, Le Maitre DC, Webber BL. 73.  2013. Essential elements of discourse for advancing the modelling of species' current and potential distributions. J. Biogeogr. 40:3608–11 [Google Scholar]
  74. Kriticos DJ, Leriche A. 74.  2010. The effects of climate data precision on fitting and projecting species niche models. Ecography 33:1115–27 [Google Scholar]
  75. Kriticos DJ, Morin L, Leriche A, Anderson RC, Caley P. 75.  2013. Combining a climatic niche model of an invasive fungus with its host species distributions to identify risks to natural assets: Puccinia psidii sensu lato in Australia. PLOS ONE 8:5e64479 [Google Scholar]
  76. Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I. 76.  et al. 2012. CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3:153–64 [Google Scholar]
  77. Kummu M, Varis O. 77.  2011. The world by latitudes: a global analysis of human population, development level and environment across the north-south axis over the past half century. Appl. Geogr. 31:2495–507 [Google Scholar]
  78. Lantschner MV, Villacide JM, Garnas JR, Croft P, Carnegie AJ. 78.  et al. 2014. Temperature explains variable spread rates of the invasive woodwasp Sirex noctilio in the Southern Hemisphere. Biol. Invasions 16:2329–39 [Google Scholar]
  79. Launay M, Caubel J, Bourgeois G, Huard F, Garcia de Cortazar-Atauri I. 79.  et al. 2014. Climatic indicators for crop infection risk: application to climate change impacts on five major foliar fungal diseases in northern France. Agric. Ecosyst. Environ. 197:147–58 [Google Scholar]
  80. Lawrimore JH, Menne MJ, Gleason BE, Williams CN, Wuertz DB. 80.  et al. 2011. An overview of the global historical climatology network monthly mean temperature data set, version 3. J. Geophys. Res. 116:D19121 [Google Scholar]
  81. Lehmann P, Lyytinen A, Piiroinen S, Lindström L. 81.  2014. Northward range expansion requires synchronization of both overwintering behaviour and physiology with photoperiod in the invasive Colorado potato beetle (Leptinotarsa decemlineata). Oecologia 176:157–68 [Google Scholar]
  82. Lehmann P, Piiroinen S, Kankare M, Lyytinen A, Paljakka M, Lindström L. 82.  2014. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations. Insect Mol. Biol. 23:5566–78 [Google Scholar]
  83. Leroux SJ, Larrivée M, Boucher-Lalonde V, Hurford A, Zuloaga J. 83.  et al. 2013. Mechanistic models for the spatial spread of species under climate change. Ecol. Appl. 23:4815–28 [Google Scholar]
  84. Levine UY, Teal TK, Robertson GP, Schmidt TM. 84.  2011. Agriculture's impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J 5:101683–91 [Google Scholar]
  85. Li C, Liu H, Huang F, Cheng D-F, Wang J-J. 85.  et al. 2014. Effect of temperature on the occurrence and distribution of Colorado potato beetle (Coleoptera: Chrysomelidae) in China. Environ. Entomol. 43:2511–19 [Google Scholar]
  86. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. 86.  2012. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10:3135–43 [Google Scholar]
  87. Liebhold AM, McCullough DG, Blackburn LM, Frankel SJ, Von Holle B, Aukema JE. 87.  2013. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 19:91208–16 [Google Scholar]
  88. Liu N, Li Y, Zhang R. 88.  2012. Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: dispersal, occurrence, and economic impact. Entomol. Exp. Appl. 143:3207–17 [Google Scholar]
  89. Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 89.  2009. The velocity of climate change. Nature 462:72761052–55 [Google Scholar]
  90. Lokossou B, Gnanvossou D, Ayodeji O, Akplogan F, Safiore A. 90.  et al. 2012. Occurrence of Banana bunchy top virus in banana and plantain (Musa sp.) in Benin. New Dis. Rep. 25:13 [Google Scholar]
  91. Luck J, Spackman M, Freeman A, Trębicki P, Griffiths W. 91.  et al. 2011. Climate change and diseases of food crops. Plant Pathol. 60:1113–21 [Google Scholar]
  92. Lukanda M, Owati A, Ogunsanya P, Valimunzigha K, Katsongo K. 92.  et al. 2014. First report of Maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 98:101448 [Google Scholar]
  93. Lyytinen A, Boman S, Grapputo A, Lindström L, Mappes J. 93.  2009. Cold tolerance during larval development: effects on the thermal distribution limits of Leptinotarsa decemlineata. Entomol. Exp. Appl. 133:192–99 [Google Scholar]
  94. MacLeod A, Pautasso M, Jeger MJ, Haines-Young R. 94.  2010. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2:49–70 [Google Scholar]
