1932

Abstract

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100147
2016-08-04
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-100147.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100147&mimeType=html&fmt=ahah

Literature Cited

  1. Adhikari TB, Cruz C, Zhang Q, Nelson RJ, Skinner DZ. 1.  et al. 1995. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl. Environ. Microbiol. 61:966–71 [Google Scholar]
  2. Ah-You N, Gagnevin L, Grimont PAD, Brisse S, Nesme X. 2.  et al. 2009. Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiacae and their relatedness to the species of Xanthomonas. Int. J. Syst. Evol. Microbiol. 59:306–18 [Google Scholar]
  3. Angeles-Ramos R, Vidaver AK, Flynn P. 3.  1991. Characterization of epiphytic Xanthomonas campestris pv. phaseoli and pectolytic xanthomonads recovered from symptomless weeds in the Dominican Republic. Phytopathology 81:677–81 [Google Scholar]
  4. Aritua V, Harrison J, Sapp M, Buruchara R, Smith J, Studholme DJ. 4.  2015. Genome sequencing reveals a new lineage associated with lablab bean and genetic exchange between Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans. Front. Microbiol. 6:1080 [Google Scholar]
  5. Aritua V, Musoni A, Kato F, Abang MM, Buruchara R. 5.  et al. 2015. The draft genome sequence of Xanthomonas species strain Nyagatare, isolated from diseased bean in Rwanda. FEMS Microbiol. Lett. 362:1–4 [Google Scholar]
  6. Aritua V, Parkinson N, Thwaites R, Heeney JV, Jones DR. 6.  et al. 2008. Characterization of the Xanthomonas sp. causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathol. 57:170–77 [Google Scholar]
  7. Athinuwat D, Prathuangwong S, Cursino L, Burr T. 7.  2009. Xanthomonas axonopodis pv. glycines soybean cultivar virulence specificity is determined by avrBs3 homolog avrXg1. Phytopathology 99:996–1004 [Google Scholar]
  8. Badri D, Zolla G, Bakker MG, Manter DK, Vivanco J. 8.  2013. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol. 198:264–73 [Google Scholar]
  9. Bahar O, Pruitt R, Luu DD, Schwessinger B, Daudi A. 9.  et al. 2014. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles. PeerJ 2:e242 [Google Scholar]
  10. Barash I, Manulis-Sasson S. 10.  2009. Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu. Rev. Phytopathol. 47:133–52 [Google Scholar]
  11. Barret M, Briand M, Bonneau S, Preveaux A, Valiere S. 11.  et al. 2015. Emergence shapes the structure of the seed microbiota. Appl. Environ. Microbiol. 81:1257–66 [Google Scholar]
  12. Bart R, Cohn M, Kassen A, McCallum EJ, Shybut M. 12.  et al. 2012. High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. PNAS 109:E1972–79 [Google Scholar]
  13. Bashan Y. 13.  1985. Field dispersal of Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. vesicatoria, and Alternaria macrospora by animals, people, birds, insects, mites, agricultural tools, aircraft, soil particles, and water sources. Can. J. Bot. 64:276–81 [Google Scholar]
  14. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C. 14.  et al. 2007. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLOS ONE 2:e224 [Google Scholar]
  15. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 15.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  16. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. 16.  2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLOS Genet. 10:e1004283 [Google Scholar]
  17. Bogdanove AJ, Koebnik R, Lu H, Furutani A, Angiuoli SV. 17.  et al. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. J. Bacteriol. 193:5450–64 [Google Scholar]
  18. Bolot S, Guy E, Carrere S, Barbe V, Arlat M, Noel LD. 18.  2013. Genome sequence of Xanthomonas campestris pv. campestris strain Xca5. Genome Announc. 1:e000032-12
