Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of altered resource dynamics and defense signaling and activation. We review studies documenting the outcome of cross-compartment interactions between these phytophage groups and show patterns of cross-compartment facilitation as well as cross-compartment induced resistance. Studies involving soilborne pathogens and foliar nematodes are scant. We further highlight the important role of defense signaling loops between shoots and roots to activate a full resistance complement. Moreover, manipulation of such loops by phytophages affects systemic interactions with other plant feeders. Finally, cross-compartment–induced changes in root defenses and root exudates extend systemic defense loops into the rhizosphere, enhancing or reducing recruitment of microbes that induce systemic resistance but also affecting interactions with root-feeding phytophages.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. 1.  2015. Cues from chewing insects: the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol. 26:80–86 [Google Scholar]
  2. Ali JG, Agrawal AA. 2.  2014. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct. Ecol. 28:1404–12 [Google Scholar]
  3. Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS. 3.  2013. Foliar herbivory triggers local and long distance defense responses in maize. Plant Sci. 199:103–12 [Google Scholar]
  4. Aryal SK, Davis RF, Stevenson KL, Timper P, Ji PS. 4.  2011. Induction of systemic acquired resistance by Rotylenchulus reniformis and Meloidogyne incognita in cotton following separate and concomitant inoculations. J. Nematol. 43:160–65 [Google Scholar]
  5. Back MA, Haydock PPJ, Jenkinson P. 5.  2002. Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol. 51:683–97 [Google Scholar]
  6. Ballhorn DJ, Younginger BS, Kautz S. 6.  2014. An aboveground pathogen inhibits belowground rhizobia and arbuscular mycorrhizal fungi in Phaseolus vulgaris. BMC Plant Biol. 14:321 [Google Scholar]
  7. Balmer D, de Papajewski DV, Planchamp C, Glauser G, Mauch-Mani B. 7.  2013. Induced resistance in maize is based on organ-specific defence responses. Plant J. 74:213–25 [Google Scholar]
  8. Balmer D, Mauch-Mani B. 8.  2013. More beneath the surface? Root versus shoot antifungal plant defenses. Front. Plant Sci. 4:256 [Google Scholar]
  9. Barber NA, Adler LS, Theis N, Hazzard RV, Kiers ET. 9.  2012. Herbivory reduces plant interactions with above- and belowground antagonists and mutualists. Ecology 93:1560–1570 [Google Scholar]
  10. Barber NA, Milano NJ, Kiers ET, Theis N, Bartolo V. 10.  et al. 2015. Root herbivory indirectly affects above- and below-ground community members and directly reduces plant performance. J. Ecol. 103:1509–18 [Google Scholar]
  11. Berger S, Sinha AK, Roitsch T. 11.  2007. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. J. Exp. Bot. 58:4019–26 [Google Scholar]
  12. Bezemer TM, De Deyn GB, Bossinga TM, van Dam NM, Harvey JA, Van der Putten WH. 12.  2005. Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecol. Lett. 8:652–61 [Google Scholar]
  13. Bezemer TM, van Dam NM. 13.  2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20:617–24 [Google Scholar]
  14. Bezemer TM, Wagenaar R, van Dam NM, Wackers FL. 14.  2003. Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–62 [Google Scholar]
  15. Biemelt S, Sonnewald U. 15.  2006. Plant-microbe interactions to probe regulation of plant carbon metabolism. J. Plant Physiol. 163:307–18 [Google Scholar]
  16. Bilgin DD, Zavala JA, Zhu J, Clough SJ, Ort DR, DeLucia EH. 16.  2010. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 33:1597–613 [Google Scholar]
  17. Blossey B, Hunt-Joshi TR. 17.  2003. Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu. Rev. Entomol. 48:521–47 [Google Scholar]
  18. Bonte D, De Roissart A, Vandegehuchte ML, Ballhorn DJ, Van Leeuwen T, de la Pena E. 18.  2010. Local adaptation of aboveground herbivores towards plant phenotypes induced by soil biota. PLOS ONE 5:e11174 [Google Scholar]
