The species complex (FOSC) comprises a multitude of strains that cause vascular wilt diseases of economically important crops throughout the world. Although sexual reproduction is unknown in the FOSC, horizontal gene transfer may contribute to the observed diversity in pathogenic strains. Development of disease in a susceptible crop requires to advance through a series of transitions, beginning with spore germination and culminating with establishment of a systemic infection. In principle, each transition presents an opportunity to influence the risk of disease. This includes modifications of the microbial community in soil, which can affect the ability of pathogen propagules to survive, germinate, and infect plant roots. In addition, many host attributes, including the composition of root exudates, the structure of the root cortex, and the capacity to recognize and respond quickly to invasive growth of a pathogen, can impede development of .


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alabouvette C, Rouxel F, Louvet J. 1.  1979. Characterization of Fusarium wilt suppressive soils and prospects for their utilization in biological control. Soil-Borne Plant Pathogens B Schippers, W Gams 165–82 New York: Academic [Google Scholar]
  2. Altinok HH. 2.  2013. Fusarium species isolated from common weeds in eggplant fields and symptomless hosts of Fusarium oxysporum f. sp. melongenae in Turkey. J. Phytopathol 161:335–40 [Google Scholar]
  3. Aoki T, O'Donnell K, Geiser DM. 3.  2014. Systematics of key phytopathogenic Fusarium species: current status and future challenges. J. Gen. Plant Pathol. 80:189–201 [Google Scholar]
  4. Baayen RP, Forch MG, Waalwijk C, Bonants PJM, Loffler HJM. 4.  et al. 1998. Pathogenic, genetic and molecular characterization of Fusarium oxysporum f. sp. lilii. Eur. . J. Plant Pathol. 104:887–94 [Google Scholar]
  5. Baayen RP, O'Donnell K, Bonants PJM, Cignelnik E, Kroon LPNM. 5.  et al. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900 [Google Scholar]
  6. Beckman CH. 6.  1987. The Nature of Wilt Diseases of Plants St. Paul, MN: Am. Phytopathol. Soc175 [Google Scholar]
  7. Billard S, López-Villavicencio M, Hood ME, Giraud T. 7.  2012. Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J. Evol. Biol. 25:1020–38 [Google Scholar]
  8. Bishop CD, Cooper RM. 8.  1983. An ultrastructural study of root invasion in three vascular wilt diseases. Physiol. Plant Pathol. 22:15–27 [Google Scholar]
  9. Bonanomi G, Antignani V, Capodilupo M, Scala F. 9.  2010. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol. Biochem. 42:136–44 [Google Scholar]
  10. Brammall RA, Higgins VJ. 10.  1988. A histological comparison of fungal colonization in tomato seedlings susceptible or resistant to Fusarium crown and root rot disease. Can. J. Bot. 66:915–25 [Google Scholar]
  11. Brasier CM. 11.  1988. Rapid changes in genetic structure of epidemic populations of Ophiostoma ulmi. . Nature 332:538–41 [Google Scholar]
  12. Buxton EW. 12.  1957. Some effects of pea root exudates on physiologic races of Fusarium oxysporum Fr. f. pisi (Linf.) Snyder & Hansen. Trans. Br. Mycol. Soc 40:145–54 [Google Scholar]
  13. Correll JC, Puhalla JE, Schneider RW. 13.  1986. Identification of Fusarium oxysporum f. sp. apii on the basis of colony size, virulence, and vegetative compatibility. Phytopathology 76:396–400 [Google Scholar]