  19. Booher NJ, Sebra RP, Salzberg SL, Carpenter SCD, Wang L. 19.  et al. 2015. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships. Microb. Genom. doi: 10.1099/mgen.0.000032 [Google Scholar]
  20. Boulanger A, Zischek C, Lautier M, Jamet S, Rival P. 20.  et al. 2014. The plant pathogen Xanthomonas campestris pv. campestris exploits N-acetylglucosamine during infection. mBio 5:e01527–14 [Google Scholar]
  21. Boureau T, Kerkoud M, Chhel F, Hunault G, Darrasse A. 21.  et al. 2013. A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli. J. Microbiol. Methods 92:42–50 [Google Scholar]
  22. Bull CT, de Boer SH, Denny TP, Firrao G, Fischer-Le Saux M. 22.  et al. 2010. Comprehensive list of names of plant pathogenic bacteria, 1980–2007. J. Plant Pathol. 92:551–92 [Google Scholar]
  23. Bull CT, Koike ST. 23.  2015. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. Annu. Rev. Phytopathol. 53:157–80 [Google Scholar]
  24. Cai R, Lewis J, Yan S, Liu H, Clarke CR. 24.  et al. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLOS Pathog. 7:e1002130 [Google Scholar]
  25. Cernadas RA, Doyle EL, Nino-Liu DO, Wilkins KE, Bancroft T. 25.  et al. 2014. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLOS Pathog. 10:e1003972 [Google Scholar]
  26. Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T. 26.  et al. 2015. Comparative genomics of pathogenic and nonpathogenic strains of Xanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Front. Plant Sci. 6:1126 [Google Scholar]
  27. Chatnaparat T, Prathuangwong S, Ionescu M, Lindow SE. 27.  2012. XagR, a LuxR homolog, contributes to the virulence of Xanthomonas axonopodis pv. glycines to soybean. Mol. Plant-Microbe Interact. 25:1104–17 [Google Scholar]
  28. Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 28.  2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–76 [Google Scholar]
  29. Cociancich S, Pesic A, Petras D, Uhlmann S, Kretz J. 29.  et al. 2015. The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat. Chem. Biol. 11:195–97 [Google Scholar]
  30. Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M. 30.  et al. 2014. DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30:1187–89 [Google Scholar]
  31. Coutinho TA, van der Westhuizen L, Roux J, McFarlane SA, Venter SN. 31.  2015. Significant host jump of Xanthomonas vasicola from sugarcane to a Eucalyptus grandis clone in South Africa. Plant Pathol. 64:576–81 [Google Scholar]
  32. da Silva ACR, Ferro JA, Farah CS, Furlan LR, Quaggio RB. 32.  et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459–63 [Google Scholar]
  33. Daugrois J-H, Dumont V, Champoiseau P, Costet L, Boisne-Noc R, Rott P. 33.  2003. Aerial contamination of sugarcane in Guadeloupe by two strains of Xanthomonas albilineans. Eur. J. Plant Pathol. 109:445–58 [Google Scholar]
  34. Dejean G, Blanvillain-Baufume S, Boulanger A, Darrasse A, Duge de Bernonville T. 34.  et al. 2013. The xylan utilization system of the plant pathogen Xanthomonas campestris pv. campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol. 198:899–915 [Google Scholar]
  35. Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF. 35.  et al. 2005. Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu. Rev. Phytopathol. 43:63–82 [Google Scholar]
  36. Di M, Ye H, Schaad NW, Roth DA. 36.  1991. Selective recovery of Xanthomonas spp. from rice seed. Phytopathology 81:1358–53 [Google Scholar]
  37. Dingman DW. 37.  2000. Growth of Escherichia coli O157:H7 in bruised apple (Malus domestica) tissue as influenced by cultivar, date of harvest, and source. Appl. Environ. Microbiol. 66:1077–83 [Google Scholar]
  38. Drummond AJ, Rambaut A. 38.  2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214 [Google Scholar]
