1932

Abstract

Banana ( spp.) is one of the world's most valuable primary agricultural commodities. Exported fruit are key commodities in several producing countries yet make up less than 15% of the total annual output of 145 million metric tons (MMT). Transnational exporters market fruit of the Cavendish cultivars, which are usually produced in large plantations with fixed infrastructures and high inputs of fertilizers, pesticides, and irrigation. In contrast, smallholders grow diverse cultivars, often for domestic markets, with minimal inputs. Diseases are serious constraints for export as well as smallholder production. Although black leaf streak disease (BLSD), which is present throughout Asian, African, and American production areas, is a primary global concern, other diseases with limited distributions, notably tropical race 4 of Fusarium wilt, rival its impact. Here, we summarize recent developments on the most significant of these problems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080614-120305
2015-08-04
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/phyto/53/1/annurev-phyto-080614-120305.html?itemId=/content/journals/10.1146/annurev-phyto-080614-120305&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar Morán JF. 1.  2013. Improvement of Cavendish banana cultivars through conventional breeding. Acta Hortic. 986:205–8 [Google Scholar]
  2. Allen RN. 2.  1978. Spread of bunchy top disease in established banana plantations. Aust. J. Agric. Res. 29:1223–33 [Google Scholar]
  3. Allen RN. 3.  1987. Further studies on epidemiological factors influencing control of banana bunchy top disease, and evaluation of control measures by computer simulation. Aust. J Agric. Res. 38:373–82 [Google Scholar]
  4. Allen RN, Barnier NC. 4.  1977. The spread of bunchy top disease between banana plantations in the Tweed River District during 1975–76. NSW Department of Agriculture, Biology Branch Plant Disease Survey (1975–76)27–28 Sydney: N.S.W. Dept. Agric. [Google Scholar]
  5. Alvarez JM. 5.  1997. Introduccion, evaluacion, multiplicacion y diseminacion de hibridos FHIA en Cuba. INFOMUSA 6:10–14 [Google Scholar]
  6. Alvarez JM, Rosales FE. 6.  2008. Identification and Characterization Guide for FHIA Banana and Plantain Hybrids Montpellier, Fr: Bioversity Int. [Google Scholar]
  7. Amil AF, Heaney SP, Stanger C, Shaw MW. 7.  2007. Dynamics of QoI sensitivity in Mycosphaerella fijiensis in Costa Rica during 2000 to 2003. Phytopathology 97:1451–57 [Google Scholar]
  8. Aritua V, Parkinson N, Thwaites R, Heeney JV, Jones DR. 8.  2008. Characterization of the Xanthomonas sp. causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathol. 57:170–77 [Google Scholar]
  9. Arzanlou M, Groenewald JZ, Fullerton RA, Abeln ECA, Carlier J. 9.  et al. 2008. Multiple gene genealogies and phenotypic characters differentiate several novel species of Mycosphaerella and related anamorphs on banana. Persoonia 20:19–37 [Google Scholar]
  10. Baayen RP, O'Donnell K, Bonants PJM, Cigelnik E, Kroon LPNM. 10.  et al. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900 [Google Scholar]
  11. 11. BananaLink 2013. http://www.bananalink.org.uk/
  12. Bennett CPA, Jones P, Hunt P. 12.  1987. Isolation, culture and ultrastructure of a xylem-limited bacterium associated with Sumatra disease of cloves. Plant Pathol. 36:45–52 [Google Scholar]