  14. Correll JC, Puhalla JE, Schneider RW. 14.  1986. Vegetative compatibility groups among nonpathogenic root-colonizing strains of Fusarium oxysporum. Can. J. Bot. 64:2358–61 [Google Scholar]
  15. Couteaudier Y, Alabouvette C. 15.  1990. Survival and inoculum potential of conidia and chlamydospores of Fusarium oxysporum f. sp. lini in soil. Can. J. Microbiol 36:551–56 [Google Scholar]
  16. Covert SF, Briley A, Wallace MM, McKinney VT. 16.  1999. Partial MAT-2 gene structure and the influence of temperature on mating success in Gibberella circinata. . Fungal Genet. Biol. 28:43–54 [Google Scholar]
  17. de Sain M, Rep M. 17.  2015. The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int. J. Mol. Sci. 16:23970–93 [Google Scholar]
  18. Driouich A, Follet-Gueye M-L, Vicré-Gibouin M, Hawes M. 18.  2013. Root border cells and secretions as critical elements in plant host defense. Curr. Opin. Plant Biol. 16:489–95 [Google Scholar]
  19. Eissenstat DM, Achor DS. 19.  1999. Anatomical characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol 141:309–21 [Google Scholar]
  20. Elias KS, Schneider RW. 20.  1991. Vegetative compatibility groups in Fusarium oxysporum f. sp. lycopersici. . Phytopathology 81:159–62 [Google Scholar]
  21. Fang X, Kuo J, You MP, Finnegan PM, Barbetti MJ. 21.  2012. Comparative root colonisation of strawberry cultivars Camarosa and Festival by Fusarium oxysporum f. sp. fragariae. Plant Soil 358:75–89 [Google Scholar]
  22. Farrar J, Hawes M, Jones D, Lindow S. 22.  2003. How roots control the flux of carbon to the rhizosphere. Ecology 84:4827–37 [Google Scholar]
  23. Fourie G, Steenkamp ET, Gordon TR, Viljoen A. 23.  2009. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl. Environ. Microbiol 75:144770–81 [Google Scholar]
  24. Gao H, Beckman CH, Mueller WC. 24.  1995. The nature of tolerance to Fusarium oxysporum f. sp. lycopersici in polygenically field-resistant marglobe tomato plants. Physiol. Mol. Plant Pathol 46:401–12 [Google Scholar]
  25. Garbeva P, Gera Hol WH, Temorshuizen AJ, Kowalchuk GA, de Boer W. 25.  2011. Fungistasis and general soil biostasis: a new synthesis. Soil Biol. Biochem. 43:469–77 [Google Scholar]
  26. Geldner N. 26.  2013. The endodermis. Annu. Rev. Plant Biol. 64:531–58 [Google Scholar]
  27. Geiser DM, Aoki T, Bacon CW, Baker SE, Bhattacharyya MK. 27.  et al. 2013. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology 103:400–8 [Google Scholar]
  28. Gordon TR, Jacobson DJ, May DM, Tyler KB, Zink FW. 28.  1990. Fruit yield, disease incidence, and root colonization of hybrid muskmelons resistant to Fusarium wilt. Plant Dis 74:778–81 [Google Scholar]
  29. Gordon TR, Martyn RD. 29.  1997. The evolutionary biology of Fusarium oxysporum. . Annu. Rev. Phytopathol. 35:111–28 [Google Scholar]
  30. Gordon TR, Okamoto D. 30.  1990. Colonization of crop residue by Fusarium oxysporum f. sp. melonis and other species of Fusarium. . Phytopathology 80:381–86 [Google Scholar]
  31. Gordon TR, Okamoto D, Jacobson DJ. 31.  1989. Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f. sp. melonis and other species of Fusarium. . Phytopathology 79:1095–100 [Google Scholar]
  32. Gordon TR, Okamoto D, Milgroom MG. 32.  1992. The structure and interrelationship of fungal populations in native and cultivated soils. Mol. Ecol. 1:241–49 [Google Scholar]
  33. Greenberger A, Yogev A, Katan J. 33.  1987. Induced suppressiveness in solarized soils. Phytopathology 77:1663–67 [Google Scholar]
