1932

Abstract

Producers worldwide need access to the best plant varieties and cultivars available to be competitive in global markets. This often means moving plants across international borders as soon as they are available. At the same time, quarantine agencies are tasked with minimizing the risk of introducing exotic pests and pathogens along with imported plant material, with the goal to protect domestic agriculture and native fauna and flora. These two drivers, the movement of more plant material and reduced risk of pathogen introduction, are at odds. Improvements in large-scale or next-generation sequencing (NGS) and bioinformatics for data analysis have resulted in improved speed and accuracy of pathogen detection that could facilitate plant trade with reduced risk of pathogen movement. There are concerns to be addressed before NGS can replace existing tools used for pathogen detection in plant quarantine and certification programs. Here, we discuss the advantages and possible pitfalls of this technology for meeting the needs of plant quarantine and certification.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100105
2016-08-04
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-100105.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100105&mimeType=html&fmt=ahah

Literature Cited

  1. Adams IP, Glover RH, Monger WA, Kemfor R, Jackerviceince E. 1.  et al. 2009. Next generation sequencing and metagenomics: a universal diagnostic tool in plant virology. Mol. Plant Pathol. 10:537–45 [Google Scholar]
  2. Adams MJ, Hendrickson RC, Dempsey DM, Lefkowitz EJ. 2.  2015. Tracking the changes in virus taxonomy. Arch. Virol. 160:1375–83 [Google Scholar]
  3. Al Rwahnih M, Daubert S, Urbez-Torres JR, Cordero F, Rowhani A. 3.  2011. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch. Virol. 156:397–403 [Google Scholar]
  4. Al Rwahnih M, Daubert S, Golino D, Islas C, Rowhani A. 4.  2015. Comparison of next-generation sequencing versus biological indexing for the optimal detection of viral pathogens in grapevine. Phytopathology 105:758–63 [Google Scholar]
  5. Altschul SF. 5.  1991. Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 219:555–65 [Google Scholar]
  6. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 6.  2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44 [Google Scholar]
  7. Bacon SJ, Aebi A, Calanca P, Bacher S. 7.  2014. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers. Distrib. 20:84–94 [Google Scholar]
  8. Bag S, Al Rwahnih M, Li A, Gonzalez A, Rowhani A. 8.  et al. 2015. Detection of a new luteovirus in imported nectarine trees: a case study to propose adoption of metagenomics in post-entry quarantine. Phytopathology 105:840–46 [Google Scholar]
  9. Barba M, Czosnek H, Hadidi A. 9.  2014. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6:106–36 [Google Scholar]
  10. Barbisch D, Koenig KL, Shih FY. 10.  2015. Is there a case for quarantine? Perspectives from SARS to Ebola. Disaster Med. Public Health Prep. 9:547–53 [Google Scholar]
  11. Beale R, Fairbrother J, Inglis A, Trebeck D. 11.  2008. One biosecurity: a working partnership. Independent review of Australia's quarantine and biosecurity arrangements. Rep. Aust. Gov., Dep. Agric. Fish. For., Sydney [Google Scholar]
  12. Bebber DP. 12.  2015. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53:335–56 [Google Scholar]
  13. Bertazzon N, Angelini E. 13.  2004. Advances in the detection of grapevine leafroll associated virus 2 variants. J. Plant Pathol. 86:283–90 [Google Scholar]
