1932

Abstract

Wheat is grown worldwide in diverse geographical regions, environments, and production systems. Although many diseases and pests are known to reduce grain yield potential and quality, the three rusts and powdery mildew fungi have historically caused major crop losses and continue to remain economically important despite the widespread use of host resistance and fungicides. The evolution and fast spread of virulent and more aggressive race lineages of rust fungi have only worsened the situation. Fusarium head blight, leaf spotting diseases, and, more recently, wheat blast (in South America and Bangladesh) have become diseases of major importance in recent years largely because of intensive production systems, the expansion of conservation agriculture, undesirable crop rotations, or increased dependency on fungicides. High genetic diversity for race-specific and quantitative resistance is known for most diseases; their selection through phenotyping reinforced with molecular strategies offers great promise in achieving more durable resistance and enhancing global wheat productivity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-095835
2016-08-04
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-095835.html?itemId=/content/journals/10.1146/annurev-phyto-080615-095835&mimeType=html&fmt=ahah

Literature Cited

  1. Abeyo B, Hodson D, Hundie B, Woldeab G, Girma B. 1.  et al. 2014. Cultivating success in Ethiopia: the contrasting stripe rust situations in 2010 and 2013. Abstracts of BGRI 2014 Technical Workshop R McIntosh, Z Pretorius. Ithaca, NY: BGRI http://www.globalrust.org/sites/default/files/2014%20BGRI%20Plenary%20Abstracts-ALL.pdf [Google Scholar]
  2. Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF. 2.  et al. 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLOS Pathog. 10:1e1003903 [Google Scholar]
  3. Anderson JA, Chao S, Liu S. 3.  2007. Molecular breeding using a major QTL for Fusarium head blight resistance in wheat. Crop Sci. 47:S112–19 [Google Scholar]
  4. Anh VL, Anh NT, Tagle AG, Vy TTP, Inoue Y. 4.  et al. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568–72 [Google Scholar]
  5. Bakhsh A, Mengistu N, Baenziger PS, Dweikat I, Wegulo SN. 5.  et al. 2013. Effect of Fusarium head blight resistance gene Fhb1 on agronomic and end-use quality traits of hard red winter wheat. Crop Sci. 53:793–801 [Google Scholar]
  6. Bartlett DW, Clough JM, Godwin JR, Hall AA, Hamer M, Parr-Dobrzanski B. 6.  2002. The strobilurin fungicides. Pest Manag. Sci. 58:649–62 [Google Scholar]
  7. Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ. 7.  et al. 2015. Research investment implications of shifts in the global geography of wheat stripe rust. Nat. Plants 1:15132 [Google Scholar]
  8. Bollen GJ, Scholten G. 8.  1971. Acquired resistance to benomyl and some other systemic fungicides in a strain of Botrytis cinerea in cyclamen. Neth. J. Plant Pathol. 77:83–90 [Google Scholar]
  9. Brown JKM. 9.  2002. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5:339–44 [Google Scholar]
  10. Brown JKM, Chartrain L, Lasserre-Zuber P, Saintenac C. 10.  2015. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet. Biol. 79:33–41 [Google Scholar]
  11. Brunner S, Hurni S, Herren G, Kalinina O, von Burg S. 11.  et al. 2011. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotechnol. J. 9:897–910 [Google Scholar]
  12. Buerstmayr H, Adam G, Lemmens M. 12.  2012. Resistance to head blight caused by Fusarium spp. in wheat. See Ref. 85 236–76