  34. Guo L, Yang L, Liang C, Wang G, Dai Q. 34.  et al. 2015. Differential colonization patterns of bananas (Musa spp.) by physiological race 1 and race 4 isolates of Fusarium oxysporum f. sp. cubense. . J. Phytopathol 163:807–17 [Google Scholar]
  35. Hamilton WD, Axelrod R, Tanese R. 35.  1990. Sexual reproduction as an adaptation to resist parasites (a review). PNAS 87:3566–73 [Google Scholar]
  36. Hancock JG. 36.  1985. Fungal infection of feeder rootlets of alfalfa. Phytopathology 75:1112–20 [Google Scholar]
  37. Hawes MC, Gunawardena U, Miyasaka S, Zhao X. 37.  2000. The role of border cells in plant defense. Trends Plant Sci 5:128–33 [Google Scholar]
  38. Hewavitharana SS, Mazzola M. 38.  2016. Carbon source–dependent effects of anaerobic soil disinfestation on soil microbiome and suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology 106:1015–28 [Google Scholar]
  39. Huisman OC. 39.  1982. Interrelations of root growth dynamics to epidemiology of root-invading fungi. Annu. Rev. Phytopathol. 20:303–27 [Google Scholar]
  40. Jiménez-Fernández D, Landa BB, Kang S, Jiménez-Díaz RM, Navas-Cortés JA. 40.  2013. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. PLOS ONE 8:4e61360 [Google Scholar]
  41. Kamula SA, Peterson CA, Mayfield CI. 41.  1994. Impact of the exodermis on infection of roots by Fusarium culmorum. . Plant Soil 167:121–26 [Google Scholar]
  42. Katan J. 42.  1971. Symptomless carriers of the tomato Fusarium wilt pathogen. Phytopathology 61:1213–17 [Google Scholar]
  43. Kim DH, Martyn RD, Magill CW. 43.  1993. Mitochondrial DNA (mtDNA): relatedness among formae speciales of Fusarium oxysporum in the Curcurbitaceae. Phytopathology 83:91–97 [Google Scholar]
  44. Koenig RL, Ploetz RC, Kistler HC. 44.  1997. Fusarium oxysporum f. sp. cubense consists of a small number of divergent and globally distributed clonal lineages. Phytopathology 87:915–23 [Google Scholar]
  45. Kommedahl T. 45.  1966. Relation of exudates of pea roots to germination of spores in races of Fusarium oxysporum f. pisi. . Phytopathology 56:721–22 [Google Scholar]
  46. Koyyappurath S, Conéjéro G, Dijoux JB, Lapeyre-Montès F, Jade K. 46.  et al. 2015. Differential responses of vanilla accessions to root rot and colonization by Fusarium oxysporum f. sp. radicis-vanillae. . Front. Plant Sci. 6:1125 [Google Scholar]
  47. Kroes GMLW, Baayen RP, Lange W. 47.  1998. Histology of root rot of flax seedlings (Linum usitatissimum) infected by Fusarium oxysporum f. sp. lini. . Eur. J. Plant Pathol 104:725–36 [Google Scholar]
  48. Laurence MH, Burgess LW, Summerell BA, Liew ECY. 48.  2012. High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia. Fungal Biol 116:289–97 [Google Scholar]
  49. Laurence MH, Summerell BA, Burgess LW, Liew ECY. 49.  2014. Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–84 [Google Scholar]
  50. Leslie JF, Klein KK. 50.  1996. Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics 144:557–67 [Google Scholar]
  51. Li C, Chen S, Zuo C, Sun Q, Ye Q. 51.  et al. 2011. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol 131:327–40 [Google Scholar]
  52. Li E, Wang G, Yang Y, Xiao J, Mao Z. 52.  et al. 2015. Microscopic analysis of the compatible and incompatible interactions between Fusarium oxysporum f. sp. conglutinans and cabbage. Eur. J. Plant Pathol 141:597–609 [Google Scholar]