  13. Blomme G, Ploetz R, Jones D, De Langhe E, Price N. 13.  et al. 2013. A historical overview of the appearance and spread of Musa pests and diseases on the African continent: highlighting the importance of clean Musa planting materials and quarantine measures. Ann. Appl. Biol. 162:4–26 [Google Scholar]
  14. Brent KJ, Hollomon DW. 14.  2007. Fungicide Resistance: The Assessment of Risk Brussels, Belgium: FRAC, 2nd ed.. [Google Scholar]
  15. Brown JKM, Hovmøller MS. 15.  2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–41 [Google Scholar]
  16. Buddenhagen IW. 16.  1993. Whence and whither banana research and development. Biotechnology Applications for Banana and Plantain Improvement12–26 Montpellier, Fr: Bioversity Int. [Google Scholar]
  17. Buddenhagen IW. 17.  1994. Moko disease. Compendium of Tropical Fruit Diseases RC Ploetz 15–16 St. Paul, MN: APS Press [Google Scholar]
  18. Buddenhagen IW. 18.  2009. Blood bacterial wilt of banana: history, field biology and solution. Acta Hortic. 828:57–68 [Google Scholar]
  19. Butler D. 19.  2013. Fungus threatens top banana. Nature 504:195–96 [Google Scholar]
  20. Cañas-Gutiérrez GP, Angarita-Velásquez MJ, Restrepo-Flórez JM, Rodríguez P, Moreno CX, Arango R. 20.  2009. Analysis of the CYP51 gene and encoded protein in propiconazole-resistant isolates of Mycosphaerella fijiensis. Pest Manag. Sci. 65:892–99 [Google Scholar]
  21. Carr MKV. 21.  2009. The water relations and irrigation requirements of banana (Musa spp.). Exp. Agric. 45:333–71 [Google Scholar]
  22. Castellani E. 22.  1939. Su un marciume dell' Ensete. L'Agric. Colon. Firenze 33:297–300 [Google Scholar]
  23. Cellier G, Remenant B, Chiroleu F, Lefeuvre P, Prior P. 23.  2012. Phylogeny and population structure of brown rot– and Moko disease–causing strains of Ralstonia solanacearum phylotype II. Appl. Environ. Microbiol. 78:2367–75 [Google Scholar]
  24. Chabannes M, Baurens F-C, Duroy P-O, Bocs S, Vernerey M-S. 24.  et al. 2013. Three infectious viral species lying in wait in the banana genome. J. Virol. 87:8624–37 [Google Scholar]
  25. Chong P, Arango R, Stergiopoulos I, Guzman I, Crous PW. 25.  et al. 2010. Analysis of azole fungicide resistance in Mycosphaerella fijiensis, causal agent of black Sigatoka. Modern Fungicides and Antifungal Compounds VI, Proc. Int. Reinhardsbrunn Symp., 16th, Friedrichroda, Germ. April 25–29 HW Dehne, HB Deising, U Gisi, KH Kuck, PE Russell, H Lyr 217–22 Braunschweig, Germ: Lebenshilfe [Google Scholar]
  26. Churchill ALC. 26.  2011. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Mol. Plant Pathol. 12:307–28 [Google Scholar]
  27. Cook DC, Liu S, Edwards J, Villalta ON, Aurambout J-P. 27.  et al. 2012. Predicting the benefits of Banana bunchy top virus exclusion from commercial plantations in Australia. PLOS ONE 7:e42391 [Google Scholar]
  28. Conde L, Waalwijk C, Canto-Canché BB, Kema GHJ, Crous PW. 28.  et al. 2007. Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana. Mol. Plant Pathol. 8:111–20 [Google Scholar]
  29. Dadzie BK. 29.  1998. Post-Harvest Characteristics of Black Sigatoka Resistant Banana, Cooking Banana and Plantian Hybrids Rome, Italy: Int. Plant Gen. Resour. Inst. [Google Scholar]
  30. Daniells JW. 30.  2011. Combating banana wilts: What do resistant cultivars have to offer?. Acta Hortic. 897:403–11 [Google Scholar]
  31. Davis RI, Fegan M, Tjahjono B, Rahamma S. 31.  2000. An outbreak of blood disease of banana in Irian Jaya, Indonesia. Aust. Plant Pathol. 29:152 [Google Scholar]