  39. Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A. 39.  et al. 2015. The N-glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J. Biol. Chem. 290:6022–36 [Google Scholar]
  40. Dye DW, Bradbury JF, Goto M, Hayward AC, Lelliott RA, Schroth MN. 40.  1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59:153–68 [Google Scholar]
  41. Escalon A, Javegny S, Vernière C, Noël LD, Vital K. 41.  et al. 2013. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. Mol. Plant Pathol. 14:483–96 [Google Scholar]
  42. Essakhi S, Cesbron S, Fischer-Le Saux M, Bonneau S, Jacques MA, Manceau C. 42.  2015. Phylogenetic and variable-number tandem-repeat analyses identify nonpathogenic Xanthomonas arboricola lineages lacking the canonical Type III secretion system. Appl. Environ. Microbiol. 81:5395–410 [Google Scholar]
  43. Expert D, Franza T, Dellagi A. 43.  2012. Iron in plant-pathogen interactions. Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations D Expert, MR O’Brian 7–39 Dordrecth, Neth.: Springer [Google Scholar]
  44. Felix G, Duran JD, Volko S, Boller T. 44.  1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18:265–76 [Google Scholar]
  45. Ferluga S, Bigirimana J, Hofte M, Venturi V. 45.  2007. A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Mol. Plant Pathol. 8:529–38 [Google Scholar]
  46. Ferreira RM, de Oliveira AC, Moreira LM, Belasque J Jr., Gourbeyre E. 46.  et al. 2015. A TALE of transposition: Tn3-like transposons play a major role in the spread of pathogenicity determinants of Xanthomonas citri and other xanthomonads. mBio 6:e02505–14 [Google Scholar]
  47. Fischer-Le Saux M, Bonneau S, Essakhi S, Manceau C, Jacques MA. 47.  2015. Aggressive emerging pathovars of Xanthomonas arboricola represent widespread epidemic clones distinct from poorly pathogenic strains, as revealed by multilocus sequence typing. Appl. Environ. Microbiol. 81:4651–68 [Google Scholar]
  48. Flor HH. 48.  1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology 32:653–69 [Google Scholar]
  49. Galperin MY. 49.  2005. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5:35 [Google Scholar]
  50. Gochez AM, Minsavage GV, Potnis N, Canteros BI, Stall RE, Jones JB. 50.  2015. A functional XopAG homologue in Xanthomonas fuscans pv. aurantifolii strain C limits host range. Plant Pathol. 64:1207–14 [Google Scholar]
  51. Gordon JL, Lefeuvre P, Escalon A, Barbe V, Curveiller S. 51.  et al. 2015. Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genom. 16:1098 [Google Scholar]
  52. Grimault V, Olivier V, Rolland M, Darrasse A, Jacques M-A. 52.  2014. Detection of Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans on Phaseolus vulgaris (bean). Seed Health Methods IST Assoc., 7-021-2. Bassersdorf, Switz.: Int. Seed Test. Assoc. [Google Scholar]
  53. Guidot A, Jiang W, Ferdy JB, Thebaud C, Barberis P. 53.  et al. 2014. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants. Mol. Biol. Evol 31:2913–38 [Google Scholar]
  54. Guo Y, Figueiredo F, Jones J, Wang N. 54.  2011. HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Mol. Plant-Microbe Interact. 24:649–61 [Google Scholar]
  55. Guy E, Genissel A, Hajri A, Chabannes M, David P. 55.  et al. 2013. Natural genetic variation of Xanthomonas campestris pv. campestris pathogenicity on Arabidopsis revealed by association and reverse genetics. mBio 4:e00538–12 [Google Scholar]
  56. Guy E, Lautier M, Chabannes M, Roux B, Lauber E. 56.  et al. 2013. xopAC-triggered immunity against Xanthomonas depends on Arabidopsis receptor-like cytoplasmic kinase genes PBL2 and RIPK. PLOS ONE. 8:e73469 [Google Scholar]
  57. Hajri A, Brin C, Hunault G, Lardeux F, Lemaire C. 57.  et al. 2009. A “repertoire for repertoire” hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLOS ONE 4:e6632 [Google Scholar]