  53. Ling N, Zhang W, Wang D, Mao J, Huang Q. 53.  et al. 2013. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLOS ONE 8:51–8 [Google Scholar]
  54. Liu S, Zhou X, Liu B, Pan K, Liu S. 54.  et al. 2011. Sugars in watermelon root exudates and their effects on Fusarium oxysporum f. sp. niveum. . Allelopath. J. 28:121–28 [Google Scholar]
  55. Lobuglio KF, Pitt JI, Taylor JW. 55.  1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592–604 [Google Scholar]
  56. Lockwood JL. 56.  1977. Fungistasis in soils. Biol. Rev. 52:1–43 [Google Scholar]
  57. López-Villavicencio M, Aguileta G, Giraud T, de Vienne DM, Lacoste S. 57.  et al. 2010. Sex in Penicillium: combined phylogenetic and experimental approaches. Fungal Genet. Biol. 47:693–706 [Google Scholar]
  58. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L. 58.  et al. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66:513–45 [Google Scholar]
  59. Lu G, Guo S, Zhang H, Geng L, Martyn RD. 59.  et al. 2014. Colonization of Fusarium wilt–resistant and susceptible watermelon roots by a green-fluorescent-protein-tagged isolate of Fusarium oxysporum f. sp. niveum. . J. Phytopathol. 162:228–37 [Google Scholar]
  60. Ma L-J, Geiser DM, Proctor RH, Rooney AP, O'Donnell K. 60.  et al. 2013. Fusarium pathogenomics. Annu. Rev. Microbiol. 67:399–416 [Google Scholar]
  61. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ. 61.  et al. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–73 [Google Scholar]
  62. Mazzola M. 62.  2004. Assessment and management of soil microbial community structure for disease suppression. Annu. Rev. Phytopathol. 42:35–59 [Google Scholar]
  63. McKeen CD, Wensley RN. 63.  1961. Longevity of Fusarium oxysporum in soil tube culture. Science 134:1528–29 [Google Scholar]
  64. Mes JJ, van Doorn AA, Wijbrandi J, Simons G, Cornelissen BJC. 64.  et al. 2000. Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J 23:2183–93 [Google Scholar]
  65. Michielse CB, Rep M. 65.  2009. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 10:311–24 [Google Scholar]
  66. Milgroom MG. 66.  2015. Population Biology of Plant Pathogens: Genetics, Ecology, and Evolution St. Paul, MN: Am. Phytopathol. Soc399 [Google Scholar]
  67. Nahalkova J, Fatehi J, Olivain C, Alabouvette C. 67.  2008. Tomato root colonization by fluorescent-tagged pathogenic and protective strains of Fusarium oxysporum in hydroponic culture differs from root colonization in soil. FEMS Microbiol. Lett. 286:152–57 [Google Scholar]
  68. Neiman M, Sharbel TF, Schwander T. 68.  2014. Genetic causes of transitions from sexual reproduction to asexuality in plants and animals. J. Evol. Biol. 27:1346–59 [Google Scholar]
  69. Nelson PE. 69.  1981. Life cycle and epidemiology of Fusarium oxysporum. Fungal Wilt Diseases of Plants ME Mace, AA Bell, CH Beckman 51–80 New York: Academic640 [Google Scholar]
  70. Nieuwenhuis BPS, James TY. 70.  2016. The frequency of sex in fungi. Philos. Trans. R. Soc. 371:170620150540 [Google Scholar]
  71. O'Donnell K, Kistler HC, Cignelnik E, Ploetz RC. 71.  1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. PNAS 95:52044–49 [Google Scholar]
  72. O'Donnell K, Rooney AP, Proctor RH, Brown DW, McCormick SP. 72.  et al. 2013. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genet. Biol. 52:20–31 [Google Scholar]