  19. Branch C, Hwang CF, Navarre DA, Williamson VM. 19.  2004. Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato. Mol. Plant-Microbe Interact. 17:351–56 [Google Scholar]
  20. Caarls L, Pieterse CMJ, Van Wees SCM. 20.  2015. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6:170 [Google Scholar]
  21. Cabello S, Lorenz C, Crespo S, Cabrera J, Ludwig R. 21.  et al. 2014. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants. J. Exp. Bot. 65:201–12 [Google Scholar]
  22. Campos ML, Kang JH, Howe GA. 22.  2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40:657–75 [Google Scholar]
  23. Cook DE, Mesarich CH, Thomma B. 23.  2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541–63 [Google Scholar]
  24. Cooper WR, Jia L, Goggin L. 24.  2005. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J. Chem. Ecol. 31:1953–67 [Google Scholar]
  25. Dammann C, Rojo E, Sanchez-Serrano JJ. 25.  1997. Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J. 11:773–82 [Google Scholar]
  26. Daw BD, Zhang LH, Wang ZZ. 26.  2008. Salicylic acid enhances antifungal resistance to Magnaporthe grisea in rice plants. Austral. Plant Pathol. 37:637–44 [Google Scholar]
  27. De Coninck B, Timmermans P, Vos C, Cammue BPA, Kazan K. 27.  2015. What lies beneath: belowground defense strategies in plants. Trends Plant Sci. 20:91–101 [Google Scholar]
  28. De Roman M, Fernandez I, Wyatt T, Sahrawy M, Heil M, Pozo MJ. 28.  2011. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J. Ecol. 99:36–45 [Google Scholar]
  29. de Vos M, Kim JH, Jander G. 29.  2007. Biochemistry and molecular biology of Arabidopsis-aphid interactions. BioEssays 29:871–83 [Google Scholar]
  30. Diezel C, von Dahl CC, Gaquerel E, Baldwin IT. 30.  2009. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 150:1576–86 [Google Scholar]
  31. Engelberth J, Viswanathan S, Engelberth MJ. 31.  2011. Low concentrations of salicylic acid stimulate insect elicitor responses in Zea mays seedlings. J. Chem. Ecol. 37:263–66 [Google Scholar]
  32. Erb M, Flors V, Karlen D, de Lange E, Planchamp C. 32.  et al. 2009. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 59:292–302 [Google Scholar]
  33. Erb M, Glauser G, Robert CAM. 33.  2012. Induced immunity against belowground insect herbivores: activation of defenses in the absence of a jasmonate burst. J. Chem. Ecol. 38:629–40 [Google Scholar]
  34. Erb M, Kollner TG, Degenhardt J, Zwahlen C, Hibbard BE, Turlings TCJ. 34.  2011. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. New Phytol. 189:308–20 [Google Scholar]
  35. Erb M, Lenk C, Degenhardt J, Turlings TCJ. 35.  2009. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci. 14:653–59 [Google Scholar]
  36. Erb M, Meldau S, Howe GA. 36.  2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17:250–59 [Google Scholar]
  37. Erb M, Robert CAM, Hibbard BE, Turlings TCJ. 37.  2011. Sequence of arrival determines plant-mediated interactions between herbivores. J. Ecol. 99:7–15 [Google Scholar]
  38. Erb M, Ton J, Degenhardt J, Turlings TCJ. 38.  2008. Interactions between arthropod-induced aboveground and belowground defenses in plants. Plant Physiol. 146:867–74 [Google Scholar]
  39. Fan JW, Hu CL, Zhang LN, Li ZL, Zhao FK, Wang SH. 39.  2015. Jasmonic acid mediates tomato's response to root knot nematodes. J. Plant Growth Regul. 34:196–205 [Google Scholar]
  40. Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima E. 40.  et al. 2015. A Nicotiana attenuata cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. New Phytol. 208:519–30 [Google Scholar]
  41. Foyer CH, Verrall SR, Hancock RD. 41.  2015. Systematic analysis of phloem-feeding insect-induced transcriptional reprogramming in Arabidopsis highlights common features and reveals distinct responses to specialist and generalist insects. J. Exp. Bot. 66:495–512 [Google Scholar]