  58. Hajri A, Brin C, Zhao S, David P, Feng JX. 58.  et al. 2012. Multilocus sequence analysis and type III effector repertoire mining provide new insights into the evolutionary history and virulence of Xanthomonas oryzae. Mol. Plant Pathol. 13:288–302 [Google Scholar]
  59. Hajri A, Pothier JF, Fischer-Le Saux M, Bonneau S, Poussier S. 59.  et al. 2012. Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl. Environ. Microbiol. 78:371–84 [Google Scholar]
  60. Hayward AC. 60.  1993. The hosts of Xanthomonas. Xanthomonas JG Swings, EL Civerolo 1–119 London, United Kingdom: Chapman & Hall [Google Scholar]
  61. Hazelbauer GL, Falke JJ, Parkinson JS. 61.  2008. Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem. Sci. 33:9–19 [Google Scholar]
  62. Hu W, Zhang Q, Tian T, Cheng G, An L, Feng H. 62.  2015. The microbial diversity, distribution, and ecology of permafrost in China: a review. Extremophiles Life Under Extreme Cond. 19:693–705 [Google Scholar]
  63. Hu Y, Zhang J, Jia H, Sosso D, Li T. 63.  et al. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. PNAS 111:E521–29 [Google Scholar]
  64. Huang C-H, Vallad GE, Adkison H, Summers C, Margenthaler E. 64.  et al. 2013. A novel Xanthomonas sp. causes bacterial spot of rose (Rosa spp.). Plant Dis. 97:1301–7 [Google Scholar]
  65. Huang CL, Pu PH, Huang HJ, Sung HM, Liaw HJ. 65.  et al. 2015. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts. BMC Genom. 16:188 [Google Scholar]
  66. Hutin M, Perez-Quintero AL, Lopez C, Szurek B. 66.  2015. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front. Plant Sci. 6:535 [Google Scholar]
  67. Ignatov AN, Kyrova EI, Vinogradova SV, Kamionskaya AM, Schaad NW, Luster DG. 67.  2015. Draft genome sequence of Xanthomonas arboricola strain 3004, a causal agent of bacterial disease on barley. Genome Announc. 3:e01572–14 [Google Scholar]
  68. Imlay JA, Linn S. 68.  1988. DNA damage and oxygen radical toxicity. Science 240:1302–9 [Google Scholar]
  69. Indiana A. 69.  2014. Rôles du chimiotactisme et de la mobilité flagellaire dans la fitness des Xanthomonas Angers, Fr.: Université d’Angers. 237 [Google Scholar]
  70. Jacobs JM, Pesce C, Lefeuvre P, Koebnik R. 70.  2015. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas. Front. Plant Sci. 6:431 [Google Scholar]
  71. Jalan N, Kumar D, Andrade MO, Yu F, Jones JB. 71.  et al. 2013. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genom. 14:551 [Google Scholar]
  72. Jha G, Patel HK, Dasgupta M, Palaparthi R, Sonti RV. 72.  2010. Transcriptional profiling of rice leaves undergoing a hypersensitive response like reaction induced by Xanthomonas oryzae pv. oryzae cellulase. Rice 3:1–21 [Google Scholar]
  73. Jha G, Rajeshwari R, Sonti RV. 73.  2007. Functional interplay between two Xanthomonas oryzae pv. oryzae secretion systems in modulating virulence on rice. Mol. Plant-Microbe Interact. 20:31–40 [Google Scholar]
  74. Kaiser WJ, Vakili NG. 74.  1978. Insect transmission of pathogenic xanthomonads to bean and cowpea in Puerto Rico. Phytopathology 68:1057–63 [Google Scholar]
  75. Kamoun S, Kamdar HV, Tola E, Kado CL. 75.  1992. Incompatible interactions between crucifers and Xanthomonas campestris involve a vascular hypersensitive response: role of the hrpX locus. Mol. Plant-Microbe Interact. 5:22–33 [Google Scholar]
  76. Kay S, Hahn S, Marois E, Hause G, Bonas U. 76.  2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–51 [Google Scholar]
  77. Kingsley MT, Gabriel DW, Marlow GC, Roberts PD. 77.  1993. The opsX locus of Xanthomonas campestris affects host range and biosynthesis of lipopolysaccharide and extracellular polysaccharide. J. Bacteriol. 175:5839–50 [Google Scholar]