  73. Okubo A, Matsusaka M, Sugiyama S. 73.  2016. Impacts of root symbiotic associations on interspecific variation in sugar exudation rates and rhizosphere microbial communities: a comparison among four plant families. Plant Soil 399:345–56 [Google Scholar]
  74. Olivain C, Alabouvette C. 74.  1997. Colonization of tomato root by a non-pathogenic strain of Fusarium oxysporum. . New Phytol. 137:481–94 [Google Scholar]
  75. Olivain C, Alabouvette C. 75.  1999. Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f. sp. lycopersici in comparison with a non-pathogenic strain. New Phytol 141:497–510 [Google Scholar]
  76. Olivain C, Humbert C, Nahalkova J, Fatehi J, L'Haridon F. 76.  et al. 2006. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl. Environ. Microbiol. 72:21523–31 [Google Scholar]
  77. Peterson CA. 77.  1988. Exodermal Casparian bands: their significance for ion uptake by roots. Physiol. Plant. 72:204–8 [Google Scholar]
  78. Piattoni F, Roberti R, Giuseppe S, D'Aulerio AZ. 78.  2014. Studies on the potential role of root exudates in the interaction between muskmelon roots and Fusarium oxysporum f. sp. melonis. . J. Plant Dis. Prot. 121:264–70 [Google Scholar]
  79. Ploetz RC. 79.  2015. Fusarium wilt of banana. Phytopathology 105:1512–21 [Google Scholar]
  80. Recorbet G, Alabouvette C. 80.  1997. Adhesion of Fusariumoxysporum conidia to tomato roots. Lett. Appl. Microbiol. 25:375–79 [Google Scholar]
  81. Rishbeth J. 81.  1955. Fusarium wilt of bananas in Jamaica: I. Some observations on the epidemiology of the disease. Ann. Bot. 19:293–328 [Google Scholar]
  82. Rodriguez-Galvez E, Mendgen K. 82.  1995. The infection process of Fusarium oxysporum in cotton root tips. Protoplasma 189:61–72 [Google Scholar]
  83. Rovira AD. 83.  1969. Plant root exudates. Bot. Rev. 35:35–57 [Google Scholar]
  84. Scheffknecht S, St-Arnaud M, Khaosaad T, Steinkellner S, Vierheilig H. 84.  2007. An altered root exudation pattern through mycorrhization affecting microconidia germination of the highly specialized tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) is not tomato specific but also occurs in Fol nonhost plants. Can. J. Bot 85:347–51 [Google Scholar]
  85. Schippers B, Voetberg JSj. 85.  1969. Germination of chlamydospores of Fusarium oxysporum f. sp. pisi race 1 in the rhizosphere, and penetration of the pathogen into roots of a susceptible and a resistant pea cultivar. Neth. J. Plant Pathol 75:241–58 [Google Scholar]
  86. Schroth MN, Hildebrand DC. 86.  1964. Influence of plant exudates on root infecting fungi. Annu. Rev. Phytopathol. 2:101–32 [Google Scholar]
  87. Scott JC, Gordon TR, Kirkpatrick SC, Koike ST, Matheron ME. 87.  et al. 2012. Crop rotation and genetic resistance reduce risk of damage from Fusarium wilt in lettuce. Calif. Agric. 66:20–24 [Google Scholar]
  88. Scott JC, McRoberts DN, Gordon TR. 88.  2014. Colonization of lettuce cultivars and rotation crops by Fusariumoxysporum f. sp. lactucae, the cause of Fusarium wilt of lettuce. Plant Pathol 63:548–53 [Google Scholar]
  89. Sharda JN, Koide RT. 89.  2008. Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi?. New Phytol 180:3696–701 [Google Scholar]
  90. Shishkoff N. 90.  1987. Distribution of the dimorphic hypodermis of roots in angiosperm families. Ann. Bot. 60:1–15 [Google Scholar]
  91. Smith AK, Peterson RL. 91.  1985. Histochemical features of wall appositions in Asparagus root meristems infected by Fusarium. . Can. J. Plant Pathol. 7:28–36 [Google Scholar]