  14. Bertolini E, Teresani GR, Loiseau M, Tanaka FAO, Barbé S. 14.  et al. 2015. Transmission of “Candidatus Liberibacter solanacearum” in carrot seeds. Plant Pathol. 64:276–85 [Google Scholar]
  15. Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R. 15.  et al. 2010. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 89:19 10:1–21 [Google Scholar]
  16. Boonham N, Kreuze J, Winter S, van der Vlugt R, Bergervoet J. 16.  et al. 2014. Methods in virus diagnostics: from ELISA to next generation sequencing. Virus Res. 186:20–31 [Google Scholar]
  17. Brasier CM. 17.  2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57:792–808 [Google Scholar]
  18. Bull CT, Coutinho TA, Denny TP, Firrao G, Fischer-Le Saux M. 18.  et al. 2014. List of new names of plant pathogenic bacteria (2011–2012). J. Plant Pathol. 96:223–26 [Google Scholar]
  19. Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M. 19.  et al. 2010. Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J. Plant Pathol. 92:551–92 [Google Scholar]
  20. Bull CT, De Boer SH, Denny TP, Firrao G, Fischer-Le Saux M. 20.  et al. 2012. List of new names of plant pathogenic bacteria (2008–2010). J. Plant Pathol. 94:21–27 [Google Scholar]
  21. Bull CT, Koike ST. 21.  2015. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. Annu. Rev. Phytopathol. 53:157–80 [Google Scholar]
  22. Candresse T, Filloux D, Muhire B, Julian C, Galzi S. 22.  et al. 2014. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLOS ONE 9:e102945 [Google Scholar]
  23. Chakraborty S, Newton AC. 23.  2011. Climate change, plant diseases and food security: an overview. Plant Pathol. 60:2–14 [Google Scholar]
  24. Chamberlain CJ, Kraus J, Kohnen PD, Finn CE, Martin RR. 24.  2003. First report of Raspberry bushy dwarf virus in Rubus multibracteatus from China. Plant Dis. 87:603 [Google Scholar]
  25. Chevalier S, Greiff C, Clauzel JM, Walter B, Fritsch C. 25.  1995. Use of immunocapture-polymerase chain reaction procedure for the detection of grapevine virus A in Kober stem grooving-infected grapevines. J. Phytopathol. 143:369–73 [Google Scholar]
  26. Christensen NM, Nicolaisen M, Hansen M, Schultz A. 26.  2004. Distribution of phytoplasmas in infected plants as revealed by real time PCR and bioimaging. Mol. Plant-Microbe Interact. 17:1175–84 [Google Scholar]
  27. Clark CA, Davis JA, Abad JA, Cuellar WJ, Fuentes S. 27.  et al. 2012. Sweetpotato viruses: 15 years of progress on understanding and managing complex diseases. Plant Dis. 96:168–85 [Google Scholar]
  28. Clark MF. 28.  1981. Immunosorbent assays in plant pathology. Annu. Rev. Phytopathol. 19:83–106 [Google Scholar]
  29. Clark MF, Adams AN. 29.  1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475–83 [Google Scholar]
  30. Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Rees DJ. 30.  2010. Deep sequencing analysis of viruses infecting grapevines: the virome of a vineyard. Virology 400:157–63 [Google Scholar]
  31. Constable FE, Gibb KS, Symons RH. 31.  2003. The seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathol. 52:267–76 [Google Scholar]
  32. Constable FE, Connellan J, Nicholas P, Rodoni BC. 32.  2013. The reliability of woody indexing for detection of grapevine virus-associated diseases in three different climatic conditions in Australia. Aust. J. Grape Wine Res. 19:74–80 [Google Scholar]
  33. Constable FE, Nancarrow N, Kelly G, Milinkovic M, Ko L. 33.  et al. 2016. Improved diagnostic testing and on farm biosecurity plan to support Australian strawberry certification programs. Acta Hortic. 1117:171--76 [Google Scholar]