  95. Maejima K, Hoshi H, Hashimoto M, Himeno M, Kawanishi T. 95.  et al. 2010. First report of Plum pox virus infecting Japanese apricot (Prunus mume Sieb. et Zucc.) in Japan. J. Gen. Plant Pathol. 76:3229–31 [Google Scholar]
  96. Magarey RD, Fowler GA, Borchert DM, Sutton TB, Colunga-Garcia M, Simpson JA. 96.  2007. Nappfast: an internet system for the weather-based mapping of plant pathogens. Plant Dis. 91:4336–45 [Google Scholar]
  97. Magarey RD, Sutton TB, Thayer CL. 97.  2005. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 95:192–100 [Google Scholar]
  98. Makowski D, Bancal R, Vicent A. 98.  2011. Estimation of leaf wetness duration requirements of foliar fungal pathogens with uncertain data: an application to Mycosphaerella nawae. Phytopathology 101:111346–54 [Google Scholar]
  99. Manici LM, Bregaglio S, Fumagalli D, Donatelli M. 99.  2014. Modelling soil borne fungal pathogens of arable crops under climate change. Int. J. Biometeorol. 58:102071–83 [Google Scholar]
  100. Matsuura K, Willmott CJ. 100.  2012. Terrestrial air temperature: 1900–2010 gridded monthly time series version 3.01. Glob. Air Temp. Archive. http://climate.geog.udel.edu/∼climate/html_pages/Global2011/README.GlobalTsT2011.html [Google Scholar]
  101. Morice CP, Kennedy JJ, Rayner NA, Jones PD. 101.  2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmos. 117:D8D08101 [Google Scholar]
  102. Morin L, Aveyard R, Lidbetter JR, Wilson PG. 102.  2012. Investigating the host-range of the rust fungus Puccinia psidii sensu lato across tribes of the family Myrtaceae present in Australia. PLOS ONE 7:4e35434 [Google Scholar]
  103. Mosier TM, Hill DF, Sharp KV. 103.  2014. 30-arcsecond monthly climate surfaces with global land coverage. Int. J. Climatol. 34:72175–88 [Google Scholar]
  104. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK. 104.  et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463:7282747–56 [Google Scholar]
  105. 105. Natl. Cent. Atmos. Res 2014. Climate Data Guide. Boulder, CO: NCAR https://climatedataguide.ucar.edu/ [Google Scholar]
  106. Niblett CL, Claflin LE. 106.  1978. Corn lethal necrosis: a new virus disease of corn in Kansas. Plant Dis. Rep. 62:115–19 [Google Scholar]
  107. Paini DR, Worner SP, Cook DC, De Barro PJ, Thomas MB. 107.  2010. Using a self-organizing map to predict invasive species: sensitivity to data errors and a comparison with expert opinion. J. Appl. Ecol. 47:2290–98 [Google Scholar]
  108. Paini DR, Worner SP, Cook DC, De Barro PJ, Thomas MB. 108.  2010. Threat of invasive pests from within national borders. Nat. Commun. 1:115 [Google Scholar]
  109. Pardey PG, Beddow JM, Kriticos DJ, Hurley TM, Park RF. 109.  et al. 2013. Right-sizing stem-rust research. Science 340:6129147–48 [Google Scholar]
  110. Parmesan C. 110.  2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637–69 [Google Scholar]
  111. Pasiecznik NM, Smith IM, Watson GW, Brunt AA, Ritchie B, Charles LMF. 111.  2005. CABI/EPPO distribution maps of plant pests and plant diseases and their important role in plant quarantine. EPPO Bull. 35:11–7 [Google Scholar]
  112. Pautasso M, Döring TF, Garbelotto M, Pellis L, Jeger MJ. 112.  2012. Impacts of climate change on plant diseases: opinions and trends. Eur. J. Plant Pathol. 133:1295–313 [Google Scholar]
  113. Pearson RG, Dawson TP. 113.  2003. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12:5361–71 [Google Scholar]
  114. Phillips SJ, Anderson RP, Schapire RE. 114.  2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:3–4231–59 [Google Scholar]
  115. Piiroinen S, Ketola T, Lyytinen A, Lindström L. 115.  2011. Energy use, diapause behaviour and northern range expansion potential in the invasive Colorado potato beetle. Funct. Ecol. 25:3527–36 [Google Scholar]
  116. Popova EN. 116.  2014. The influence of climatic changes on range expansion and phenology of the Colorado potato beetle (Leptinotarsa decemlineata, Coleoptera, Chrysomelidae) in the territory of Russia. Entomol. Rev. 94:5643–53 [Google Scholar]
  117. Porter JH, Parry ML, Carter TR. 117.  1991. The potential effects of climatic change on agricultural insect pests. Agric. For. Meteorol. 57:1–3221–40 [Google Scholar]
  118. Portmann FT, Siebert S, Döll P. 118.  2010. Mirca2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 24:GB1011 [Google Scholar]
