The tropics produce a range of fruit from tree crops that cannot be grown in colder climates. Bananas, mangos, several nuts, spices, coffee, and cacao are widely traded and much sought after around the world. However, the sustainable production of these tropical tree fruit crops faces significant challenges. Among these, losses due to pests and diseases play a large part in reducing yields, quality, and profitability. Using bananas and cacao as key examples, we outline some of the reasons fungal and oomycete diseases cause such significant losses to tropical tree crops. Cultivation of monocultures derived from limited genetic diversity, environmental conditions conducive for disease development, high levels of disease incidence and severity, a lack of disease resistance in planting materials, shortages of labor, and inadequate infrastructure and investment pose significant challenges, especially for smallholder producers. The expansion of travel and trade has given rise to emerging infectious plant diseases that add further insecurity and pressure. We conclude that holistic actions are needed on multiple fronts to address the growing problem of disease in tropical fruit tree crops.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ali SS, Amoako-Attah I, Bailey RA, Strem MD, Schmidt M. 1.  et al. 2016. PCR-based identification of cacao black pod causal agents and identification of biological factors possibly contributing to Phytophthora megakarya's field dominance in West Africa. Plant Pathol. [Google Scholar]
  2. Alvarado-Alvarado G, Posada-Suárez HE, Cortina-Guerrero HA. 2.  2005. Castillo: nueva variedad de café con resistencia a la roya. Av. Téc. Cenicafé 337:1–8 [Google Scholar]
  3. Anagnostakis SL. 3.  1987. Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–37 [Google Scholar]
  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 4.  2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44 [Google Scholar]
  5. Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar L. 5.  et al. 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur. 7:303–21 [Google Scholar]
  6. Baker RED, Holliday P. 6.  1957. Witches’ broom disease of cacao (Marasmius perniciosus Stahel). Phytopathological Paper No. 2. Wallingford, UK: CABI [Google Scholar]
  7. Bancroft J. 7.  1876. Report of the board appointed to enquire into the cause of disease affecting livestock and plants. Queensland, 1876. Votes Proc. 1877 3:1011–38 [Google Scholar]
  8. Bebber DP, Holmes T, Smith D, Gurr SJ. 8.  2014. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202:901–10 [Google Scholar]
  9. Bebber DP, Ramotowski MAT, Gurr SJ. 9.  2013. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3:985–88 [Google Scholar]
  10. Blomme G, Ploetz R, Jones D, De Langhe E, Price N. 10.  et al. 2013. A historical overview of the appearance and spread of Musa pests and pathogens on the African continent: highlighting the importance of clean Musa planting materials and quarantine measures. Ann. Appl. Biol. 162:4–26 [Google Scholar]
  11. Brasier C. 11.  2000. Plant pathology: the rise of the hybrid fungi. Nature 405:134–35 [Google Scholar]
  12. Brasier CM. 12.  2001. Rapid evolution of introduced plant pathogens via interspecific hybridization. BioScience 51:123–33 [Google Scholar]
  13. Brasier CM. 13.  2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57:792–808 [Google Scholar]
  14. Brockway LH. 14.  1979. Science and colonial expansion: the role of the British Royal Botanic Gardens. Am. Ethnol. 6:449–65 [Google Scholar]