  92. Smith SN. 92.  1977. Comparison of germination of pathogenic Fusarium oxysporum chlamydospores in host rhizosphere soils conducive and suppressive to wilts. Phytopathology 67:502–10 [Google Scholar]
  93. Smith SN, Snyder WC. 93.  1975. Persistence of Fusarium oxysporum f. sp. vasinfectum in fields in the absence of cotton. Phytopathology 65:190–96 [Google Scholar]
  94. Snyder WC, Hansen HN. 94.  1940. The species concept in Fusarium. . Am. J. Bot. 27:264–67 [Google Scholar]
  95. Steinberg C, Whipps JM, Wood D, Fenlon J, Alabouvette C. 95.  1999. Mycelial development of Fusarium oxysporum in the vicinity of tomato roots. Mycol. Res. 103:6769–78 [Google Scholar]
  96. Steinkellner S, Mammerler R, Vierheilig H. 96.  2005. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. J. Plant Interact. 1:23–30 [Google Scholar]
  97. Steinkellner S, Mammerler R, Vierheilig H. 97.  2008. Germination of Fusarium oxysporum in root exudates from tomato plants challenged with different Fusarium oxysporum strains. Eur. J. Plant Pathol 122:395–401 [Google Scholar]
  98. Stover RH. 98.  1962. Studies on Fusarium wilt of bananas: IX. Competitive saprophytic ability of F. oxysporum f. cubense. . Can. J. Bot. 40:1473–81 [Google Scholar]
  99. Taylor JW, Jacobson DJ, Fisher MC. 99.  1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phytopathol. 37:197–246 [Google Scholar]
  100. Tibayrenc M, Kjellberg F, Ayala FJ. 100.  1990. A clonal theory of parasitic protozoa: the population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas and Trypanosoma and their medical and taxonomical consequences. PNAS 87:2414–18 [Google Scholar]
  101. Turlier M-F, Eparvier A, Alabouvette C. 101.  1994. Early dynamic interactions between Fusarium oxysporum f. sp. lini and the roots of Linum usitatissimum as revealed by transgenic GUS-marked hyphae. Can. J. Bot 72:1605–12 [Google Scholar]
  102. Watt M, Silk WK, Passioura JB. 102.  2006. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann. Bot. 97:839–55 [Google Scholar]
  103. Weir BS. 103.  1996. Genetic Data Analysis II Sunderland, MA: Sinauer Assoc. [Google Scholar]
  104. Whalley WM, Taylor GS. 104.  1973. Influence of pea-root exudates on germination of conidia and chlamydospores of physiologic races of Fusarium oxysporum f. pisi. . Ann. Appl. Biol. 73:269–76 [Google Scholar]
  105. Whalley WM, Taylor GS. 105.  1976. Germination of chlamydospores of physiologic races of Fusarium oxysporum f. pisi in soil adjacent to susceptible and resistant pea cultivars. Trans. Br. Mycol. Soc 66:17–13 [Google Scholar]
  106. Windels CE, Kommedahl T. 106.  1974. Population differences in indigenous Fusarium species by corn culture of prairie soil. Am. J. Bot. 61:141–45 [Google Scholar]
  107. Wu F, Liu B, Zhou X. 107.  2010. Effects of root exudates of watermelon cultivars differing in resistance to Fusarium wilt on the growth and development of Fusarium oxysporum f. sp. niveum. Allelopath. J 25:2403–14 [Google Scholar]
  108. Yun S-H, Arie T, Kaneko I, Yoder OC, Turgeon BG. 108.  2000. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet. Biol 31:7–20 [Google Scholar]
  109. Zvirin T, Herman R, Brotman Y, Denisov Y, Belausov E. 109.  et al. 2010. Differential colonization and defence responses of resistant and susceptible melon lines infected by Fusarium oxysporum race 1–2. Plant Pathol 59:576–85 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error