  32. Davis RI, Kokoa P, Jones LM, Mackie J, Constable FE. 32.  et al. 2012. A new wilt disease of banana plants associated with phytoplasmas in Papua New Guinea (PNG). Aust. Plant Dis. Notes 7:91–97 [Google Scholar]
  33. Deffeyes KS. 33.  2008. Hubbert's Peak: The Impending World Oil Shortage Princeton, NJ: Princeton Univ. Press [Google Scholar]
  34. de Lapeyre de Bellaire L, Foure E, Abadie C, Carlier J. 34.  2010. Black leaf streak disease is challenging the banana industry. Fruits 65:327–42 [Google Scholar]
  35. D'Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F. 35.  et al. 2012. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–17 [Google Scholar]
  36. di Pietro A, Madrid MP, Caracual Z, Delgado-Jarana J, Roncero MIG. 36.  2003. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol. Plant Pathol. 4:315–25 [Google Scholar]
  37. Dita MA, Waalwijk C, Buddenhagen IW, Souza MT Jr, Kema GHJ. 37.  2010. A molecular diagnostic for tropical race 4 of the banana Fusarium wilt pathogen. Plant Pathol. 59:348–57 [Google Scholar]
  38. Djatnika I, Sutanto A. 38.  2003. Current status of banana R&D in Indonesia. Advancing Banana and Plantain R&D in Asia and the Pacific 11 AB Molina, JE Eusebio, VN Roa, I Van den Bergh, MAG Maghuyop 93–98 Laguna, Philipp: Int. Netw. Improv. Banana Plantain [Google Scholar]
  39. Dzomeku BM, Darkey SK, Bam RK, Arikomah AA. 39.  2007. Sensory evaluation of four FHIA tetraploid hybrids for kaakle (a local dish) in Ghana. J. Plant Sci. 2:640–43 [Google Scholar]
  40. Eden-Green S. 40.  2004. Focus on bacterial wilt. How can the advance of banana Xanthomonas wilt be halted?. INFOMUSA 13:38–41 [Google Scholar]
  41. Eden-Green SJ, Sastraatmadja H. 41.  1990. Blood disease in Indonesia. FAO Plant Prot. Bull. 38:49–50 [Google Scholar]
  42. 42. FAOSTAT 2013. http://faostat.fao.org/
  43. Fegan M, Prior P. 43.  2006. Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana. Aust. Plant Pathol. 35:93–101 [Google Scholar]
  44. Ferreira SA, Trujillo EE, Ogata DY. 44.  1989. Bunchy top disease of bananas Commod. Fact Sheet BAN-4(A) FRUIT, Univ. Hawaii, Manoa [Google Scholar]
  45. 45. FHIA 2014. http://www.fhia.org.hn/
  46. Fraser-Smith S, Czislowski E, Meldrum RA, Zander M, O'Neill W. 46.  et al. 2014. Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathol. 63:1044–52 [Google Scholar]
  47. García-Bastidas FA, Ordonez N, Konkol J, Al Qasem M, Naser Z. 47.  et al. 2014. First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Dis. 98:694 [Google Scholar]
  48. Gäumann EA. 48.  1921. Over een bacterieele vaatbundelziekte der bananen in Netherderlandisch-Indie. (On a bacterial disease of the banana in the Dutch East Indies). Meded. Inst. Plantenziekten48 [Google Scholar]
  49. Gäumann EA. 49.  1921. Onderzoekingen over de bloedziekte der bananen op Celebes I (Investigations on the blood disease of bananas in Celebes I). Meded. Inst. Plantenziekten50 [Google Scholar]
  50. Gäumann EA. 50.  1923. Onderzoekingen over de bloedziekte der bananen op Celebes II (Investigations on the blood disease of bananas in Celebes II). Meded. Inst. Plantenziekten59 [Google Scholar]
  51. Geering ADW. 51.  2009. Viral pathogens of banana: outstanding questions and options for control. Acta Hortic. 828:39–50 [Google Scholar]
  52. Gold CS, Messiaen S. 52.  2000. The banana weevil. Cosmopolites sordidus. Musa pest fact sheet 4, INIBAP, Montpellier, Fr..
