Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria () and fungi () results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen C, Bent A, Charkowski A. 1.  2009. Underexplored niches in research on plant pathogenic bacteria. Plant Physiol. 150:1631–37 [Google Scholar]
  2. Beiter K, Wartha F, Albiger B, Normark S, Zychlinsky A, Henriques-Normark B. 2.  2006. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16:401–7 [Google Scholar]
  3. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, Kockritz-Blickwede M. 3.  2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J. Innate Immun. 2:576–86 [Google Scholar]
  4. Brakstad O, MæLand JA. 4.  1995. Direct identification of Staphylococcus aureus in blood cultures by detection of the gene encoding the thermostable nuclease or the gene product. APMIS 103:209–18 [Google Scholar]
  5. Braun W, Whallon J. 5.  1954. The effects of DNA and enzyme-treated DNA on bacterial population changes. PNAS 40:162–64 [Google Scholar]
  6. Brigham LA, Woo HH, Nicoll SM, Hawes MC. 6.  1995. Differential expression of proteins and mRNAs from border cells and root tips of pea. Plant Physiol. 109:457–63 [Google Scholar]
  7. Brigham LA, Woo HH, Wen F, Hawes MC. 7.  1998. Meristem specific suppression of mitosis and a global switch in gene expression in the root cap of pea by endogenous signals. Plant Physiol. 118:1223–31 [Google Scholar]
  8. Brinkmann V, Goosmann C, Kuhn LL, Zychlinsky A. 8.  2013. Automatic quantification of in vitro NET formation. Front. Immunol. 3:1–8 [Google Scholar]
  9. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y. 9.  et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–35 [Google Scholar]
  10. Brinkmann V, Zychlinsky A. 10.  2012. NETs: Is immunity the second function of chromatin?. J. Cell Biol. 198:773–83 [Google Scholar]
  11. Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S. 11.  et al. 2010. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLOS Pathog. 6:e1000873 [Google Scholar]
  12. Buchanan JT, Simpson A, Aziz R, Liu G, Kristian S. 12.  et al. 2006. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16:396–400 [Google Scholar]
  13. Cannesan MA, Gangneux C, Lanoue A, Giron D, Laval K. 13.  et al. 2011. Association between border cell responses and localized root infection by pathogenic Aphanomyces euteiches. Ann. Bot. 108:459–63 [Google Scholar]
  14. Catlin BW. 14.  1956. Extracellular deoxyribonucleic acid of bacteria and a deoxyribonuclease inhibitor. Science 124:441–42 [Google Scholar]
  15. Chang A, Khemlani A, Kango H, Proft T. 15.  2011. Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. Mol. Microbiol. 79:1629–42 [Google Scholar]
  16. Cools-Lartigue J, Spicer J, Najmeh S, Ferri L. 16.  2014. Neutrophil extracellular traps in cancer progression. Cell. Mol. Life Sci. 71:4179–94 [Google Scholar]
  17. Cooper PR, Palmer LJ, Chapple ILC. 17.  2013. Neutrophil extracellular traps as a new paradigm in innate immunity: friend or foe?. Periodontology 63:165–97 [Google Scholar]
  18. Cuatrecases P, Fuchs S, Anfinsen CB. 18.  1967. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 242:1541–47 [Google Scholar]
  19. Curl EA, Truelove B. 19.  1986. The Rhizosphere Berlin: Springer-Verlag [Google Scholar]
  20. Curlango-Rivera G, Duclos D, Ebolo JJ, Hawes MC. 20.  2010. Transient exposure of root tips to primary and secondary metabolites: impact on root growth and production of border cells. Plant Soil 332:367–75 [Google Scholar]