  13. Cheng S, Zhang Y, Bie T, Gao D, Zhang B. 13.  2012. Strategy of wheat breeding for scab resistance in China. Proc. Int. Symp. Fusarium Head Blight, 4th, Nanjing, China 23–26 5 Nanjing, China: Nanjing Agric. Univ. [Google Scholar]
  14. Couleaud G. 14.  2004. Des programmes à repenser en 2004. Perspect. Agricoles 298:62 [Google Scholar]
  15. Cowger C, Hoffer ME, Mundt CC. 15.  2000. Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar. Plant Pathol. 49:445–51 [Google Scholar]
  16. Cowger C, Miranda L, Griffey C, Hall M, Murphy JP, Maxwell J. 16.  2012. Wheat powdery mildew. See Ref. 85 84–119
  17. Cox TS, Bequette RK, Bowden RL, Sears RG. 17.  1997. Grain yield and breadmaking quality of wheat lines with the leaf rust resistance gene Lr41. Crop Sci. 37:154–61 [Google Scholar]
  18. Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J. 18.  et al. 2016. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci. 5:1–11 [Google Scholar]
  19. Cunfer BM. 19.  2002. Powdery mildew. Bread Wheat: Improvement and Production BC Curtis, S Rajaram, MH Gomez 301–8 Rome: FAO [Google Scholar]
  20. Deising HB, Reimann S, Peil A, Weber WE. 20.  2002. Disease management of rusts and powdery mildews. Agricultural Applications F Kempken 243–69 New York: Springer [Google Scholar]
  21. Dubin HJ, Duveiller E. 21.  2011. Fungal, bacterial and nematode diseases of wheat: breeding for resistance and other control measures. The World Wheat Book: A History of Wheat Breeding 2 AP Bonjean, WJ Angus, M Van Ginkel 1131–81 Paris: Lavoisier [Google Scholar]
  22. Duveiller E, Hodson D, Sonder K, von Tiedermann A. 22.  2011. An international perspective on wheat blast. Phytopathology 101:S220 [Google Scholar]
  23. Duveiller E, Kandel YR, Sharma RC, Shrestha SM. 23.  2005. Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248–56 [Google Scholar]
  24. Duveiller E, Sharma RC. 24.  2012. Wheat resistance to spot blotch or foliar blight. See Ref. 85 120–35
  25. Estep LK, Torriani SFF, Zala M, Anderson NP, Flowers MD. 25.  et al. 2015. Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathol. 64:961–71 [Google Scholar]
  26. 26. Eur. Union 2009. Directive 2009/128/ec of the European parliament and of the council of 21 October 2009: establishing a framework for community action to achieve the sustainable use of pesticides. Off. J. Eur. Union http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0071:0086:en:PDF [Google Scholar]
  27. Eyal Z, Scharen AL, Prescott JM, van Ginkel M. 27.  1987. The Septoria Diseases of Wheat: Concepts and Methods of Disease Management Mexico, D.F.: CIMMYT [Google Scholar]
  28. Faris J, Liu Z, Xu S. 28.  2013. Genetics of tan spot resistance in wheat. Theor. Appl. Genet. 126:2197–217 [Google Scholar]
  29. Felsenstein F, Semar M, Stammler G. 29.  2010. Sensitivity of wheat powdery mildew (Blumeria graminis f. sp. tritici) towards metrafenone. Gesunde Pflanz. 62:29–33 [Google Scholar]
  30. Feng J, Ma H, Hughes GR. 30.  2004. Genetics of resistance to Stagonospora nodorum blotch of hexaploid wheat. Crop Sci. 44:2043–48 [Google Scholar]
  31. 31. Food Agric. U.N 2015. FAOSTAT database. Rome: FAO. http://faostat.fao.org/site/291/default.aspx
  32. Gao Y, Faris JD, Liu Z, Kim YM, Syme RA. 32.  et al. 2015. Identification and characterization of the Sntox6-Snn6 interaction in the Parastagonospora nodorum–wheat pathosystem. Mol. Plant-Microbe Interact. 28:615–25 [Google Scholar]
  33. Germán S, Barcellos A, Chaves M, Kohli M, Campos P. 33.  et al. 2007. The situation of common wheat rusts in the Southern Cone of America and perspectives for control. Aust. J. Agric. Res. 58:620–30 [Google Scholar]