  15. Brown JKM, Hovemøller MS. 15.  2002. Epidemiology: aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–41 [Google Scholar]
  16. Buddenhagen IW. 16.  1990. Banana breeding and Fusarium wilt. Fusarium Wilt of Banana RC Ploetz 107–13 St Paul, MN APS Press [Google Scholar]
  17. Cahill D. 17.  1993. Review of Phytophthora Diseases in Australia: A Report Barton: ACT: Rural Ind. Res. Dev. Corp. 78 pp. [Google Scholar]
  18. Callaghan S, Guest D. 18.  2015. Globalisation, the founder effect, hybrid Phytophthora species and rapid evolution: new headaches for biosecurity. Australas. Plant Pathol. 44:255–62 [Google Scholar]
  19. Carlier J, Lebrun MH, Zapataer MF, Dubois C, Mourichon X. 19.  1996. Genetic structure of the global population of banana black leaf streak fungus, Mycosphaerella fijiensis. Mol. Ecol. 5:499–510 [Google Scholar]
  20. Cheesman EE. 20.  1944. Notes on the nomenclature, classification and possible relationships of cacao populations. Trop. Agric. 21:144–59 [Google Scholar]
  21. Cook DC, Liu S, Edwards J, Villalta ON, Aurambout J. 21.  et al. 2013. Predicted economic impact of Black Sigatoka on the Australian banana industry. Crop Prot. 51:48–56 [Google Scholar]
  22. Cook DC, Liu S, Edwards J, Villalta ON, Aurambout JP. 22.  et al. 2012. Predicting the benefits of Banana bunchy top virus exclusion from commercial plantations in Australia. PLOS ONE 7:9 [Google Scholar]
  23. Cook DC, Taylor AS, Meldrum RA, Drenth A. 23.  2015. Potential economic impact of Panama disease (tropical race 4) on the Australian banana industry. J. Plant Dis. Prot. 122:229–37 [Google Scholar]
  24. Cope FW. 24.  1976. Cacao, Theobromae cacao (Sterculiaceae). Evolution of Crop Plants NW Simmonds 285–89 London: Longman [Google Scholar]
  25. Crosby AW. 25.  1972. The Columbian Exchange: Biological and Cultural Consequences of 1492 Westport, CT: Greenwood Press [Google Scholar]
  26. Dabek AJ, Waller JM. 26.  1990. Black leaf streak and viral leaf streak: new banana diseases in East Africa. Trop. Pest Manag. 36:157–58 [Google Scholar]
  27. Daniel R, Borines LM, Soguilon C, Montiel C, Palermo VG. 27.  et al. 2014. Development of disease management recommendations for the durian and jackfruit industries in the Philippines using farmer participatory research. Food Secur. 6:411–22 [Google Scholar]
  28. Dark P, Gent H. 28.  2001. Pests and diseases of prehistoric crops: a yield “honeymoon” for early grain crops in Europe?. Oxf. J. Archaeol. 20:59–78 [Google Scholar]
  29. Davidson B. 29.  1969. A History of East and Central Africa to the Late Nineteenth Century Garden City, NY: Anchor Books [Google Scholar]
  30. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A. 30.  et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414–30 [Google Scholar]
  31. de Bellaire LD, Foure E, Abadie C, Carlier J. 31.  2010. Black leaf streak disease is challenging the banana industry. Fruits 65:327–42 [Google Scholar]
  32. Díaz-Valderrama JR, Aime MC. 32.  2016. The cacao pathogen Moniliophthora roreri (Marasmiaceae) produces rhexolytic thallic conidia and their size is influenced by nuclear condition. Mycoscience 57:208–16 [Google Scholar]
  33. Drenth A, Guest D. 33.  2013. Phytophthora palmivora in tropical tree crops. Phytophthora: A Global Perspective K Lamour 187–96 Wallingford, UK: CABI [Google Scholar]