  34. Crespo-Pérez V, Régnière J, Chuine I, Rebaudo F, Dangles O. 34.  2015. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes. Glob. Change Biol. 21:82–96 [Google Scholar]
  35. Crous PW, Hawksworth DL, Wingfield MJ. 35.  2015. Identifying and naming plant-pathogenic fungi: past, present, and future. Annu. Rev. Phytopathol. 53:247–67 [Google Scholar]
  36. Dayhoff MO, Schwartz RM, Orcutt BC. 36.  1978. A model of evolutionary change in proteins. Atlas Protein Seq. Struct. 5:Suppl. 3345–52 [Google Scholar]
  37. Domier LL. 37.  2012. Family Luteoviridae.. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses AMQ King, MJ Adams, EB Carstens, EJ Lefkowitz 1045–53 New York: Elsevier [Google Scholar]
  38. Dossett M, Bassil NV, Lewers KS, Finn CE. 38.  2012. Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers. Genet. Resour. Crop Evol. 59:1849–65 [Google Scholar]
  39. 39. EPPO 2014. PM 7/76 (3) Use of EPPO diagnostic protocols. EPPO Bull. 44:335–37 [Google Scholar]
  40. Fajardo TVM, Barros DR, Nickel O, Kuhn GB, Zerbini FM. 40.  2007. Variability of the coat protein gene of Grapevine leafroll-associated virus 3 in Brazil. Fitopatol. Brasil. 32:335–40 [Google Scholar]
  41. 41. FAO 2004. Pest risk analysis for quarantine pests, including analysis or environmental risks and living modified organisms. Int. Stand. Phytosanit. Meas. Number 11, Food Agric. Organ., Rome [Google Scholar]
  42. 42. FAO 2007. Framework for pest risk analysis. Int. Stand. Phytosanit. Meas. Number 2, Food Agric. Organ., Rome [Google Scholar]
  43. Fletcher J, Stack J. 43.  2007. Agricultural biosecurity: threats and impacts for plant pathogens. Forum on Microbial Threats86–94 Washington, D.C: Natl. Acad. Press [Google Scholar]
  44. Frost KE, Groves RL, Charkowski AO. 44.  2013. Integrated control of potato pathogens through seed potato certification and provision of clean seed potatoes. Plant Dis. 97:1268–80 [Google Scholar]
  45. Fry WE, Birch PRJ, Judelson HS, Grünwald NJ, Danies G. 45.  et al. 2015. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology 105:966–81 [Google Scholar]
  46. Geering ADW, Olszewski NE, Dahal G, Thomas JE, Lockhart BEL. 46.  2001. Analysis of the distribution and structure of integrated Banana streak virus DNA in a range of Musa cultivars. Mol. Plant Pathol. 2:207–13 [Google Scholar]
  47. Geering ADW, Olszewski NE, Harper G, Lockhart BEL, Hull R, Thomas JE. 47.  2005. Banana contains a diverse array of endogenous badnaviruses. J. Gen. Virol. 86:511–20 [Google Scholar]
  48. Gergerich RC, Welliver RA, Gettys S, Osterbauer NK, Kamenidou S. 48.  et al. 2015. Safeguarding fruit crops in the age of agricultural globalization. Plant Dis. 99:176–87 [Google Scholar]
  49. Gibbs A, Mackenzie A. 49.  1997. A primer pair for amplifying part of the genome of all potyvirids by RT-PCR. J. Virol. Methods 63:9–16 [Google Scholar]
  50. Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D. 50.  et al. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812–18 [Google Scholar]
  51. Gugerli P. 51.  2009. 25 years of serological identification of grapevine leafroll-associated viruses: antiserum and monoclonal antibodies to GLRaV-1 to GLRaV-9. ICVG 16:24–28 [Google Scholar]
  52. Gundersen DE, Lee I-M. 52.  1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol. Mediterr. 35:144–51 [Google Scholar]
  53. Ho T, Tzanetakis IE. 53.  2014. Developing a virus detection and discovery pipeline using next generation sequencing. Virology 471–73:54–60 [Google Scholar]
  54. Hopkins D, Purcell A. 54.  2002. Xylella fastidiosa: cause of Pierce's disease of grapevine and other emergent diseases. Plant Dis. 86:1056–66 [Google Scholar]