  21. Curlango-Rivera G, Flores-Lara Y, Cho I, Huskey DA, Xiong Z, Hawes MC. 21.  2014. Signals controlling extracellular trap formation in plant and animal immune responses. Clin. Microbiol. 3:5–7 [Google Scholar]
  22. Curlango-Rivera G, Hawes MC. 22.  2011. Root tips moving through soil: an intrinsic vulnerability. Plant Signal. Behav. 6:1–2 [Google Scholar]
  23. Curlango-Rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC. 23.  2013. Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. Am. J. Bot. 100:9–15 [Google Scholar]
  24. Curlango-Rivera G, Pew T, VanEtten HD, Zhongguo X, Yu N, Hawes MC. 24.  2013. Measuring root disease suppression in response to a compost water extract. Phytopathology 103:255–60 [Google Scholar]
  25. Curlango-Rivera G, Xiong Z, Kessler JO, Hawes MC. 25.  2011. Extracellular trapping of bacteria in plant defense responses: dynamics and specificity. Phytopathology 41:S40 [Google Scholar]
  26. de Buhr N, Neumann A, Jerjomiceva N, von Kockritz-Blickwede M, Baums CG. 26.  2014. Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology 169:385–95 [Google Scholar]
  27. De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. 27.  2015. What lies beneath: belowground defense strategies in plants. Trends Plant Sci. 20:91–101 [Google Scholar]
  28. Della Coletta AM, Bachiega TF, de Quaglia E, Silva JC, De Faveri J. 28.  et al. 2015. Neutrophil extracellular traps identification in tegumentary lesions of patients with paracoccidioidomycosis and different patterns of NETs generation in vitro. PLOS Negl. Trop. Dis. 9:e0004037 [Google Scholar]
  29. Derre-Bobillot A, Cortess-Perez NG, Yamamota Y, Kharrat P, Couvé E. 29.  et al. 2013. Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. Mol. Microbiol. 89:518–31 [Google Scholar]
  30. Driouich A, Follet-Gueye M, Vicre-Gibouin M, Hawes MC. 30.  2013. Root border cells and secretions as critical elements in plant host defense. Curr. Opin. Plant. Biol. 16:1–5 [Google Scholar]
  31. Fahn A. 31.  1967. Plant Anatomy Oxford: Pergamon534 [Google Scholar]
  32. Fraser MJ, Low RI. 32.  1993. Fungal and mitochondrial nucleases. Cold Spring Harb. Monogr. Arch. 25:171–207 [Google Scholar]
  33. Gerhold DL, Pettinger AJ, Hadwiger LA. 33.  1993. Characterization of a plant-stimulated nuclease from Fusarium solani. Physiol. Mol. Plant Pathol. 43:33–46 [Google Scholar]
  34. Goldberg N, Hawes MC, Stanghellini M. 34.  1989. Specific attraction to and infection of cotton root cap cells by zoospores of Pythium dissotocum. Can. J. Bot. 67:1760–67 [Google Scholar]
  35. Griffin GJ, Hale MG, Shay FJ. 35.  1976. Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil Biol. Biochem. 8:29–32 [Google Scholar]
  36. Guimarães-Costa AB, DeSouza-Vieira TS, Paletta-Silva R, Freitas-Mesquita AL, Meyer-Fernandes JR, Saraiva EM. 36.  2014. 3′-nucleotidase/nuclease activity allows Leishmania parasites to escape killing by neutrophil extracellular traps. Infect. Immun. 82:1732–40 [Google Scholar]
  37. Guimarães-Costa AB, Nascimentoa MTC, Fromenta GS, Soaresb RPP, Morgado FN. 37.  et al. 2009. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. PNAS 106:6748–53 [Google Scholar]
  38. Gunawardena U, Hawes MC. 38.  2002. Tissue specific localization of root infection by fungal pathogens. Mol. Plant-Microbe Interact. 15:1128–36 [Google Scholar]
  39. Gunawardena U, Rodriguez M, Straney D, Romeo JT, VanEtten HD, Hawes MC. 39.  2005. Tissue specific localization of pea root infection by Nectria haematococca: mechanisms and consequences. Plant Physiol. 137:1363–74 [Google Scholar]