  78. Klaedtke S, Jacques MA, Raggi L, Preveaux A, Bonneau S. 78.  et al. 2015. Terroir is a key driver of seed-associated microbial assemblages. Environ. Microbiol. doi: 10.1111/1462-2920.12977 [Google Scholar]
  79. Kousik CS, Ritchie DF. 79.  1996. Race shift in Xanthomonas campestris pv. vesicatoria within a season in field-grown pepper. Phytopathology 86:952–58 [Google Scholar]
  80. Kraiselburd I, Alet AI, Tondo ML, Petrocelli S, Daurelio LD. 80.  et al. 2012. A LOV protein modulates the physiological attributes of Xanthomonas axonopodis pv. citri relevant for host plant colonization. PLOS ONE 7:e38226 [Google Scholar]
  81. Krantz SL, Benoit TG, Beasley CW. 81.  1999. Phytopathogenic bacteria associated with Tardigrada. Zool. Anz. 238:259–60 [Google Scholar]
  82. Kuflu KM, Cuppels DA. 82.  1997. Development of a diagnostic DNA probe for xanthomonads causing bacterial spot of peppers and tomatoes. Appl. Environ. Microbiol. 63:4462–70 [Google Scholar]
  83. Kurowski C, Conn K, Himmel P. 83.  2010. Guideline for identification of pepper bacterial leaf spot races using differential hosts. Davis, CA: CPPSI [Google Scholar]
  84. Leach JE, Vera Cruz CM, Bai J, Leung H. 84.  2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39:187–224 [Google Scholar]
  85. Leduc A, Traoré YN, Boyer K, Magne M, Grygiel P. 85.  et al. 2015. Bridgehead invasion of a monomorphic plant pathogenic bacterium: Xanthomonas citri pv. citri, an emerging citrus pathogen in Mali and Burkina Faso. Environ. Microbiol. 17:4429–42 [Google Scholar]
  86. Lu H, Patil P, Van Sluys M-A, White FF, Ryan RP. 86.  et al. 2008. Acquisition and evolution of plant pathogenesis–associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLOS ONE 3:e3828 [Google Scholar]
  87. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J. 87.  et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90 [Google Scholar]
  88. Ma W, Dong FF, Stavrinides J, Guttman DS. 88.  2006. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLOS Genet. 2:e209 [Google Scholar]
  89. Maas JL, Finney MM, Civerolo EL, Sasser M. 89.  1985. Association of an unusual strain of Xanthomonas campestris with apple. Phytopathology 75:438–45 [Google Scholar]
  90. Mao D, Tao J, Li C, Luo C, Zheng L, He C. 90.  2012. Light signaling mediated by PAS domain-containing proteins in Xanthomonas campestris pv. campestris. FEMS Microbiol. Lett. 326:31–39 [Google Scholar]
  91. Martinez JL. 91.  2013. Bacterial pathogens: from natural ecosystems to human hosts. Environ. Microbiol. 15:325–33 [Google Scholar]
  92. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M. 92.  et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–100 [Google Scholar]
  93. Meng F, Babujee L, Jacobs JM, Allen C. 93.  2015. Comparative transcriptome analysis reveals cool virulence factors of Ralstonia solanacearum race 3 biovar 2. PLOS ONE 10:e0139090 [Google Scholar]
  94. Mensi I, Vernerey MS, Gargani D, Nicole M, Rott P. 94.  2014. Breaking dogmas: the plant vascular pathogen Xanthomonas albilineans is able to invade non-vascular tissues despite its reduced genome. Open Biol. 4:130116 [Google Scholar]
  95. Merda D, Bonneau S, Guimbaud JF, Durand K, Brin C. 95.  et al. 2016. Recombination-prone bacterial strains form a reservoir from which epidemic clones emerge in agroecosystems. Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12397 [Google Scholar]
  96. Mhedbi-Hajri N, Darrasse A, Pigné S, Durand K, Fouteau S. 96.  et al. 2011. Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads. BMC Evol. Biol. 11:67 [Google Scholar]
  97. Mhedbi-Hajri N, Hajri A, Boureau T, Darrasse A, Durand K. 97.  et al. 2013. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis. PLOS ONE 8:e58474 [Google Scholar]