  119. 119. ProMED-mail 2010. Panama disease, banana - India: (TN) new strain Arch. 20101223.4510, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  120. 120. ProMED-mail 2011. Bacterial wilt, banana - Burundi: 1st report. Arch. 20110502.1360, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  121. 121. ProMED-mail 2011. Black sigatoka, banana - Martinique: 1st report. Arch. 20110317.0843, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  122. 122. ProMED-mail 2011. Rough dwarf disease, maize - Kenya: 1st report Arch. 20110204.0407, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  123. 123. ProMED-mail 2012. Cercospora leaf spot, sugarbeet - USA: (MI, ND) new strains Arch. 20120216.1043062, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  124. 124. ProMED-mail 2012. Huanglongbing, citrus - USA: (CA) Arch. 20120404.1089672, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  125. 125. ProMED-mail 2013. Banana freckle, Cavendish strain - Australia: 1st report (NT) Arch. 20130829.1910083, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  126. 126. ProMED-mail 2013. Stewart's wilt, maize - Argentina: 1st report (CB) Arch. 20130603.1752215, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  127. 127. ProMED-mail 2013. Panama disease TR4, banana - Africa: 1st report, Mozambique Arch. 20131206.2095450, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  128. 128. ProMED-mail 2013. Panama disease TR4, banana - Middle East: 1st report, Jordan. Arch. 20131107.2044265, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  129. 129. ProMED-mail 2014. Barley yellow dwarf virus - PAS, wheat - Turkey. Arch. 20140616.2543025, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  130. 130. ProMED-mail 2014. Leaf rust, coffee - Central America: high altitude strain, update Arch. 20140604.2518313, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  131. 131. ProMED-mail 2014. Septoria, wheat - Australia: new strains, alert. Arch. 20140313.2329774, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  132. 132. ProMED-mail 2014. Septoria blotch, wheat - New Zealand: new strains, strobilurin resistance. Arch. 20140417.2410219, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  133. 133. ProMED-mail 2014. Viral yellows, oilseed rape - Australia (02): (VI, NS) Arch. 20140718.2619590, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  134. 134. ProMED-mail 2014. Xylella leaf scorch, olive & almond - Europe (02): (southern) Arch. 20140820.2708739, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  135. 135. ProMED-mail 2015. Huanglongbing vector, citrus - Europe: 1st report, Spain (GA) Arch. 20150213.3163555, Int. Soc. Infect. Dis., Brookline, MA [Google Scholar]
  136. Pulatov B, Hall K, Linderson M, Jönsson A. 136.  2014. Effect of climate change on the potential spread of the Colorado potato beetle in Scandinavia: an ensemble approach. Clim. Res. 62:115–24 [Google Scholar]
  137. Pyšek P, Jarošík V, Hulme PE, Kühn I, Wild J. 137.  et al. 2010. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 107:2712157–62 [Google Scholar]
  138. Pyšek P, Richardson DM, Pergl J, Jarošík V, Sixtová Z, Weber E. 138.  2008. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23:5237–44 [Google Scholar]
  139. Rafoss T, Sæthre M-G. 139.  2003. Spatial and temporal distribution of bioclimatic potential for the codling moth and the Colorado potato beetle in Norway: model predictions versus climate and field data from the 1990s. Agric. For. Entomol. 5:175–86 [Google Scholar]
  140. Robinet C, Kehlenbeck H, Kriticos DJ, Baker RHA, Battisti A. 140.  et al. 2012. A suite of models to support the quantitative assessment of spread in pest risk analysis. PLOS ONE 7:10e43366 [Google Scholar]
  141. Rogelj J, Meinshausen M, Knutti R. 141.  2012. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2:4248–53 [Google Scholar]
  142. Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ. 142.  2013. The myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus 4:1155–59 [Google Scholar]
  143. Rubel F, Kottek M. 143.  2010. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 19:2135–41 [Google Scholar]
  144. Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P. 144.  et al. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 197:1238–50 [Google Scholar]
  145. Schymanski SJ, Dormann CF, Cabral J, Chuine I, Graham CH. 145.  et al. 2013. Process, correlation and parameter fitting in species distribution models: a response to Kriticos et al.. J. Biogeogr. 40:3612–13 [Google Scholar]