  34. Ghaffary SMT, Faris JD, Friesen TL, Visser RGF, van der Lee TAJ. 34.  et al. 2012. New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Theor. Appl. Genet. 124:125–42 [Google Scholar]
  35. Goodwin SB. 35.  2012. Resistance in wheat to Septoria diseases caused by Mycosphaerella graminicola (Septoria tritici) and Phaeosphaeria (Stagonospora) nodorum. See Ref. 85 151–59
  36. Guo J, Zhang X, Hou Y, Cai J, Shen X. 36.  et al. 2015. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. Genet. 128:2301–16 [Google Scholar]
  37. Hovmøller MS, Walter S, Bayles RA, Hubbard A, Flath K. 37.  et al. 2015. Replacement of the European wheat yellow rust population by new races from the centre of diversity in the near-Himalayan region. Plant Pathol. 65:402–11 [Google Scholar]
  38. Hovmøller MS, Walter S, Justesen AF. 38.  2010. Escalating threat of wheat rusts. Science 329:369 [Google Scholar]
  39. Hovmøller MS, Yahyaoui AH, Milus EA, Justesen AF. 39.  2008. Rapid global spread of two aggressive strains of a wheat rust fungus. Mol. Ecol. 17:3818–26 [Google Scholar]
  40. Huang X, Wang J, Du Z, Zhang C, Li L, Xu Z. 40.  2013. Enhanced resistance to stripe rust disease in transgenic wheat expressing the rice chitinase gene Rc24. Transgenic Res. 22:939–47 [Google Scholar]
  41. Huerta-Espino J, Singh RP, Germán S, McCallum BD, Park RF. 41.  et al. 2011. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–60 [Google Scholar]
  42. Ishii H, Fraaije BA, Sugiyama T, Noguchi K, Nishimura K. 42.  et al. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166–71 [Google Scholar]
  43. Jefferies SP, King BJ, Barr AR, Warner P, Logue SJ, Langridge P. 43.  2003. Marker-assisted backcross introgression of the Yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed. 122:52–56 [Google Scholar]
  44. Jones HD. 44.  2015. Regulatory uncertainty over genome editing. Nat. Plants 114011 [Google Scholar]
  45. Jørgensen LN, Hovmøller MS, Hansen JG, Lassen P, Clark B. 45.  et al. 2014. IPM strategies and their dilemmas including an introduction to www.Eurowheat.org. J. Integr. Agric. 13:265–81 [Google Scholar]
  46. King JE, Griffin MJ. 46.  1985. Survey of benomyl resistance in Pseudocercosporella herpotrichoides on winter wheat and barley in England and Wales in 1983. Plant Pathol. 34:272–83 [Google Scholar]
  47. Kohli MM, Díaz de Ackermann M. 47.  2013. Resistance to Fusarium head blight in South American wheat germplasm. Fusarium Head Blight in Latin America TM Alconanda Magliano, SN Chulze 263–97 New York: Springer [Google Scholar]
  48. Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE. 48.  2011. Pyricularia blast: a threat to wheat cultivation. Czech J. Genet. Plant Breed. 47:S130–34 [Google Scholar]
  49. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J. 49.  et al. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–63 [Google Scholar]
  50. Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H. 50.  et al. 2002. Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol. Plant Pathol. 3:185–95 [Google Scholar]
  51. Kumar S, Röder MS, Tripathi SB, Kumar S, Chand R. 51.  et al. 2015. Mendelization and fine mapping of a bread wheat spot blotch disease resistance QTL. Mol. Breed. 35:218 [Google Scholar]
  52. Li Z, Lan C, He Z, Singh RP, Rosewarne GM. 52.  et al. 2014. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci. 54:1907–25 [Google Scholar]
  53. Liu S, Hall MD, Griffey CA, McKendry AL. 53.  2009. Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci. 49:1955–68 [Google Scholar]
  54. Liu X, Yang L, Zhou X, Zhou M, Lu Y. 54.  et al. 2013. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J. Exp. Bot. 64:2243–53 [Google Scholar]