  53. Goodwin SB, Ben M'Barek S, Dhillon B, Wittenberg AHJ, Crane CF. 53.  et al. 2011. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity and stealth pathogenesis. PLOS Genet. 7:6) e1002070 [Google Scholar]
  54. Goodwin SB, Kema GHJ. 54.  2014. The genomes of Mycosphaerella graminicola and M. fijiensis. Genomics of Plant-Associated Fungi: Monocot Pathogens RA Dean, A Lichens-Park, K Chittaranjan 123–40 Berlin/Heidelberg: Springer [Google Scholar]
  55. Guinard O, Sharrock S, Arnaud E. 55.  2003. Preliminary analysis of the Musa germplasm information system data for Southeast Asia using the geographical information system software DIVA-GIS. Advancing Banana and Plantain R&D in Asia and the Pacific 11 AB Molina, JE Eusebio, VN Roa, I Van den Bergh, MAG Maghuyop 201–8 Laguna, Philipp: Int. Netw. Improv. Banana Plantain [Google Scholar]
  56. Hayden HL, Carlier J, Aitken EAB. 56.  2005. The genetic structure of Australian populations of Mycosphaerella musicola suggests restricted gene flow at the continental scale. Phytopathology 95:489–98 [Google Scholar]
  57. Heng SB. 57.  2012. Blood disease, banana: Malaysia. ProMed20120106.10021287 [Google Scholar]
  58. Hermanto C, Eliza, Emilda D. 58.  2013. Bunch management of banana to control blood disease. Aust. Plant Pathol. 42:653–58 [Google Scholar]
  59. Hook M, Tang X. 59.  2013. Depletion of fossil fuels and anthropogenic climate change: a review. Energy Policy 52:797–807 [Google Scholar]
  60. Hwang S-C, Ko W-H. 60.  2004. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 88:580–88 [Google Scholar]
  61. Irish BM, Goenaga R, Rios C, Chavarria-Carvajal J, Ploetz R. 61.  2013. Evaluation of banana hybrids for tolerance to black leaf streak (Mycosphaerella fijiensis Morelet) in Puerto Rico. Crop Prot. 54:229–38 [Google Scholar]
  62. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V. 62.  et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–22 [Google Scholar]
  63. Jones DR. 63.  2000. Diseases of Banana, Abaca and Enset Oxfordshire, UK: CABI [Google Scholar]
  64. Jones DR. 64.  2013. Emerging banana diseases: new threats from old problems. Proc. XX Int. Meet. ACORBAT Fortaleza, Brazil79–90 [Google Scholar]
  65. Joung JK, Sander JD. 65.  2013. TALENs: a widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 14:49–55 [Google Scholar]
  66. Karamura DA, Karamura E, Tinzaara W. 66.  2012. Banana cultivar names, synonyms and their usage in East Africa. Kampala, Uganda: Bioversity Int. [Google Scholar]
  67. Karan M, Harding RM, Dale JL. 67.  1994. Evidence for two groups of banana bunchy top virus isolates. J. Gen. Virol. 75:3541–46 [Google Scholar]
  68. Kema GHJ, Annone JG, Sayoud R, Van Silfhout CH, Van Ginkel M, De Bree J. 68.  1996. Genetic variation for virulence and resistance in the wheat–Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathology 86:200–12 [Google Scholar]
  69. Kema GHJ, Verstappen ECP, Waalwijk C. 69.  2000. Avirulence in the wheat Septoria tritici leaf blotch fungus Mycosphaerella graminicola is controlled by a single locus. Mol. Plant-Microbe Interact. 13:1375–79 [Google Scholar]
  70. Khalid S, Soomro MH. 70.  1993. Banana bunchy top disease in Pakistan. Plant Pathol. 42:923–26 [Google Scholar]
  71. Kikulwe EM, Wesseler J, Falck-Zepeda J. 71.  2011. Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda. Appetite 57:401–13 [Google Scholar]
  72. Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro J-P. 72.  et al. 2013. Expression of a rice chitinase gene in transgenic banana (“Gros Michel”, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res. 22:117–30 [Google Scholar]
  73. Lava Kumar P, Hanna R, Alabi OJ, Soko MM, Oben TT. 73.  et al. 2011. Banana bunchy top virus in sub-Saharan Africa: investigations on virus distribution and diversity. Virus Res. 159:171–82 [Google Scholar]