  34. Ellison CE, Hall C, Kowbel D, Welch J, Brem RB. 34.  et al. 2011. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. PNAS 108:2831–36 [Google Scholar]
  35. Evans HC. 35.  1971. Transmission of Phytophthora pod rot of cocoa by invertebrates. Nature 232:346–47 [Google Scholar]
  36. Evans HC. 36.  2002. Invasive neotropical pathogens of tree crops. Tropical Mycology 2. Micromycetes R Watling, JC Frankland, AM Ainsworth, S Isaac, SH Robinson 83–112 Wallingford, UK: CABI [Google Scholar]
  37. Evans HC, Holmes KA, Reid AP. 37.  2003. Phylogeny of the frosty pod rot pathogen of cocoa. Plant Pathol. 52:476–85 [Google Scholar]
  38. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 38.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  39. Flood J, Guest DI, Holmes KA, Keane PJ, Padi B, Sulistyowati E. 39.  2004. Cocoa under attack. Cocoa Futures J Flood, R Murphy 33–53 Chinchiná, Colombia: Commod. Press [Google Scholar]
  40. Flor HH. 40.  1946. Genetics of pathogenicity in Melampsori lini. J. Agric. Res. 73:335–57 [Google Scholar]
  41. Flor HH. 41.  1971. Current status of the gene for gene concept. Annu. Rev. Phytopathol. 9:275–96 [Google Scholar]
  42. Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H. 42.  et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–56 [Google Scholar]
  43. Furman JL, Porter ME, Stern S. 43.  2002. The determinants of national innovative capacity. Res. Policy 31:899–933 [Google Scholar]
  44. García-Bastidas F, Ordóñez N, Konkol J, Al-Qasim M, Naser Z. 44.  et al. 2013. First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama Disease of banana outside Southeast Asia. Plant Dis. 98:694 [Google Scholar]
  45. Gibbs JN. 45.  1978. Intercontinental epidemiology of Dutch elm disease. Annu. Rev. Phytopathol. 16:287–307 [Google Scholar]
  46. Gitau CW, Gurr GM, Dewhurst CF, Fletcher MJ, Mitchell A. 46.  2009. Insect pests and insect-vectored diseases of palms. Aust. J. Entomol. 48:328–42 [Google Scholar]
  47. Gregory PH, Maddison AC. 47.  1981. Epidemiology of Phytophthora on Cocoa in Nigeria. Final Rep. Int. Cocoa Black Pod Res. Proj., Commonw. Mycol. Inst., Kew, Surrey, UK
  48. Guest D. 48.  2007. Black pod: diverse pathogens with a global impact on cocoa yield. Phytopathology 97:1650–53 [Google Scholar]
  49. Guest D, Keane P. 49.  2007. Vascular-streak dieback: a new encounter disease of cacao in Papua New Guinea and Southeast Asia caused by the obligate basidiomycete Oncobasidium theobromae. Phytopathology 97:1654–57 [Google Scholar]
  50. Guest DI, Daniel R, Namaliu Y, Konam JK. 50.  2010. Technology Adoption: Classroom in the Cocoa Block Berlin: Springer-Verlag [Google Scholar]
  51. Hardner CM, Peace C, Lowe AJ, Neal J, Pisanu P. 51.  et al. 2009. Genetic resources and domestication of macadamia. Horticultural Reviews 35 J Janick 1–125 New York: John Wiley & Sons [Google Scholar]
  52. Harlan JR. 52.  1971. Agricultural origins: centers and noncenters. Science 174:468–74 [Google Scholar]
  53. Harlan JR. 53.  1975. Crops and Man Madison, WI: Am. Soc. Agron. Crop Sci. Soc.295 [Google Scholar]
  54. Harlan JR. 54.  1976. Diseases as a factor in plant evolution. Annu. Rev. Phytopathol. 14:31–51 [Google Scholar]
  55. Hartley CWS. 55.  1988. The Oil Palm New York: Longman [Google Scholar]
  56. Hawkes JG. 56.  1970. The taxonomy of cultivated plants. Genetic Resources in Plants: Their Exploration and Conservation OH Frankel, E Bennet 69–85 Oxford, UK: Blackwell [Google Scholar]
  57. Hawksworth DL. 57.  1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95:641–55 [Google Scholar]