  98. Moscou MJ, Bogdanove AJ. 98.  2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 [Google Scholar]
  99. Norman DJ, Yuen JMF, Hodge NC. 99.  1997. New disease on ornamental asparagus caused by Xanthomonas campestris in Florida. Plant Dis. 81:847–50 [Google Scholar]
  100. Palmer CM, Guerinot ML. 100.  2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 5:333–40 [Google Scholar]
  101. Pan X, Yang Y, Zhang JR. 101.  2014. Molecular basis of host specificity in human pathogenic bacteria. Emerg. Microbes Infect. 3:e23 [Google Scholar]
  102. Pandey A, Sonti RV. 102.  2010. Role of the FeoB protein and siderophore in promoting virulence of Xanthomonas oryzae pv. oryzae on rice. J. Bacteriol. 192:3187–203 [Google Scholar]
  103. Parkinson N, Cowie C, Heeney J, Stead D. 103.  2009. Phylogenetic structure of Xanthomonas determined by comparison of gyrB sequences. Int. J. Syst. Evol. Microbiol. 59:264–74 [Google Scholar]
  104. Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB. 104.  et al. 2011. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genom. 12:146 [Google Scholar]
  105. Pruvost O, Goodarzi T, Boyer K, Soltaninejad H, Escalon A. 105.  et al. 2015. Genetic structure analysis of strains causing citrus canker in Iran reveals the presence of two different lineages of Xanthomonas citri pv. citri pathotype A*. Plant Pathol. 64:776–84 [Google Scholar]
  106. Punina NV, Ignatov AN, Pekhtereva ES, Kornev KP, Matveeva EV. 106.  et al. 2009. Occurrence of Xanthomonas campestris pv. raphani on tomato plants in the Russian Federation. Acta Hortic. 808:287–90 [Google Scholar]
  107. Qian W, Han Z-J, He C. 107.  2008. Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol. Plant-Microbe Interact. 21:151–61 [Google Scholar]
  108. Rai R, Javvadi S, Chatterjee S. 108.  2015. Cell-cell signalling promotes ferric iron uptake in Xanthomonas oryzae pv. oryzicola that contribute to its virulence and growth inside rice. Mol. Microbiol. 96:708–27 [Google Scholar]
  109. Ranjan A, Vadassery J, Patel HK, Pandey A, Palaparthi R. 109.  et al. 2015. Upregulation of jasmonate biosynthesis and jasmonate-responsive genes in rice leaves in response to a bacterial pathogen mimic. Funct. Integr. Genom. 15:363–73 [Google Scholar]
  110. Restrepo S, Vélez CM, Verdier V. 110.  2000. Measuring the genetic diversity of Xanthomonas axonopodis pv. manihotis within different fields in Colombia. Phytopathology 90:683–90 [Google Scholar]
  111. Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ. 111.  2015. Bacterial flagella: twist and stick, or dodge across the kingdoms. PLOS Pathog. 11:e1004483 [Google Scholar]
  112. Roux B, Bolot S, Guy E, Denance N, Lautier M. 112.  et al. 2015. Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genom. 16:975 [Google Scholar]
  113. Rudolph K. 113.  1993. Infection of the plant by Xanthomonas. Xanthomonas JG Swings, EL Civerolo 193–264 London: Chapman & Hall [Google Scholar]
  114. Ryan RP, Vorhölter F-J, Potnis N, Jones JB, van Sluys M-A. 114.  et al. 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat. Rev. Microbiol. 9:344–55 [Google Scholar]
  115. Schmidtke C, Findeiss S, Sharma CM, Kuhfuss J, Hoffmann S. 115.  et al. 2012. Genome-wide transcriptome analysis of the plant pathogen Xanthomonas identifies sRNAs with putative virulence functions. Nucleic Acids Res. 40:2020–31 [Google Scholar]
  116. Schulze S, Kay S, Buttner D, Egler M, Eschen-Lippold L. 116.  et al. 2012. Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol. 195:894–911 [Google Scholar]
  117. Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J. 117.  et al. 2015. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front. Microbiol. 6:535 [Google Scholar]