  74. Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G. 74.  et al. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am. J. Bot. 91:1446–80 [Google Scholar]
  75. Ma L-J. 75.  2014. Horizontal chromosome transfer and rational strategies to manage Fusarium vascular wilt diseases. Mol. Plant Pathol. 15:763–66 [Google Scholar]
  76. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K. 76.  et al. 2013. Fusarium pathogenomics. Annu. Rev. Microbiol. 67:399–416 [Google Scholar]
  77. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J. 77.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  78. Machovina B, Feeley KJ. 78.  2013. Climate change driven shifts in the extent and location of areas suitable for export banana production. Ecol. Econ. 95:83–95 [Google Scholar]
  79. Mairawita S, Habazar T, Hasyim A, Nasir N. 79.  2012. Trigona minangkabau potential as bacterial spreader agent of Ralstonia solanacearum phylotype IV cause blood disease on banana plants. Proc. Int. Proc. Biol. Life Sci., SingaporeJuly 23–24109–116 Singapore: IACSIT Press [Google Scholar]
  80. McDonald BA, Linde C. 80.  2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79 [Google Scholar]
  81. Michielse CB, Rep M. 81.  2009. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10:311–24 [Google Scholar]
  82. Mlachila M, Cashin P, Haines C. 82.  2013. Caribbean bananas: the macroeconomic impact of trade preference erosion. J. Int. Trade Econ. Dev. 22:253–80 [Google Scholar]
  83. Mouliom-Pefoura A. 83.  1999. First observation of the breakdown of high resistance in Yangambi km 5 (Musa sp.) to the black leaf streak disease in Cameroon. Plant Dis. 83:78 [Google Scholar]
  84. Mouliom Pefoura A, Lassoudiere A, Foko J, Fontem DA. 84.  1996. Comparison of development of Mycosphaerella fijiensis and Mycosphaerella musicola on banana and plantain in the various ecological zones in Cameroon. Plant Dis. 80:950–54 [Google Scholar]
  85. Munar-Vivas O, Morales-Osorio JG, Castañeda-Sánchez DA. 85.  2010. Use of field-integrated information in GIS-based maps to evaluate Moko disease (Ralstonia solanacearum) in banana growing farms in Colombia. Crop Prot. 29:936–41 [Google Scholar]
  86. Niyongere C, Losenge T, Ateka EM, Ntukamazina N, Ndayiragije P. 86.  et al. 2013. Understanding banana bunchy top disease epidemiology in Burundi for an enhanced and integrated management approach. Plant Pathol. 62:562–70 [Google Scholar]
  87. Nowakunda K, Tushemereirwe W. 87.  2004. Farmer acceptance of introduced banana genotypes in Uganda. Afr. Crop Sci. J. 12:1–6 [Google Scholar]
  88. O'Donnell K, Gueidan C, Sink S, Johnston PR, Crous PW. 88.  et al. 2009. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet. Biol. 46:936–48 [Google Scholar]
  89. O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. 89.  1998. Multiple origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 95:2044–49 [Google Scholar]
  90. Ortiz R, Swennen R. 90.  2014. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol. Adv. 32:158–69 [Google Scholar]
  91. Parnell M, Burt PJA, Wilson K. 91.  1998. The influence of exposure to ultraviolet radiation in simulated sunlight on ascospores causing black Sigatoka disease of banana and plantain. Int. J. Biometeorol. 42:22–27 [Google Scholar]
  92. Peeters N, Guidot A, Vailleau F, Valls M. 92.  2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:651–62 [Google Scholar]
  93. Peña JE, Sharp JL, Wysoki M. 93.  2002. Tropical Fruit Pests and Pollinators: Biology, Economic Importance, Natural Enemies, and Control Wallingford, UK: CABI [Google Scholar]