  55. Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J, Braun HJ. 55.  2012. Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Sci. 52:1123–31 [Google Scholar]
  56. Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T. 56.  et al. 2011. Genomic selection in plant breeding: knowledge and prospects. Adv. Agron. 110:77–123 [Google Scholar]
  57. Loyce C, Meynard JM, Bouchard C, Rolland B, Lonnet P. 57.  et al. 2008. Interaction between cultivar and crop management effects on winter wheat diseases, lodging, and yield. Crop Prot. 27:1131–42 [Google Scholar]
  58. Lu P, Liang Y, Li D, Wang Z, Li W. 58.  et al. 2015. Fine genetic mapping of spot blotch resistance gene Sb3 in wheat (Triticum aestivum). Theor. Appl. Genet. 129:577–89 [Google Scholar]
  59. Luo L, Zhang J, Yang G, Li Y, Li K, He G. 59.  2008. Expression of puroindoline A enhances leaf rust resistance in transgenic tetraploid wheat. Mol. Biol. Rep. 35:195–200 [Google Scholar]
  60. Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GHJ, McDonald BA. 60.  2014. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107 [Google Scholar]
  61. May WE, Fernandez MR, Selles F, Lafond GP. 61.  2014. Agronomic practices to reduce leaf spotting and Fusarium kernel infections in durum wheat on the Canadian prairies. Can. J. Plant Sci. 94:141–52 [Google Scholar]
  62. McCallum B, Hiebert C, Huerta-Espino J, Cloutier S. 62.  2012. Wheat leaf rust. See Ref. 85 33–62
  63. McIntosh RA, Yamazak Y, Dubcovsky J, Rogers J, Morris C. 63.  et al. 2012. Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2012/GeneSymbol.pdf
  64. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D. 64.  et al. 2012. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 96:1712–28 [Google Scholar]
  65. Mehta YR. 65.  2014. Wheat Diseases and their Management New York: Springer256 [Google Scholar]
  66. Mert Z, Nazari K, Karagöz E, Akan K, Öztürk İ, Tülek A. 66.  2015. First incursion of the warrior race of wheat stripe rust (Puccinia striiformis f. sp. tritici) to Turkey in 2014. Plant Dis. 100:528 [Google Scholar]
  67. Mesterhazy A, Bartok T, Kaszonyi G, Varga M, Toth B, Varga J. 67.  2005. Common resistance to different Fusarium spp. causing Fusarium head blight in wheat. Eur. J. Plant Pathol. 112:267–81 [Google Scholar]
  68. Milus EA, Kristensen K, Hovmøller MS. 68.  2009. Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99:89–94 [Google Scholar]
  69. Mirdita V, He S, Zhao Y, Korzun V, Bothe R. 69.  et al. 2015. Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor. Appl. Genet. 128:2471–81 [Google Scholar]
  70. Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M. 70.  et al. 2015. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat. Genet. 47:1494–98 [Google Scholar]
  71. Murray GM, Brennan JP. 71.  2009. Estimating disease losses to the Australian wheat industry. Australas. Plant Pathol. 38:558–70 [Google Scholar]
  72. Nga NTT, Hau VTB, Tosa Y. 72.  2009. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801–9 [Google Scholar]
  73. Oerke E-C. 73.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  74. Olivera P, Newcomb M, Szabo LJ, Rouse M, Johnson J. 74.  et al. 2015. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013–14. Phytopathology 105:917–28 [Google Scholar]
  75. Ornella L, Singh S, Perez P, Burgueño J, Singh R. 75.  et al. 2012. Genomic prediction of genetic values for resistance to wheat rusts. Plant Genome J. 5:136–48 [Google Scholar]
  76. Pretorius ZA, Singh RP, Wagoire WW, Payne TS. 76.  2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis. 84:203 [Google Scholar]