  40. Haas B, Grenier D. 40.  2015. Isolation, characterization and biological properties of membrane vesicles produced by the swine pathogen Streptococcus suis. PLOS ONE 1:e0130528 [Google Scholar]
  41. Haberlandt G. 41.  1914. Physiological Plant Anatomy. London: MacMillan [Google Scholar]
  42. Hadwiger LA, Chang M, Parsons MA. 42.  1995. Fusarium solani DNase is a signal for increasing expression of nonhost disease resistance response genes, hypersensitivity, and pisatin production. Mol. Plant Microbe Int. 8:871–79 [Google Scholar]
  43. Hadwiger LA, Druffel K, Humann JL, Schroeder BK. 43.  2013. Nuclease released by Verticillium dahlia is a signal for non-host resistance. Plant Sci. 201:98–107 [Google Scholar]
  44. Haichar FEZ, Santaella C, Heulin T, Achouak W. 44.  2014. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77:68–80 [Google Scholar]
  45. Halverson TW, Wilton M, Poon KK, Petri B, Lewenza S. 45.  2015. DNA is an antimicrobial component of neutrophil extracellular traps. PLOS Pathog. 11:e1004593 [Google Scholar]
  46. Hawes MC. 46.  1983. Sensitivity of isolated oat root cap cells and protoplasts to victorin. Physiol. Plant Pathol. 22:65–76 [Google Scholar]
  47. Hawes MC. 47.  1983. Technique for using isolated corn root cap cells in a simple, quantitative assay for the pathotoxin produced by Helminthosporium maydis, race T. Phytopathology 73:11184–87 [Google Scholar]
  48. Hawes MC, Brigham LA. 48.  1992. Impact of root border cells on microbial populations in the rhizosphere. Adv. Plant Pathol. 8:119–48 [Google Scholar]
  49. Hawes MC, Brigham LA, Wen F, Woo HH, Zhu Y. 49.  1998. Function of root border cells in plant health: pioneers in the rhizosphere. Annu. Rev. Phytopathol. 36:311–27 [Google Scholar]
  50. Hawes MC, Curlango-Rivera G, Wen F, White GJ, VanEtten HD, Xiong Z. 50.  2011. Extracellular DNA: the tip of root defenses?. Plant Sci. 180:741–45 [Google Scholar]
  51. Hawes MC, Curlango-Rivera G, Xiong Z, Kessler JO. 51.  2012. Roles of root border cells in plant defense and regulation of rhizosphere microbial populations by extracellular DNA “trapping. Plant Soil 355:1–16 [Google Scholar]
  52. Hawes MC, Gunawardena U, Miyasaka S, Zhao X. 52.  2000. The role of root border cells in plant defense. Trends Plant Sci. 5:128–33 [Google Scholar]
  53. Hawes MC, Pueppke SG. 53.  1986. Sloughed peripheral root cap cells: yield from different species and callus formation from single cells. Am. J. Bot. 73:1466–73 [Google Scholar]
  54. Hawes MC, Pueppke SG. 54.  1987. Correlation between binding of Agrobacterium tumefaciens by root cells and susceptibility of plants to crown gall. Plant Cell Rep. 6:287–90 [Google Scholar]
  55. Hawes MC, Wen F, Elquza E. 55.  2015. Extracellular DNA: a bridge to cancer. Cancer Res. 75OF1–5 [Google Scholar]
  56. Hawes MC, Wheeler HE. 56.  1982. Factors affecting victorin-induced cell death: temperature and plasmolysis. Physiol. Plant Pathol. 20:137–44 [Google Scholar]
  57. Hawes MC, Wheeler HE. 57.  1984. Detection of effects of nuclear genes on susceptibility to Helminthosporium maydis race T by a root cap cell bioassay for HMT-toxin. Physiol. Plant Pathol. 24:163–68 [Google Scholar]
  58. Holloman WK, Holliday R. 58.  1973. Studies on a nuclease from Ustilago maydis. I. Purification, properties, and implication in recombination of the enzyme. J. Biol. Chem. 248:8107–13 [Google Scholar]
  59. Hubbard JE, Schmitt N, McClure M, Stock SP, Hawes MC. 59.  2005. Increased penetration of host roots by nematodes after recovery from quiescence induced by root cap exudate.. Nematology 7:321–31 [Google Scholar]