  146. Shaw MW, Osborne TM. 146.  2011. Geographic distribution of plant pathogens in response to climate change. Plant Pathol. 60:131–43 [Google Scholar]
  147. Siegert NW, McCullough DG, Liebhold AM, Telewski FW. 147.  2014. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers. Distrib. 20:7847–58 [Google Scholar]
  148. Šmatas R, Semaškienė R, Lazauskas S. 148.  2008. The impact of changing climate conditions on the occurrence of the Colorado potato beetle (Leptinotarsa decemlieata). Zemdirb. Agric. 95:235–41 [Google Scholar]
  149. Soberón J. 149.  2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10:121115–23 [Google Scholar]
  150. Soberón J, Nakamura M. 150.  2009. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl. Acad. Sci. USA 106:Suppl. 219644–50 [Google Scholar]
  151. Soberón J, Peterson AT. 151.  2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodivers. Inform. 2:1–10 [Google Scholar]
  152. Sparks AH, Forbes GA, Hijmans RJ, Garrett KA. 152.  2014. Climate change may have limited effect on global risk of potato late blight. Glob. Change Biol. 20:3621–31 [Google Scholar]
  153. Steffen W, Crutzen PJ, McNeill JR. 153.  2007. The Anthropocene: Are humans now overwhelming the great forces of nature. AMBIO 36:8614–21 [Google Scholar]
  154. Sutherst RW. 154.  2014. Pest species distribution modelling: origins and lessons from history. Biol. Invasions 16:239–56 [Google Scholar]
  155. Sutherst RW, Bourne AS. 155.  2009. Modelling non-equilibrium distributions of invasive species: a tale of two modelling paradigms. Biol. Invasions 11:61231–37 [Google Scholar]
  156. Sutherst RW, Constable F, Finlay KJ, Harrington R, Luck J, Zalucki MP. 156.  2011. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2:2220–37 [Google Scholar]
  157. Sutherst RW, Maywald GF, Bottomley W. 157.  1991. From CLIMEX to PESKY, a generic expert system for pest risk assessment. EPPO Bull. 21:3595–608 [Google Scholar]
  158. Sutrave S, Scoglio C, Isard SA, Hutchinson JMS, Garrett KA. 158.  2012. Identifying highly connected counties compensates for resource limitations when evaluating national spread of an invasive pathogen. PLOS ONE 7:6e37793 [Google Scholar]
  159. Svobodová E, Trnka M, Dubrovský M, Semerádová D, Eitzinger J. 159.  et al. 2014. Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Manag. Sci. 70:5708–15 [Google Scholar]
  160. Thomson LJ, Macfadyen S, Hoffmann AA. 160.  2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 52:3296–306 [Google Scholar]
  161. Trnka M, Rötter RP, Ruiz-Ramos M, Kersebaum KC, Olesen JE. 161.  et al. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Change 4:7637–43 [Google Scholar]
  162. Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RHA. 162.  et al. 2010. Pest risk maps for invasive alien species: a roadmap for improvement. BioScience 60:5349–62 [Google Scholar]
  163. Wangai AW, Redinbaugh MG, Kinyua ZM, Miano DW, Leley PK. 163.  et al. 2012. First report of Maize chlorotic mottle virus and maize lethal necrosis in Kenya. Plant Dis. 96:101582 [Google Scholar]
  164. Wójtowicz A, Wójtowicz M, Sigvald R. 164.  2013. Forecasting the influence of temperature increase on the development of the Colorado potato beetle [Leptinotarsa decemlineata (Say)] in the Wielkopolska region of Poland. Acta Agric. Scand. Sect. B 63:2136–46 [Google Scholar]
  165. Worner SP. 165.  1988. Ecoclimatic assessment of potential establishment of exotic pests. J. Econ. Entomol. 81:4973–83 [Google Scholar]
  166. Worner SP, Gevrey M. 166.  2006. Modelling global insect pest species assemblages to determine risk of invasion. J. Appl. Ecol. 43:5858–67 [Google Scholar]
  167. Zhan J, McDonald BA. 167.  2011. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol. Ecol. 20:81689–701 [Google Scholar]
  168. Zhu K, Woodall CW, Clark JS. 168.  2012. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18:1042–52 [Google Scholar]
  169. Ziska LH, Blumenthal DM, Runion GB, Hunt ER Jr, Diaz-Soltero H. 169.  2011. Invasive species and climate change: an agronomic perspective. Clim. Change 105:1–213–42 [Google Scholar]
  170. Zulperi D, Sijam K. 170.  2014. First report of Ralstonia solanacearum race 2 biovar 1 causing Moko disease of banana in Malaysia. Plant Dis. 98:275 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error