  55. Hsu HT, Franssen JM, van der Hulst CTC, Derks AFLM, Lawson RH. 55.  1988. Factors affecting selection of epitope specificity of monoclonal antibodies to tulip breaking potyvirus. Phytopathology 78:1337–40 [Google Scholar]
  56. Hull R. 56.  2013. Plant Virology. New York: Academic., 5th ed.. [Google Scholar]
  57. Huttinga H. 57.  1996. Sensitivity of indexing procedures for viruses and viroids. Adv. Bot. Res. 23:59–71 [Google Scholar]
  58. Isard SA, Gage SH, Comtois P, Russo JM. 58.  2005. DATE principles of the atmospheric pathway for invasive species applied to soybean rust. BioScience 55:851–61 [Google Scholar]
  59. James AP, Geijskes RJ, Dale JL, Harding RM. 59.  2011. Development of a novel rolling-circle amplification technique to detect Banana streak virus that also discriminates between integrated and episomal virus sequences. Plant Dis. 95:57–62 [Google Scholar]
  60. Jones AT, McGavin WJ, Gepp V, Zimmerman MT, Scott SW. 60.  2006. Purification and properties of blackberry chlorotic ringspot, a new virus species in subgroup 1 of the genus Ilarvirus found naturally infecting blackberry in the UK. Ann. Appl. Biol. 149:125–35 [Google Scholar]
  61. Jones RAC. 61.  2014. Trends in plant virus epidemiology: opportunities from new or improved technologies. Virus Res. 186:3–19 [Google Scholar]
  62. Jordan R, Hammond J. 62.  1991. Comparison and differentiation of potyvirus isolates and identification of strain-, virus-, subgroup-specific and potyvirus group-common epitopes using monoclonal antibodies. J. Gen. Virol. 72:25–36 [Google Scholar]
  63. Kadohira M, Stevenson MA, Høgåsen HR, de Koeijer A. 63.  2012. A quantitative risk assessment for bovine spongiform encephalopathy in Japan. Risk Anal. 32:2198–208 [Google Scholar]
  64. Kehoe MA, Coutts BA, Buirchell BJ, Jones RA. 64.  2014. Plant virology and next generation sequencing: experiences with a potyvirus. PLOS ONE 9:8e104580 [Google Scholar]
  65. Knobler S, Mahmoud A, Lemon S, Pray L. 65.  2006. The Impact of Globalization on Infectious Disease Emergence and Control Washington, D.C: Natl. Acad. Press [Google Scholar]
  66. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S. 66.  2009. Complete viral genome sequence and discovery by deep sequencing of small RNAs: a generic method for diagnosis, discovery, and sequencing of virus. Virology 388:1–7 [Google Scholar]
  67. Krupa S, Bowersox V, Claybrooke R, Barnes CW, Szabo L. 67.  et al. 2006. Introduction of Asian soybean rust urediniospores into the midwestern United States: a case study. Plant Dis. 90:1254–59 [Google Scholar]
  68. Kyndt T, Quispe D, Zhai H, Jarret R, Ghislain M. 68.  et al. 2015. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. PNAS 112:5844–49 [Google Scholar]
  69. Laney AG, Hassan M, Tzanetakis IE. 69.  2012. An integrated badnavirus is prevalent in fig germplasm. Phytopathology 102:1182–89 [Google Scholar]
  70. Lefebvre A, Scalla R, Pfeiffer P. 70.  1990. The double-stranded RNA associated with the “447” cytoplasmic male sterility in Vicia faba is packaged together with its replicase in cytoplasmic membranous vesicles. Plant Mol. Biol. 14:477–90 [Google Scholar]
  71. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. 71.  2012. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front. Ecol. Environ. 10:135–43 [Google Scholar]
  72. López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E. 72.  2009. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. Curr. Issues Mol. Biol. 11:13–46 [Google Scholar]