  60. Huskey DA. 60.  2013. Detection of extracellular DNAse (exDNase) activity in. Nectria haematococca MS Thesis, Univ. Ariz., Tucson [Google Scholar]
  61. Ji Y, Li J, Qin Z, Li A, Liu X. 61.  et al. 2015. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila. Virulence 6:515–22 [Google Scholar]
  62. Jones DL, Nguyen C, Finlay RD. 62.  2009. Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33 [Google Scholar]
  63. Juneau RA, Stevens JS, Apicella MA, Criss AK. 63.  2015. A thermonuclease of Neisseria gonorrhoeae enhances bacterial escape from killing by neutrophil extracellular traps. J. Infect. Dis. 212:316–24 [Google Scholar]
  64. Kaplan MJ, Radic M. 64.  2012. NETs: double-edged swords of innate immunity. J. Immunol. 189:2689–94 [Google Scholar]
  65. Kiedrowski MR, Crosby HA, Hernandez FJ, Malone CL, McNamara JO II, Horswill AR. 65.  2014. Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PLOS ONE 9:4e95574 [Google Scholar]
  66. Klosterman SJ, Chen J, Choi JJ, Chinn EE, Hadwiger LA. 66.  201. Characterization of a 20 KDa DNase elicitor from Fusarium solani f. sp. phaseoli and its expression at the onset of induced resistance in Pisum sativum. Mol. Plant Pathol. 2:147–58 [Google Scholar]
  67. Knudson L. 67.  1919. Viability of detached root cap cells. Am. J. Bot. 6:309–10 [Google Scholar]
  68. Knudson L. 68.  1920. The secretion of invertase by plant roots. Am. J. Bot. 7:371–79 [Google Scholar]
  69. Larkin RP. 69.  2015. Soil health paradigms and implications for disease management. Annu. Rev. Phytopathol. 53:199–221 [Google Scholar]
  70. Lynch JM, Whipps JM. 70.  1990. Substrate flow in the rhizosphere. Plant Soil 129:1–10 [Google Scholar]
  71. McCormick A, Heesmann L, Wagener J, Marcos V, Hartl D. 71.  et al. 2010. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect. 12:928 [Google Scholar]
  72. Medina E. 72.  2009. Neutrophil extracellular traps: a strategic tactic to defeat pathogens with potential consequences for the host. J. Innate Immun. 1:176–80 [Google Scholar]
  73. Morita C, Sumioka R, Nakata M, Okahashi N, Wada S. 73.  et al. 2014. Cell wall–anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity. PLOS ONE 9:e103125 [Google Scholar]
  74. Moulard M, Condemine G, Robert-Baudouy J. 74.  1992. Characterization of the numM gene coding for a nuclease of the phytopathogenic bacteria Erwinia chrysanthemi. Mol. Microbiol. 8:685–95 [Google Scholar]
  75. Moulard M, Condemine G, Robert-Baudouy J. 75.  1993. Search for the function of the nuclease NucM of Erwinia chrysanthemi. FEMS Microbiol. Lett. 112:99–103 [Google Scholar]
  76. Nasser W, Bersa SB, Olsen RJ, Dean MA, Rice KA. 76.  et al. 2014. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. PNAS 111:E1768–76 [Google Scholar]
  77. Odell RE, Dumlao MR, Samar D, Silk WK. 77.  2008. Stage-dependent border cell and carbon flow from roots to rhizosphere. Am. J. Bot. 95:441–46 [Google Scholar]
  78. Okabayashi K, Mizuno DI. 78.  1974. Surface-bound nuclease of Staphylococcus aureus: purification and properties of the enzyme. J. Bacteriol. 117:222–26 [Google Scholar]
  79. Papayannopoulos V. 79.  2014. Infection: microbial nucleases turn immune cells against each other. Curr. Biol. 24:R123–25 [Google Scholar]
  80. Pisetsky DS. 80.  2012. The origin and properties of extracellular DNA: from PAMP to DAMP. Clin. Immunol. 144:32–40 [Google Scholar]
  81. Rougier M. 81.  1981. Secretory activity of the root cap. Encyclopedia of Plant Physiology W Tanner, FA Loewus 542–74 Berlin: Springer-Verlag [Google Scholar]