  58. Hawksworth DL. 58.  2012. Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate?. Biodivers. Conserv. 21:2425–33 [Google Scholar]
  59. Henderson J, Pattemore JA, Porchun SC, Hayden HL, Van Brunschot S. 59.  et al. 2006. Black Sigatoka disease: new technologies to strengthen eradication strategies in Australia. Australas. Plant Pathol. 35:181–93 [Google Scholar]
  60. Herforth A. 60.  2015. Access to adequate nutritious food: new indicators to track progress and inform action. Fight Against Hunger and Malnutrition DE Sahn 139–62 Oxford, UK: Oxford Univ. Press [Google Scholar]
  61. Hill DS, Waller JM. 61.  1988. Pests and Diseases of Tropical Crops 2 Field Handbook London: Longman [Google Scholar]
  62. Hillebrand H. 62.  2004. On the generality of the latitudinal diversity gradient. Am. Nat. 163:192–211 [Google Scholar]
  63. Holliday P. 63.  1980. Fungus Diseases of Tropical Crops Cambridge: Cambridge Univ. Press [Google Scholar]
  64. Hoyt E, Brown S. 64.  1992. Conserving the Wild Relatives of Crops Rome: Int. Board Genet. Resour. [Google Scholar]
  65. Huang D, Haack RA, Zhang R. 65.  2011. Does global warming increase establishment rates of invasive alien species? A centurial time series analysis. PLOS ONE 6:e24733 [Google Scholar]
  66. Hulme PE. 66.  2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:10–18 [Google Scholar]
  67. Hunter JR. 67.  1990. The status of cacao (Theobroma cacao, sterculiaceae) in the western hemisphere. Econ. Bot. 44:425–39 [Google Scholar]
  68. Keane PJ, Flentje NT, Lamb KP. 68.  1972. Investigation of vascular-streak dieback of cocoa in Papua New Guinea. Aust. J. Biol. Sci. 25:553–64 [Google Scholar]
  69. Kimber C. 69.  1988. Martinique Revisited: The Changing Plant Geographies of a West Indian Island College Station, TX: Tex. A&M Univ. Press [Google Scholar]
  70. Konam JK, Guest DI. 70.  2004. Role of beetles (Coleoptera: Scolytidae and Nitidulidae) in the spread of Phytophthora palmivora pod rot of cocoa in Papua New Guinea. Australas. Plant Pathol. 33:55–59 [Google Scholar]
  71. Kummu M, Varis O. 71.  2011. The world by latitudes: a global analysis of human population, development level and environment across the north-south axis over the past half century. Appl. Geogr. 31:495–507 [Google Scholar]
  72. Lieberei R. 72.  2007. South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot. 100:1125–42 [Google Scholar]
  73. Marin DH, Romero RA, Guzman M, Sutton TB. 73.  2003. Black Sigatoka: an increasing threat to banana cultivation. Plant Dis. 87:3208–22 [Google Scholar]
  74. McDonald BA, Linde C. 74.  2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79 [Google Scholar]
  75. McHau GRA, Coffey MD. 75.  1994. Isozyme diversity in Phytophthora palmivora: evidence for a Southeast Asian centre of origin. Mycol. Res. 98:1035–43 [Google Scholar]
  76. Medeiros A. 76.  1976. Sporulation of Phytophthora palmivora (Butl.) in relation to epidemiology and chemical control of cacao black pod disease PhD Thesis, Univ. Calif., Riverside [Google Scholar]
  77. Meredith DS. 77.  1970. Banana leaf spot disease (sigatoka) caused by Mycosphaerella musicola Leach. Phytopathological Paper No. 11 Wallingford, UK: CABI [Google Scholar]
  78. Miller SA, Beed FD, Harmon CL. 78.  2009. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47:15–38 [Google Scholar]