  73. MacDiarmid R, Rodoni B, Melcher U, Ochoa-Corona F, Roossinck M. 73.  2013. Biosecurity implications of new technology and discovery in plant virus research. PLOS Pathog. 9:e1003337 [Google Scholar]
  74. Maliogka VI, Dovas CI, Katis NI. 74.  2007. Demarcation of ilarviruses based on the phylogeny of RNA2-encoded RdRp and a generic ramped annealing RT-PCR. Arch. Virol. 152:1687–98 [Google Scholar]
  75. Mardis ER. 75.  2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6:287–303 [Google Scholar]
  76. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS. 76.  et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–80 [Google Scholar]
  77. Martin RR, James D, Levesque CA. 77.  2000. Impacts of molecular diagnostics on plant disease management. Annu. Rev. Phytopathol. 38:207–39 [Google Scholar]
  78. Martin RR, MacFarlane S, Sabanadzovic S, Quito D, Poudel B, Tzanetakis IE. 78.  2013. Viruses and virus diseases of Rubus. Plant Dis. 97:168–82 [Google Scholar]
  79. Martin RR, Tzanetakis IE. 79.  2013. High risk strawberry viruses by region in the United States and Canada: implications for certification, nurseries, and fruit production. Plant Dis. 97:1358–62 [Google Scholar]
  80. Martin RR, Zhou J, Tzanetakis IE. 80.  2011. Blueberry latent virus: an amalgam of Partitiviridae and Totiviridae. Virus Res. 155:175–80 [Google Scholar]
  81. Massart S, Olmos A, Jijakli H, Candresse T. 81.  2014. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. 188:90–96 [Google Scholar]
  82. McCartney HA, Foster SJ, Fraaije BA, Ward E. 82.  2003. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59:129–42 [Google Scholar]
  83. Murad L, Bielawski JP, Matyasek R, Kovarík A, Nichols RA. 83.  et al. 2004. The origin and evolution of geminivirus-related DNA sequences in Nicotiana. Heredity 92:352–58 [Google Scholar]
  84. Murant AF. 84.  1990. Dependence of groundnut rosette virus on its satellite RNA as well as on groundnut rosette assistor luteovirus for transmission by Aphis craccivora. J. Gen. Virol. 71:2163–66 [Google Scholar]
  85. Nairn ME, Allen PG, Inglis AR, Tanner C. 85.  1996. Australian Quarantine: A Shared Responsibility Canberra, Aust: Dep. Prim. Ind. Energy [Google Scholar]
  86. Ndowora T, Dahal G, LaFleur D, Harper G, Hull R. 86.  et al. 1999. Evidence that badnavirus infection in Musa can originate from integrated pararetroviral sequences. Virology 255:214–20 [Google Scholar]
  87. Nyrén P. 87.  2007. The history of pyrosequencing. Methods Mol. Biol. 373:1–13 [Google Scholar]
  88. Ochoa-Corona FM. 88.  2011. Biosecurity, microbial forensics and plant pathology: education challenges, overlapping disciplines and research needs. Australas. Plant Pathol. 40:335–38 [Google Scholar]
  89. Palm ME. 89.  2001. Systematics and the impact of invasive fungi on agriculture in the United States. BioScience 51:141–47 [Google Scholar]
  90. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O. 90.  et al. 2013. Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–86 [Google Scholar]
  91. 91. Plant Health Australia 2013. Industry biosecurity plan for the potato industry. Version 2.0. Canberra, Aust: Plant Health Aust http://www.planthealthaustralia.com.au [Google Scholar]
  92. Pleško IM, Marn MV, Širca S, Urek G. 92.  2009. Biological, serological and molecular characterisation of Raspberry bushy dwarf virus from grapevine and its detection in the nematode Longidorus juvenilis. Eur. J. Plant Pathol. 123:261–68 [Google Scholar]
  93. Poudel B, Tzanetakis IE. 93.  2013. Population structure of Blackberry chlorotic ringspot virus in the United States. Arch. Virol. 158:667–72 [Google Scholar]