  118. Shimelash D, Alemu T, Addis T, Turyagyenda FL, Blomme G. 118.  2008. Banana Xanthomonas wilt in Ethiopia: occurence and insect vector transmission. Afr. Crop Sci. J. 16:75–87 [Google Scholar]
  119. Shivaji S, Reddy GS, Aduri RP, Kutty R, Ravenschlaq K. 119.  2004. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell Mol. Biol. 50:525–36 [Google Scholar]
  120. Sinha D, Gupta MK, Patel HK, Ranjan A, Sonti RV. 120.  2013. Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLOS ONE 8:e75867 [Google Scholar]
  121. Smith JJ, Jones DR, Karamura E, Blomme G, Turyagyenda FL. 121.  2008. An Analysis of the Risk from Xanthomonas campestris pv. musacearum to Banana Cultivation in Eastern, Central and Southern Africa Montpellier, Fr.: Bioversity Int. [Google Scholar]
  122. Stall RE, Gottwald TR, Koizumi M, Schaad NW. 122.  1993. Ecology of plant pathogenic xanthomonads. Xanthomonas JG Swings, EL Civerolo 265–99 London: Chapman & Hall [Google Scholar]
  123. Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T. 123.  2009. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol. Microbiol. 74:557–81 [Google Scholar]
  124. Stavrinides J, Ma W, Guttman DS. 124.  2006. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens. PLOS Pathog. 2:e104 [Google Scholar]
  125. Studholme D, Kemen E, MacLean D, Schornack S, Aritua V. 125.  et al. 2010. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol. Lett. 310:182–92 [Google Scholar]
  126. Studholme DJ, Wasukira A, Paszkiewicz K, Aritua V, Thwaites R. 126.  et al. 2011. Draft genome sequences of Xanthomonas sacchari and two banana-associated xanthomonads reveal insights into the Xanthomonas group 1 clade. Genes. 2:1050–65 [Google Scholar]
  127. Stukenbrock EH, McDonald BA. 127.  2008. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46:75–100 [Google Scholar]
  128. Sun W, Dunning FM, Pfund C, Weingarten R, Bent AF. 128.  2006. Within-species flagellin polymorphism in Xanthomonas campestris pv. campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2-dependent defenses. Plant Cell 18:764–79 [Google Scholar]
  129. Szczesny R, Büttner D, Escolar L, Schulze S, Seiferth A, Bonas U. 129.  2010. Suppression of the AvrBs1-specific hypersensitive response by the YopJ effector homolog AvrBsT from Xanthomonas depends on a SNF1-related kinase. New Phytol. 187:1058–74 [Google Scholar]
  130. Teper D, Salomon D, Sunitha S, Kim JG, Mudgett MB, Sessa G. 130.  2014. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14-3-3 isoforms to suppress effector-triggered immunity. Plant J. 77:297–309 [Google Scholar]
  131. Triplett LR, Verdier V, Campillo T, Van Malderghem C, Cleenwerck I. 131.  et al. 2015. Characterization of a novel clade of Xanthomonas isolated from rice leaves in Mali and proposal of Xanthomonas maliensis sp. nov. Antonie van Leeuwenhoek 107:869–81 [Google Scholar]
  132. Tushemereirwe W, Kangire A, Ssekiwoko F, Offord LC, Crozier J. 132.  et al. 2004. First report of Xanthomonas campestris pv. musacearum on banana in Uganda. Plant Pathol. 53:802 [Google Scholar]
  133. Vauterin L, Yang P, Alvarez A, Takikawa Y, Roth DA. 133.  et al. 1996. Identification of non-pathogenic Xanthomonas strains associated with plants. Syst. Appl. Microbiol. 19:96–105 [Google Scholar]
  134. Vera Cruz CM, Bai J, Ona I, Leung H, Nelson RJ. 134.  et al. 2000. Predicting durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. PNAS 97:13500–5 [Google Scholar]
  135. Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA. 135.  et al. 2012. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector–deficient strain of Xanthomonas oryzae. New Phytol. 196:1197–207 [Google Scholar]