  79. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM. 79.  et al. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10:315–31 [Google Scholar]
  80. Molina AB, Fabregar E, Sinohin VG, Yi G, Viljoen A. 80.  2009. Recent occurrence of Fusarium oxysporum f. sp. cubense tropical race 4 in Asia. Acta Hortic. 828:109–16 [Google Scholar]
  81. Mooney HA, Hobbs RJ. 81.  2000. Invasive Species in a Changing World Washington, D.C: Island Press [Google Scholar]
  82. Moreno Ruiz G, Castillo Zapata J. 82.  1990. The Variety Colombia: A Variety of Coffee with Resistance to Rust (Hemileia vastatrix Berk. & Br.). Chinchina-Caldas, Colombia: CENICAFE [Google Scholar]
  83. Motamayor JC, Lachenaud P, Mota J, Loor R, Kuhn DN. 83.  et al. 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). PLOS ONE 3:8 [Google Scholar]
  84. Motilal LA, Sreenivasan TN. 84.  2012. Revisiting 1727: crop failure leads to the birth of Trinitario cacao. J. Crop Improv. 26:599–626 [Google Scholar]
  85. Novotny V, Miller SE. 85.  2014. Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomol. 53:259–67 [Google Scholar]
  86. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R. 86.  2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microbiol. 71:5544–50 [Google Scholar]
  87. Oerke EC, Dehne HW. 87.  2004. Safeguarding production: losses in major crops and the role of crop protection. Crop Prot. 23:275–85 [Google Scholar]
  88. Oerke EC, Dehne HW, Schonbeck F, Weber A. 88.  1994. Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops Amsterdam, Neth.: Elsevier [Google Scholar]
  89. Ordonez N, Garcia FA, Laghari H, Akkary M, Harfouche EN. 89.  2015. First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Panama disease in Cavendish bananas in Pakistan and Lebanon. Plant Dis. 100:209 [Google Scholar]
  90. Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A. 90.  et al. 2015. Worse comes to worst: bananas and Panama disease—when plant and pathogen clones meet. PLOS Pathog. 11:e1005197 [Google Scholar]
  91. Pasberg-Gauhl C, Gauhl F, Jones DR. 91.  2000. Black leaf streak: distribution and economic importance. Diseases of Banana, Abacá and Enset DR Jones 37–44 New York: CABI [Google Scholar]
  92. Pautasso M, Aas G, Queloz V, Holdenrieder O. 92.  2013. European ash (Fraxinus excelsior) dieback: a conservation biology challenge. Biol. Conserv. 158:37–49 [Google Scholar]
  93. Pereira JL, de Almeida LCC, Santos SM. 93.  1996. Witches’ broom disease of cocoa in Bahia: attempts at eradication and containment. Crop Prot. 15:743–52 [Google Scholar]
  94. Pérez Vicente L, Alvarez JM, Pérez M. 94.  2003. Economic impact and management of Black leaf streak disease in Cuba. Mycosphaerella Leaf Spot Diseases of Bananas: Present Status and Outlook L Jacome, P Lepoivre, D Marin, R Ortiz, R Romero, JV Escalant 71–84 Montpellier, Fr.: Int. Netw. Improv. Banana Plantain [Google Scholar]
  95. Ploetz RC. 95.  1990. Fusarium Wilt of Banana St. Paul, MN: APS Press [Google Scholar]
  96. Ploetz RC. 96.  2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96:653–56 [Google Scholar]
  97. Ploetz RC. 97.  2007. Cacao diseases: important threats to chocolate production worldwide. Phytopathology 97:1634–39 [Google Scholar]
  98. Ploetz RC. 98.  2007. Diseases of tropical perennial crops: challenging problems in diverse environments. Plant Dis. 91:644–63 [Google Scholar]
  99. Ploetz RC, Churchill ACL. 99.  2011. Fusarium wilt: the banana disease that refuses to go away. Acta Hortic. 897:519–26 [Google Scholar]