  94. Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L. 94.  et al. 2011. Multidisciplinary perspectives on banana (Musa spp.) domestication. Proc. Natl. Acad. Sci. USA 108:11311–18 [Google Scholar]
  95. Ploetz RC. 95.  1990. Fusarium Wilt of Banana St. Paul, MN: APS Press [Google Scholar]
  96. Ploetz RC. 96.  2005. Panama disease: an old nemesis rears its ugly head. Part 1. The beginnings of the banana export trades. Plant Health Prog. doi:10.1094/PHP-2005-1221-01-RV [Google Scholar]
  97. Ploetz RC. 97.  2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96:653–56 [Google Scholar]
  98. Ploetz RC. 98.  2006. Panama disease: an old nemesis rears its ugly head. Part 2. The Cavendish era and beyond. Plant Health Prog. doi:10.1094/PHP-2006-0308-01-RV [Google Scholar]
  99. Ploetz RC. 99.  2008. Black Sigatoka and Moko: impact and spread of two destructive banana diseases in the Caribbean Basin. Proc. Caribb. Food Crops Soc., 44th, MiamiJuly 13–1794–102 Mayaqüez, P.R: Caribb. Food Crops Soc. [Google Scholar]
  100. Ploetz RC. 100.  2009. Assessing threats that are posed by destructive banana pathogens. Acta Hortic. 73:7–15 [Google Scholar]
  101. Ploetz RC. 101.  2015. Management of Fusarium wilt of banana: a review with special reference to tropical race 4. Crop Prot. 737–15 [Google Scholar]
  102. Ploetz RC, Evans EA. 102.  2015. The future of global banana production. Hortic. Rev. In press [Google Scholar]
  103. Ploetz RC, Thomas JE, Slabaugh W. 103.  2003. Diseases of banana and plantain. Diseases of Tropical Fruit Crops RC Ploetz 73–134 Wallingford, UK: CABI [Google Scholar]
  104. Ponomarenko A, Goodwin SB, Kema GHJ. 104.  2011. Septoria tritici blotch (STB) of wheat. Plant Health Instr. doi:10.1094/PHI-I-2011-0407-01 [Google Scholar]
  105. Rao SA, Qureshi MA, Khanzada AL, Khanzada MA, Rajput MA, Rajput KI. 105.  2002. Occurrence and incidence of banana bunchy top disease in southern part of Sindh. Pak. J. Plant Pathol. 1:74–75 [Google Scholar]
  106. Remenant B, de Cambiaire J-C, Cellier G, Jacobs JM, Mangenot S. 106.  et al. 2011. Ralstonia syzygii, the blood disease bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLOS ONE 6:e24356 [Google Scholar]
  107. Remy S, Kovács G, Swennen R, Panis B. 107.  2013. Genetically modified bananas: past, present and future. Acta Hortic. 974:71–80 [Google Scholar]
  108. Rep M. 108.  2005. Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol. Lett. 253:19–27 [Google Scholar]
  109. Rep M, Kistler HC. 109.  2010. The genomic organization of plant pathogenicity in Fusarium species. Curr. Opin. Plant Biol. 13:420–26 [Google Scholar]
  110. Rieux A, Soubeyrand S, Bonnot F, Klein EK, Ngando JE. 110.  et al. 2014. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PLOS ONE 9:8e103225 [Google Scholar]
  111. Rijks AB. 111.  1916. Rapport over een onderzoek naar de pisangsterfte op de saleiereilanden. Meded. Inst. Plantenziekten21 [Google Scholar]
  112. Robinson JC, Galán Saúco V. 112.  2010. Bananas and Plantains Wallingford, UK: CABI [Google Scholar]
  113. Romo JP, Morales Osorio JG, Yepes MS. 113.  2012. Identification of new hosts for Ralstonia solanacearum (Smith) race 2 from Colombia. Rev. Prot. Veg. 27:151–61 [Google Scholar]
  114. Rorer JB. 114.  1911. A bacterial disease of bananas and plantains. Phytopathology 1:45–49 [Google Scholar]
  115. Schaad NW, Abrams J, Madden LV, Frederick RD, Luster RD. 115.  et al. 2006. An assessment model for rating high-threat crop pathogens. Phytopathology 96:616–21 [Google Scholar]
  116. Simmonds NW. 116.  1962. The Evolution of the Bananas London: Longman [Google Scholar]
  117. Simmonds NW. 117.  1966. Bananas London: Longman [Google Scholar]
  118. Simmonds NW, Shepherd K. 118.  1955. The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Lond. 5:302–12 [Google Scholar]