  77. Raemaekers RH. 77.  1988. Helminthosporium sativum: disease complex on wheat and sources of resistance in Zambia. Wheat Production Constraints in Tropical Environments AR Klatt 175–86 Mexico, D.F.: CIMMYT [Google Scholar]
  78. Reimann S, Deising HB. 78.  2005. Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4′-hydroxyflavone and enhancement of fungicide activity. Appl. Environ. Microbiol. 71:3269–75 [Google Scholar]
  79. Rodriguez-Algaba J, Walter S, Sørensen CK, Hovmøller MS, Justesen AF. 79.  2014. Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genet. Biol. 70:77–85 [Google Scholar]
  80. Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH. 80.  2013. Quantitative trait loci of stripe rust resistance in wheat. Theor. Appl. Genet. 126:2427–49 [Google Scholar]
  81. Rutkoski J, Benson J, Jia Y, Brown-Guedira G, Jannink J-L, Sorrells M. 81.  2012. Evaluation of genomic prediction methods for Fusarium head blight resistance in wheat. Plant Genome 5:51–61 [Google Scholar]
  82. Rutkoski J, Poland JA, Singh RP, Huerta-Espino J, Bhavani S. 82.  et al. 2014. Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 731–10 [Google Scholar]
  83. Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J. 83.  et al. 2015. Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome. doi:10.3835/plantgenome2014.10.0074 [Google Scholar]
  84. Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H. 84.  2011. Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Mol. Breed. 28:485–94 [Google Scholar]
  85. Sharma I. 85.  2012. Disease Resistance in Wheat Wallingford, UK: CABI [Google Scholar]
  86. Sharma RC, Crossa J, Velu G, Huerta-Espino J, Vargas M. 86.  et al. 2012. Genetic gains for grain yield in CIMMYT spring bread wheat across international environments. Crop Sci. 52:1522–33 [Google Scholar]
  87. Sierotzki H, Scalliet G. 87.  2013. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 103:880–87 [Google Scholar]
  88. Simón MR, Cordo CA, Castillo NS, Struik PC, Börner A. 88.  2012. Population structure of Mycosphaerella graminicola and location of genes for resistance to the pathogen: recent advances in Argentina. Int. J. Agron. 2012:680275 [Google Scholar]
  89. Singh PK, Feng J, Mergoum M, McCartney CA, Hughes GR. 89.  2009. Genetic analysis of seedling resistance to Stagonospora nodorum blotch in selected tetraploid and hexaploid wheat genotypes. Plant Breed. 128:118–23 [Google Scholar]
  90. Singh PK, Singh RP, Duveiller E, Mergoum M, Adhikari TB, Elias EM. 90.  2010. Genetics of wheat–Pyrenophora tritici-repentis interactions. Euphytica 171:1–13 [Google Scholar]
  91. Singh PK, Zhang Y, He X, Singh RP, Chand R. 91.  et al. 2015. Development and characterization of the 4th CSISA-spot blotch nursery of bread wheat. Eur. J. Plant Pathol. 143:595–605 [Google Scholar]
  92. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S. 92.  et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81 [Google Scholar]
  93. Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA. 93.  et al. 2015. Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–84 [Google Scholar]
  94. Singh RP, Huerta-Espino J. 94.  1997. Effect of leaf rust gene Lr34 on grain yield and agronomic traits of spring wheat. Crop Sci. 37:390–95 [Google Scholar]
  95. Singh RP, Huerta-Espino J, Rajaram S. 95.  2000. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol. Entomol. Hung. 35:133–39 [Google Scholar]
  96. Singh RP, Rajaram S, Crossa J. 96.  1998. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci. 38:27–33 [Google Scholar]
  97. Singh S, Singh RP, Huerta-Espino J. 97.  2012. Stem rust. See Ref. 85 18–32