  100. Ploetz RC, Kema GHJ, Ma LJ. 100.  2015. Impact of diseases on export and smallholder production of banana. Annu. Rev. Phytopathol. 53:269–88 [Google Scholar]
  101. Ploetz RC, Pegg K. 101.  1997. Fusarium wilt of banana and Wallace's line: Was the disease originally restricted to his Indo-Malayan region?. Australas. Plant Pathol. 26:239–49 [Google Scholar]
  102. Raemaekers R. 102.  1975. Black leaf streak like disease in Zambia. Pest Artic. News Summ. 21:396–400 [Google Scholar]
  103. Rep M, Kistler HC. 103.  2010. The genomic organization of plant pathogenicity in Fusarium species. Curr. Opin. Plant Biol. 13:420–26 [Google Scholar]
  104. Rhodes PL. 104.  1964. A new banana disease in Fiji. Commonw. Phytopathol. News 10:38–41 [Google Scholar]
  105. Richardson JE, Whitlock BA, Meerow A, Madriñán S. 105.  2015. The age of chocolate: a biogeographic history of Theobroma and Malvaceae. Front. Ecol. Evol. 3:00120 [Google Scholar]
  106. Rishbeth J. 106.  1955. Fusarium wilt of banana in Jamaica. I. Some observations on the epidemiology of the disease. Ann. Bot. 19:293–328 [Google Scholar]
  107. Rizzo DM, Garbelotto M. 107.  2003. Sudden oak death: endangering California and Oregon forest ecosystems. Front. Ecol. Environ. 1:197–204 [Google Scholar]
  108. Robert S, Ravigne V, Zapataer MF, Abadie C, Carlier J. 108.  2012. Contrasting introduction scenarios among continents in the worldwide invasion of the banana fungal pathogen Mycosphaerella fijiensis. Mol. Ecol. 21:1098–114 [Google Scholar]
  109. Samuels GJ, Ismaiel A, Rosmana A, Junaid M, Guest DI. 109.  et al. 2012. Vascular Streak Dieback of cacao in Southeast Asia and Melanesia: in planta detection of the pathogen and a new taxonomy. Fungal Biol 116:11–23 [Google Scholar]
  110. Schroth G, Ruf F. 110.  2014. Farmer strategies for tree crop diversification in the humid tropics. A review. Agron. Sustain. Dev. 34:139–54 [Google Scholar]
  111. Schultes RE. 111.  1984. Amazonian cultigens and their northward and westward migration in pre-Columbian times. Pre-Columbian Plant Migration 76 D Stone 19–37 Cambridge, MA: Harvard Univ. Press [Google Scholar]
  112. Shishkoff N. 112.  2005. The effect of systemic fungicides on detection by culturing of Phytophthora ramorum. Phytopathology 95:S96 [Google Scholar]
  113. Shivas RG, Hyde KD. 113.  1997. Biodiversity of plant pathogenic fungi in the tropics. Biodiversity of Tropical Microfungi KD Hyde 47–56 Hong Kong: Hong Kong Univ. Press [Google Scholar]
  114. Simmonds NW. 114.  1976. Bananas, Musa (Musaeae). Evolution of Crop Plants NW Simmonds 211–15 London: Longman [Google Scholar]
  115. Simmonds NW, Stover RH. 115.  1987. Bananas London: Longmans [Google Scholar]
  116. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S. 116.  et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81 [Google Scholar]
  117. Soria J. 117.  1973. Primitive cultivars of cacao in America. Survey of Crop Genetic Resources in their Centres of Diversity OH Frankel 119–25 Rome: FAO/IBP [Google Scholar]
  118. Stover RH. 118.  1956. Studies on Fusarium wilt of bananas. I. The behaviour of F. oxysporum f. sp. cubense in different soils. Can. J. Bot. 34:927 [Google Scholar]
  119. Stover RH. 119.  1962. Fusarial Wilt (Panama Disease) of Bananas and other Musa Species Kew, UK: Commonw. Mycol. Inst.117 [Google Scholar]
  120. Stover RH. 120.  1978. Distribution and probable origin of Mycosphaerella fijiensis in Southeast Asia. Trop. Agric. 55:65–68 [Google Scholar]