  82. Rovira AD. 82.  1956. Plant root excretions in relation to the rhizosphere effect. Plant Soil 2:178–94 [Google Scholar]
  83. Rovira AD. 83.  1991. Rhizosphere research: 85 years of progress and frustration. The Rhizosphere and Plant Growth DL Keister, PB Cregan 3–13 Dordrecht, Neth: Kluwer Acad. Publ. [Google Scholar]
  84. Saffarzadeh M, Preissner KT. 84.  2013. Fighting against the dark side of NETs in disease: manouevres for host protection. Curr. Opin. Hematol. 20:3–9 [Google Scholar]
  85. Sanchez M, Colom F. 85.  2010. Extracellular DNase activity of Cryptococcus neoformans and Cryptococcus gattii. Rev. Iberoam. Micol. 27:10–13 [Google Scholar]
  86. Seper A, Hosseinzadeh A, Gorkiewicz G, Lichtenegger S, Roier S. 86.  et al. 2013. Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases. PLOS Pathog. 9:e1003614 [Google Scholar]
  87. Sherry S, Goeller JP. 87.  1950. The extent of the enzymatic degradation of desoxyribonucleic acid (DNA) in purulent exudates by streptodornase. J. Clin. Investig. 29:1588–94 [Google Scholar]
  88. Sherwood RT. 88.  1987. Papilla formation in corn root-cap cells and leaves inoculated with Colletotrichum graminicola. Phytopathology 77:930–34 [Google Scholar]
  89. Smithies WR, Gibbons N. 89.  1955. The deoxyribose nucleic acid slime layer of some halophilic bacteria. Can. J. Microbiol. 1:614–21 [Google Scholar]
  90. Sopwith WF, Debrabant A, Yamage M, Dwyer DM, Bates PA. 90.  2002. Developmentally regulated expression of a cell surface class I nuclease in Leishmania mexicana. Int. J. Parasitol. 32:449–59 [Google Scholar]
  91. Streitfeld MM, Hoffmann EM, Janklow HM. 91.  1962. Evaluation of extracellular DNase activity in Pseudomonas. J. Bacteriol. 84:77–80 [Google Scholar]
  92. Sumby P, Barbian KD, Gardner DJ, Whitney AR, Welty DM. 92.  et al. 2005. Extracellular DNase made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. PNAS 102:1679–84 [Google Scholar]
  93. Thammavongsa V, Missiakas DM, Schneewind O. 93.  2013. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342:863–66 [Google Scholar]
  94. Tollefson SJ, Curlango-Rivera G, Huskey DA, Pew T, Giacomelli G, Hawes MC. 94.  2015. Altered carbon delivery from roots: rapid, sustained inhibition of border cell dispersal in response to compost water extracts. Plant Soil 378:145–56 [Google Scholar]
  95. Tran TM, MacIntyre AM, Hawes MC, Allen C. 95.  2016. Escaping underground nets: Extracellular DNases degrade plant extracellular traps and contribute to virulence of the plant pathogenic bacterium Ralstonia solanacearum. PLOS Pathog. [Google Scholar]
  96. Urban CF, Reichard U, Brinkmann V, Zychlinsky A. 96.  2006. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 8:668–76 [Google Scholar]
  97. Vancura V. 97.  1964. Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil 2:231–45 [Google Scholar]
  98. Wang W, Curlango-Rivera G, Xiong Z, VanEtten H, Turgeon BG, Hawes MC. 98.  2015. An extracellular DNase from the phytopathogen Cochliobolus heterostrophus is a virulence factor as found for bacterial pathogens of animals. Proc. Fungal Genet. Meet., 28th, Pacific Grove, CA March 17–22 236 Bethesda, MD: Genet. Soc. Am. [Google Scholar]
  99. Wardenburg JB, Patel RJ, Schneewind O. 99.  2007. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 75:1040–44 [Google Scholar]
  100. Wartha F, Beiter K, Normark S, Henriques-Normark B. 100.  2007. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr. Opin. Microbiol. 10:52–56 [Google Scholar]