  94. Powney R, Beer S, Plummer K, Luck J, Rodoni B. 94.  2011. The specificity of PCR-based protocols for detection of Erwinia amylovora. Australas. J. Plant Pathol. 40:87–97 [Google Scholar]
  95. Purcell AH, Saunders SR. 95.  1999. Fate of Pierce's disease strains of Xylella fastidiosa in common riparian plants in California. Plant Dis. 83:825–30 [Google Scholar]
  96. 96. Qiagen 2015. CLC Genomics Workbench 8.0.3. https://www.qiagenbioinformatics.com/
  97. Redinbaugh MG, Zambrano JL. 97.  2014. Control of virus diseases in maize. Adv. Virus Res. 90:391–429 [Google Scholar]
  98. Reardon T, Barrett CB, Berdegué JA, Swinnen JF. 98.  2009. Agrifood industry transformation and small farmers in developing countries. World Dev. 37:1717–27 [Google Scholar]
  99. Reinert K, Langmead B, Weese D, Evers DJ. 99.  2015. Alignment of next-generation sequencing reads. Annu. Rev. Genom. Hum. Genet. 16:133–51 [Google Scholar]
  100. Riley MB, Williamson MR, Maloy O. 100.  2002. Plant disease diagnosis. Plant Health Instr doi:10.1094/PHI-I-2002-1021-01 [Google Scholar]
  101. Rojas MR, Gilbertson RL, Maxwell DP. 101.  1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis. 77:340–47 [Google Scholar]
  102. Roossinck MJ. 102.  2005. Symbiosis versus competition in plant virus evolution. Nat. Rev. Microbiol. 3:917–24 [Google Scholar]
  103. Roossinck MJ. 103.  2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:99–108 [Google Scholar]
  104. Roossinck MJ. 104.  2012. Plant virus metagenomics: biodiversity and ecology. Annu. Rev. Genet. 46:359–69 [Google Scholar]
  105. Roossinck MJ, Saha P, Wiley GB, Quan J, White JD. 105.  et al. 2010. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 19:81–88 [Google Scholar]
  106. Roux S, Tournayre J, Mahul A, Debroas D, Enault F. 106.  2014. Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinform. 15:76 [Google Scholar]
  107. Rowhani A, Uyemoto JK, Golino D, Martelli GP. 107.  2005. Pathogen testing and certification of Vitis and Prunus species. Annu. Rev. Phytopathol. 43:261–78 [Google Scholar]
  108. Schaad NW, Frederick RD, Shaw J, Schneider WL, Hickson R, Petrillo MD. 108.  2003. Advances in molecular-based diagnostics in meeting crop biosecurity and phytosanitary issues. Annu. Rev. Phytopathol. 41:305–24 [Google Scholar]
  109. Sefc KM, Leonhardt W, Steinkellner H. 109.  2000. Partial sequence identification of Grapevine-leafroll-associated virus-1 and development of a highly sensitive IC-RT-PCR detection method. J. Virol. Methods 86:101–6 [Google Scholar]
  110. Seyrig G, Stedtfeld RD, Tourlousse DM, Ahmad F, Towery K. 110.  et al. 2015. Selection of fluorescent DNA dyes for real-time LAMP with portable and simple optics. J. Microbiol. Methods 119:223–27 [Google Scholar]
  111. Simpson M, Srinivasan V. 111.  2014. Australia's Biosecurity Future: Preparing for Future Biological Challenges Canberra, Aust: CSIRO https://publications.csiro.au/rpr/download?pid=csiro:EP146693&dsid=DS4 [Google Scholar]
  112. Simmonds P. 112.  2015. Methods for virus classification and the challenge of incorporating metagenomic sequence data. J. Gen. Virol. 96:1193–206 [Google Scholar]
  113. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S. 113.  et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81 [Google Scholar]
  114. Stack JP. 114.  2006. Challenges to crop biosecurity. Crop Biosecurity: Assuring Our Global Food Supply (NATO Science for Peace and Security Series-C: Environmental Security) ML Guillino, J Fletcher, A Gamliel, JP Stack 15–23 Dordrecht: Springer [Google Scholar]