  121. Stover RH, Dickson JD. 121.  1976. Banana leaf spot caused by Mycosphaerella musicola and M. fijiensis var. difformis: comparison of 1st Central American epidemics. FAO Plant Prot. Bull. 24:36–42 [Google Scholar]
  122. Stover RH, Waite BH. 122.  1954. Colonisation of banana roots of Fusarium oxysporum f. sp. cubense and other soil fungi. Phytopathology 44:689–93 [Google Scholar]
  123. Stover RH, Waite BH. 123.  1960. Studies on Fusarium wilt of bananas. V. Pathogenicity and distribution of F. oxysporum f. sp. cubense races 1 and 2. Can. J. Bot. 38:51–61 [Google Scholar]
  124. Strange RN, Scott PR. 124.  2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43:83–11 [Google Scholar]
  125. Su HJ, Chuang TY, Kong WS. 125.  1977. Physiological race of fusarial wilt fungus attacking Cavendish banana of Taiwan. Taiwan Banana Res. Inst. Spec. Pub. 2:1–21 [Google Scholar]
  126. Su HJ, Hwang SC, Ko WH. 126.  1986. Fusarial wilt of Cavendish bananas in Taiwan. Plant Dis. 70:814–18 [Google Scholar]
  127. Subbarao KV, Sundin GW, Klosterman SJ. 127.  2015. Focus issue articles on emerging and re-emerging plant diseases. Phytopathology 105:852–54 [Google Scholar]
  128. Szollosi GJ, Davin AA, Tannier E, Daubin V, Boussau B. 128.  2015. Genome-scale phylogenetic analysis finds extensive gene transfer among fungi. Philos. Trans. R. Soc. B 370:11 [Google Scholar]
  129. Thurston HD. 129.  1969. Tropical agriculture: a key to the world food crises. BioScience 19:29–34 [Google Scholar]
  130. Thurston HD. 130.  1977. International crop development centers: a pathologist's perspective. Annu. Rev. Phytopathol. 15:223–47 [Google Scholar]
  131. Thurston HD. 131.  1998. Tropical Plant Diseases St. Paul, MN: APS Press [Google Scholar]
  132. Torres G, Sarria G, Martinez G, Varon F, Drenth A, Guest D. 132.  2015. Bud rot caused by Phytophthora palmivora: a destructive emerging disease of oil palm. Phytopathology 106:320–29 [Google Scholar]
  133. Urquhart DH. 133.  1961. Cocoa New York: John Wiley and Sons [Google Scholar]
  134. Vavilov NI. 134.  1935. Theoretical basis for plant breeding, Vol. 1. Moscow. Origin and geography of cultivated plants. The Phytogeographical Basis for Plant Breeding Transl. D. Love 316–66 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  135. Waage JK, Woodhall JW, Bishop SJ, Smith JJ, Jones DR, Spence NJ. 135.  2008. Patterns of plant pest introductions in Europe and Africa. Agric. Syst. 99:1–5 [Google Scholar]
  136. Wellman FL. 136.  1968. More disease on crops in the tropics than in the temperate zone. Ceiba 14:17–28 [Google Scholar]
  137. Westphal MI, Browne M, MacKinnon K, Noble I. 137.  2008. The link between international trade and the global distribution of invasive alien species. Biol. Invasions 10:391–98 [Google Scholar]
  138. Wills RT. 138.  1993. The ecological impact of Phytophthora cinnamomi in the Stirling Range National Park, Western Australia. Aust. J. Ecol. 18:145–59 [Google Scholar]
  139. Wilson OE. 139.  1988. The current state of biological diversity. Biodiversity EO Wilson, FM Peter 3–18 Washington, D.C.: Natl. Acad. Press [Google Scholar]
  140. Zentmyer GA. 140.  1988. Origin and distribution of four species of Phytophthora. Trans. Br. Mycol. Soc. 91:367–78 [Google Scholar]
  141. Zeven AC, de Wet JMJ. 141.  1982. Dictionary of Cultivated Plants and their Regions of Diversity Wageningen, Neth.: Cent. Agric. Publ. Doc. [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error