  136. Vicente JG, Holub EB. 136.  2013. Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol. Plant Pathol. 14:2–18 [Google Scholar]
  137. Vinatzer BA, Monteil CL, Clarke CR. 137.  2014. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu. Rev. Phytopathol. 52:19–43 [Google Scholar]
  138. Vorholt JA. 138.  2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10:828–40 [Google Scholar]
  139. Vorhölter FJ, Wiggerich HG, Scheidle H, Sidhu VK, Mrozek K. 139.  et al. 2012. Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiol. 12:239 [Google Scholar]
  140. Wang L, Vinogradov EV, Bogdanove AJ. 140.  2013. Requirement of the lipopolysaccharide O-chain biosynthesis gene wxocB for type III secretion and virulence of Xanthomonas oryzae pv. oryzicola. J. Bacteriol. 195:1959–69 [Google Scholar]
  141. Wang NF, Zhang T, Zhang F, Wang ET, He JF. 141.  et al. 2015. Diversity and structure of soil bacterial communities in the Fildes Region (maritime Antarctica) as revealed by 454 pyrosequencing. Front. Microbiol. 6:1188 [Google Scholar]
  142. Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K. 142.  et al. 2014. Genome sequencing of Xanthomonas vasicola pathovar vasculorum reveals variation in plasmids and genes encoding lipopolysaccharide synthesis, type-IV pilus and type-III secretion effectors. Pathogens 3:211–37 [Google Scholar]
  143. White FF, Yang B. 143.  2009. Host and pathogen factors controlling the rice–Xanthomonas oryzae interaction. Plant Physiol. 150:1677–86 [Google Scholar]
  144. Wiedenbeck J, Cohan FM. 144.  2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol. Rev. 35:957–76 [Google Scholar]
  145. Wilkins KE, Booher NJ, Wang L, Bogdanove AJ. 145.  2015. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors. Front. Plant Sci. 6:536 [Google Scholar]
  146. Xu H, Zhao Y, Qian G, Liu F. 146.  2015. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola. Front. Cell. Infect. Microbiol. 5:37 [Google Scholar]
  147. Xu J, Zhou L, Venturi V, He YW, Kojima M. 147.  et al. 2015. Phytohormone-mediated interkingdom signaling shapes the outcome of rice–Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biol. 15:10 [Google Scholar]
  148. Yang Y, De Feyter R, Gabriel DW. 148.  1994. Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol. Plant-Microbe Interact. 7:345–55 [Google Scholar]
  149. Yaryura PM, Conforte VP, Malamud F, Roeschlin R, de Pino V. 149.  et al. 2015. XbmR, a new transcription factor involved in the regulation of chemotaxis, biofilm formation and virulence in Xanthomonas citri subsp. citri. Environ. Microbiol. 17:4164–76 [Google Scholar]
  150. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF. 150.  2009. OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol. 149:297–305 [Google Scholar]
  151. Zhang H, Wang S. 151.  2013. Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr. Opin. Plant Biol. 16:188–95 [Google Scholar]
  152. Zhang L, Jia Y, Wang L, Fang R. 152.  2007. A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris. Mol. Microbiol. 65:121–36 [Google Scholar]
  153. Zhang Y, Jalan N, Zhou X, Goss E, Jones JB. 153.  et al. 2015. Positive selection is the main driving force for evolution of citrus canker-causing Xanthomonas. ISME J. 9:2128–38 [Google Scholar]
  154. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD. 154.  et al. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–60 [Google Scholar]
  155. Zombre C, Sankara P, Ouédraogo SL, Wonni I, Boyer K. 155.  et al. 2016. Natural infection of cashew (Anacardium occidentale) by Xanthomonas citri pv. mangiferaeindicae in Burkina Faso. Plant Dis. 100718–23 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100147
Loading
/content/journals/10.1146/annurev-phyto-080615-100147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error