  115. Stobbe AH, Daniels J, Espindola AS, Verma R, Melcher U. 115.  et al. 2013. E-probe diagnostic nucleic acid analysis (EDNA): a theoretical approach for handling of next generation sequencing data for diagnostics. J. Microbiol. Methods 94:356–66 [Google Scholar]
  116. Stobbe AH, Roossinck MJ. 116.  2014. Plant virus metagenomics: what we know and why we need to know more. Front. Plant Sci. 5:e150 [Google Scholar]
  117. Susaimuthu J, Gergerich RC, Bray MM, Clay KA, Clark JR. 117.  et al. 2007. The incidence and ecology of Blackberry yellow vein associated virus. Plant Dis. 91:809–13 [Google Scholar]
  118. Susaimuthu J, Tzanetakis IE, Gergerich RC, Kim KS, Martin RR. 118.  2008. Viral interactions lead to decline of blackberry plants. Plant Dis. 92:1288–92 [Google Scholar]
  119. Thompson JR, Fuchs M, McLane H, Celebi-Toprak F, Fischer KF. 119.  et al. 2014. Profiling viral infections in grapevine using a randomly primed reverse transcription-polymerase chain reaction/macroarray multiplex platform. Phytopathology 104:211–19 [Google Scholar]
  120. Tzanetakis IE, Gergerich RC, Martin RR. 120.  2006. A new Ilarvirus found in rose. Plant Pathol. 55:568 [Google Scholar]
  121. Untiveros M, Perez-Egusquiza Z, Clover G. 121.  2010. PCR assays for the detection of members of the genus Ilarvirus and family Bromoviridae. J. Virol. Methods 165:97–104 [Google Scholar]
  122. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 122.  2014. Ten years of next-generation sequencing technology. Trends Genet. 30:418–26 [Google Scholar]
  123. Vermeulen SJ, Campbell BM, Ingram JS. 123.  2012. Climate change and food systems. Annu. Rev. Environ. Resour. 37:195–222 [Google Scholar]
  124. Vincelli P, Tisserat N. 124.  2008. Nucleic acid–based pathogen detection in applied plant pathology. Plant Dis. 92:660–69 [Google Scholar]
  125. Wang Q, Jia P, Zhao Z. 125.  2013. VirusFinder: software for efficient and accurate detection of viruses and their integration sites in host genomes through next generation sequencing data. PLOS ONE 8:e64465 [Google Scholar]
  126. Weisberg W, Barns S, Pelletier D, Lane D. 126.  1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697–703 [Google Scholar]
  127. Welliver R. 127.  2012. Plum pox virus case study: the eradication road is paved in gold. Phytopathology 102:S4.154 [Google Scholar]
  128. Wilson IG. 128.  1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63:3741–51 [Google Scholar]
  129. 129. World Trade Organization 1994. Agreement on the application of sanitary and phytosanitary measures. Results of the Uruguay Round of Multilateral Trade Negotiations: The Legal Texts69–84 Geneva, Switz: WTO [Google Scholar]
  130. Wren JD, Roossinck MJ, Nelson RS, Scheets K, Palmer MW, Melcher U. 130.  2006. Plant virus biodiversity and ecology. PLOS Biol. 4:e80 [Google Scholar]
  131. Wu Q, Ding SW, Zhang Y, Zhu SF. 131.  2015. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annu. Rev. Phytopathol. 53:425–44 [Google Scholar]
  132. Wu Q, Wang Y, Cao MJ, Pantaleo V, Burgyan J. 132.  et al. 2012. Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. PNAS 109:3938–43 [Google Scholar]
  133. Xiang Y, Bernardy M, Bhagwat B, Wiersma PA, DeYoung R, Bouthillier M. 133.  2015. The complete genome sequence of a new polerovirus in strawberry plants from eastern Canada showing strawberry decline symptoms. Arch. Virol. 160:553–56 [Google Scholar]
  134. Zheng L, Rodoni BC, Gibbs MJ, Gibbs AJ. 134.  2010. A novel pair of universal primers for the detection of potyviruses. Plant Pathol. 59:211–20 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100105
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error