  98. Sivamani E, Brey CW, Talbert LE, Young M, Dyer WE. 98.  et al. 2002. Resistance to wheat streak mosaic virus in transgenic wheat engineered with the viral coat protein gene. Transgenic Res. 11:31–41 [Google Scholar]
  99. Somers DJ, Thomas J, DePauw R, Fox S, Humphreys G, Fedak G. 99.  2005. Assembling complex genotypes to resist Fusarium in wheat (Triticum aestivum L.). Theor. Appl. Genet. 111:1623–31 [Google Scholar]
  100. Sørensen CK, Hovmøller MS, Leconte M, Dedryver F, de Vallavieille-Pope C. 100.  2014. New races of Puccinia striiformis found in Europe reveal race specificity of long-term effective adult plant resistance in wheat. Phytopathology 104:1042–51 [Google Scholar]
  101. Spolti P, Del Ponte EM, Dong Y, Cummings JA, Bergstrom GC. 101.  2014. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Dis. 98:607–13 [Google Scholar]
  102. The TT, Latter BDH, McIntosh RA, Ellison FW, Brennan PS. 102.  et al. 1988. Grain yield of near isogenic lines with added genes for stem rust resistance. Proceedings of the 7th International Wheat Genetics Symposium TS Miller, RMD Koebner 901–6 Cambridge, UK: Inst. Plant Sci. Res. [Google Scholar]
  103. Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B. 103.  2007. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115:697–708 [Google Scholar]
  104. Urashima AS, Grosso CRF, Stabili A, Freitas EG, Silva CP. 104.  et al. 2009. Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. Advances in Genetics, Genomics and Control of Rice Blast Disease W Xiaofan, B Valent 267–77 New York: Springer [Google Scholar]
  105. Vaidyanathan G. 105.  2011. Science in Africa: the wheat stalker. Nat. News 474:563–65 [Google Scholar]
  106. Von der Ohe C, Ebmeyer E, Korzun V, Miedaner T. 106.  2010. Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci. 50:2283–90 [Google Scholar]
  107. Walter S, Ali S, Kemen E, Nazari K, Bahri BA. 107.  et al. 2016. Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis.. Ecol. Evol. 692790–804 http://onlinelibrary.wiley.com/doi/10.1002/ece3.2069/full [Google Scholar]
  108. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J. 108.  et al. 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32:947–51 [Google Scholar]
  109. Weiss M V. 109.  1987. Compendium of Wheat Diseases St. Paul, MN: APS Press, 2nd ed.. [Google Scholar]
  110. Wellings CR. 110.  2007. Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust. J. Agric. Res. 58:567–75 [Google Scholar]
  111. Wellings CR, Boyd LA, Chen XM. 111.  2012. Resistance to stripe rust in wheat: pathogen biology driving resistance breeding. See Ref. 85 63–83
  112. 112. WHEAT 2013. Wheat: vital grain of civilization and food security. CGIAR Res. Program Wheat 2013 Annu. Rep., CGIAR, Mexico, D.F. [Google Scholar]
  113. Yin Y, Liu X, Li B, Ma Z. 113.  2009. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99:487–97 [Google Scholar]
  114. Yu L-X, Barbier H, Rouse MN, Singh S, Singh RP. 114.  et al. 2014. A consensus map for Ug99 stem rust resistance loci in wheat. Theor. Appl. Genet. 127:1561–81 [Google Scholar]
  115. Zhang L, French R, Langenberg WG, Mitra A. 115.  2001. Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease. Transgenic Res 10:13–19 [Google Scholar]
  116. Zhang X, Halder J, White RP, Hughes DJ, Ye Z. 116.  et al. 2014. Climate change increases risk of Fusarium ear blight on wheat in central China. Ann. Appl. Biol. 164:384–95 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-095835
Loading
/content/journals/10.1146/annurev-phyto-080615-095835
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error