  101. Watkins WT, Hadwiger LA. 101.  1998. A nuclease released from Colletotrichum coccodes is not a defense gene elicitor in pea tissue. Mycol. Res. 102:167–73 [Google Scholar]
  102. Watson BS, Bedair MF, Urbanczyk-Wochniak E, Huhman EV, Yang DS. 102.  et al. 2015. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells. Plant Physiol. 167:1699–716 [Google Scholar]
  103. Wen F, Brigham LA, Curlango-Rivera G, Xiong Z, Hawes MC. 103.  2014. Altered growth and root tip morphology in response to altered expression of a gene expressed in border cells. Plant Soil 373:13–18 [Google Scholar]
  104. Wen F, Celoy RM, Nguyen T, Zeng W, Keegstra K. 104.  et al. 2008. Inducible expression of Pisum sativum xyloglucan fucosyltransferase in the pea root cap meristem, and effects of antisense mRNA expression on root cap cell wall integrity. Plant Cell Rep. 27:1125–35 [Google Scholar]
  105. Wen F, Celoy RM, Price I, Ebolo JJ, Hawes MC. 105.  2008. Identification and characterization of a rhizosphere galactosidase from Pisum sativum L. Plant Soil 304:133–44 [Google Scholar]
  106. Wen F, VanEtten HD, Tsaprailis G, Hawes MC. 106.  2007. Extracellular proteins in Pisum sativum L. root tip and border cell exudates. Plant Physiol. 143:773–83 [Google Scholar]
  107. Wen F, White GA, Xiong Z, VanEtten HD, Hawes MC. 107.  2009. Extracellular DNA is required for root tip resistance to fungal infection. Plant Physiol. 151:820–29 [Google Scholar]
  108. Wen F, Woo HH, Pierson EA, Eldhuset TD, Fossdal CG. 108.  et al. 2009. Synchronous elicitation of development in root caps induces transient gene expression changes common to legume and gymnosperm species. Plant Mol. Biol. Rep. 27:56–68 [Google Scholar]
  109. Wen F, Zhu Y, Hawes MC. 109.  1999. Expression of an inducible pectinmethylesterase gene is required for border cell separation from roots of pea. Plant Cell 11:1129–40 [Google Scholar]
  110. Woo HH, Faull KF, Hirsch AM, Hawes MC. 110.  2003. Altered life cycle in Arabidopsis plants expressing PsUGT1, a UDP-glucuronosyltransferase-encoding gene from pea. Plant Physiol. 133:538–48 [Google Scholar]
  111. Woo HH, Hawes MC. 111.  1997. Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of Pisum sativum L. Plant Mol. Biol. 35:1045–51 [Google Scholar]
  112. Woo HH, Hirsch AM, Hawes MC. 112.  2004. Altered susceptibility to infection by Sinorhizobium meliloti and Nectria haematococca in alfalfa roots with altered cell cycle. Plant Cell Rep. 22:967–73 [Google Scholar]
  113. Woo HH, Jeong BR, Koo KB, Choi JW, Hirsch AM, Hawes MC. 113.  2007. Modifying expression of closely related UDP-glycosyltransferases from pea and Arabidopsis results in altered root development and function. Physiol. Plant 130:250–60 [Google Scholar]
  114. Woo HH, Orbach M, Hirsch AM, Hawes MC. 114.  1999. Meristem-localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa. Plant Cell 11:2303–16 [Google Scholar]
  115. Young RL, Malcolm KC, Kret JE, Caceres SM, Poch KR. 115.  et al. 2011. Neutrophil extracellular trap (NET)-mediated killing of Pseudomonas aeruginosa: evidence of acquired resistance within the CF airway, independent of CFTR. PLOS ONE 6:e23637 [Google Scholar]
  116. Zhao X, Schmidt M, Hawes MC. 116.  2000. Species-dependent effects of root border cells on nematode chemotaxis and motility. Phytopathology 90:1239–45 [Google Scholar]
  117. Zhang Y, Ruyter-Spira C, Houwmeester HJ. 117.  2015. Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 32:136–42 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error