  119. Smith JJ, Jones DR, Karamura E, Blomme G, Turyagyenda FL. 119.  2008. An analysis of the risk from Xanthomonas campestris pv. musacearum to banana cultivation in Eastern, Central and Southern Africa. Rome: Bioversity Int. [Google Scholar]
  120. Stergiopoulos I, Cordovez da Cunha V, Ökmen B, Beenen HG, Kema GHJ, de Wit PJGM. 120.  2014. Positive selection and intragenic recombination contribute to high allelic diversity in effector genes of Mycosphaerella fijiensis, causal agent of the black leaf streak disease of banana. Mol. Plant Pathol. 15:447–60 [Google Scholar]
  121. Stover RH. 121.  1962. Fusarial Wilt (Panama Disease) of Bananas and Other Musa Species Kew, UK: Commonw. Mycol. Inst. [Google Scholar]
  122. Stover RH. 122.  1972. Banana, Plantain and Abaca Diseases Kew, UK: Commonw. Mycol. Inst. [Google Scholar]
  123. Stover RH. 123.  1986. Disease management strategies and the survival of the banana industry. Annu. Rev. Phytopathol. 24:83–91 [Google Scholar]
  124. Stover RH, Espinoza A. 124.  1992. Blood disease of bananas in Sulawesi. Fruits 47:611–13 [Google Scholar]
  125. Stover RH, Simmonds NW. 125.  1987. Bananas London, UK: Longman, 3rd ed.. [Google Scholar]
  126. Svanes E, Aronsson AKS. 126.  2013. Carbon footprint of a Cavendish banana supply chain. Int. J. Life Cycle Assess. 18:1450–64 [Google Scholar]
  127. Tarnowski TLB, Pérez-Martínez JM, Ploetz RC. 127.  2010. Fuzzy pedicel: a new post-harvest disease of banana. Plant Dis. 94:621–27 [Google Scholar]
  128. Tinzaara W, Gold CS, Ssekiwoko F, Bandyopadhyay R, Abera A, Eden-Green SJ. 128.  2006. Role of insects in the transmission of banana bacterial wilt. Afr. Crop Sci. J. 14:105–10 [Google Scholar]
  129. Tripathi L, Mwangi MM, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R. 129.  2009. Xanthomonas wilt. A threat to banana production in East and Central Africa. Plant Dis. 93:440–51 [Google Scholar]
  130. Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, Tushemereirwe WK. 130.  2014. Field trial of Xanthomonas wilt disease–resistant bananas in East Africa. Nat. Biotechnol. 32:868–70 [Google Scholar]
  131. van Asten PJA, Fermont AM, Taulya G. 131.  2011. Drought is a major yield loss factor for rainfed East African highland banana. Agric. Water Manag. 98:541–52 [Google Scholar]
  132. Van den Bergh I, Vézina A, Picq C. 132.  2013. Where Bananas Are Grown Montpellier, Fr: ProMusa http://www.promusa.org/tiki-index.php?page=Banana-producing+countries+portal [Google Scholar]
  133. Vishnevetsky J, White TL Jr, Palmateer AJ, Flaishman M, Cohen Y. 133.  et al. 2011. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain. Transgenic Res. 20:61–72 [Google Scholar]
  134. Wairegi L, van Asten P. 134.  2011. Norms for multivariate diagnosis of nutrient imbalance in the East African highlands bananas (Musa spp. AAA). J. Plant Nutr. 34:1453–72 [Google Scholar]
  135. Wardlaw CW. 135.  1961. Banana Diseases Including Plantain and Abaca New York: Wiley [Google Scholar]
  136. 136. Wikipedia 2013. Banana. http://en.wikipedia.org/wiki/Banana
  137. Wong M-H, Crous PW, Henderson J, Groenewald JZ, Drenth A. 137.  2012. Phyllosticta species associated with freckle disease of banana. Fungal Divers. 56:173–87 [Google Scholar]
  138. Yirgou D, Bradbury JF. 138.  1974. Note on wilt of banana caused by the enset wilt organism, Xanthomonas musacearum. E. Afr. Agric. For. J. 40:111–14 [Google Scholar]
  139. Zulperi D, Sijam K. 139.  2014. First report of Ralstonia solanacearum race 2 biovar 1 causing Moko disease of banana in Malaysia. Plant Dis. 98:275 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080614-120305
Loading
/content/journals/10.1146/annurev-phyto-080614-120305
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error