  42. Fragoso V, Rothe E, Baldwin IT, Kim SG. 42.  2014. Root jasmonic acid synthesis and perception regulate folivore-induced shoot metabolites and increase Nicotiana attenuata resistance. New Phytol. 202:1335–45 [Google Scholar]
  43. Fu ZQ, Dong XN. 43.  2013. Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839–63 [Google Scholar]
  44. Fujimoto T, Tomitaka Y, Abe H, Tsuda S, Futai K, Mizukubo T. 44.  2011. Expression profile of jasmonic acid–induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J. Plant Physiol. 168:1084–97 [Google Scholar]
  45. Glazebrook J. 45.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  46. Goverse A, Smant G. 46.  2014. The activation and suppression of plant innate immunity by parasitic nematodes. Annu. Rev. Phytopathol. 52:243–65 [Google Scholar]
  47. Haegeman A, Mantelin S, Jones JT, Gheysen G. 47.  2012. Functional roles of effectors of plant-parasitic nematodes. Gene 492:19–31 [Google Scholar]
  48. Hamamouch N, Li CY, Seo PJ, Park CM, Davis EL. 48.  2011. Expression of Arabidopsis pathogenesis-related genes during nematode infection. Mol. Plant Pathol. 12:355–64 [Google Scholar]
  49. Hanounik SB, Osborne WW. 49.  1975. Influence of Meloidogyne incognita on content of amino acids and nicotine in tobacco grown under gnotobiotic conditions. J. Nematol. 7:332–36 [Google Scholar]
  50. Hasegawa S, Sogabe Y, Asano T, Nakagawa T, Nakamura H. 50.  et al. 2011. Gene expression analysis of wounding-induced root-to-shoot communication in Arabidopsis thaliana. Plant Cell Environ. 34:705–16 [Google Scholar]
  51. Hauser TP, Christensen S, Heimes C, Kiaer LP. 51.  2013. Combined effects of arthropod herbivores and phytopathogens on plant performance. Funct. Ecol. 27:623–32 [Google Scholar]
  52. Heeren JR, Steffey KL, Tinsley NA, Estes RE, Niblack TL, Gray ME. 52.  2012. The interaction of soybean aphids and soybean cyst nematodes on selected resistant and susceptible soybean lines. J. Appl. Entomol. 136:646–55 [Google Scholar]
  53. Heil M. 53.  2009. Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14:356–63 [Google Scholar]
  54. Hillocks RJ. 54.  1986. Localized and sytemic effects of root-knot nematode on incidence and severity of Fusarium wilt in cotton. Nematologica 32:202–8 [Google Scholar]
  55. Hladun KR, Adler LS. 55.  2009. Influence of leaf herbivory, root herbivory, and pollination on plant performance in Cucurbita moschata. Ecol. Entomol. 34:144–52 [Google Scholar]
  56. Hodge S, Pope TW, Holaschke M, Powell G. 56.  2006. The effect of β-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Ann. Appl. Biol. 148:223–29 [Google Scholar]
  57. Hofmann J, El Ashry A, Anwar S, Erban A, Kopka J, Grundler F. 57.  2010. Metabolic profiling reveals local and systemic responses of host plants to nematode parasitism. Plant J. 62:1058–71 [Google Scholar]
  58. Hogenhout SA, Bos JIB. 58.  2011. Effector proteins that modulate plant-insect interactions. Curr. Opin. Plant Biol. 14:422–28 [Google Scholar]
  59. Hol WHG, De Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM. 59.  et al. 2013. Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea. J. Chem. Ecol. 39:1193–203 [Google Scholar]
  60. Huang JH, Liu MQ, Chen XY, Chen J, Li HX, Hu F. 60.  2015. Effects of intraspecific variation in rice resistance to aboveground herbivore, brown planthopper, and rice root nematodes on plant yield, labile pools of plant, and rhizosphere soil. Biol. Fertil. Soils 51:417–25 [Google Scholar]
  61. Huang W, Siemann E, Yang XF, Wheeler GS, Ding JQ. 61.  2013. Facilitation and inhibition: Changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores. Proc. R. Soc. Lond. B 280:20131318 [Google Scholar]
  62. Huberty AF, Denno RF. 62.  2004. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85:1383–98 [Google Scholar]
  63. Ji HL, Kyndt T, He W, Vanholme B, Gheysen G. 63.  2015. β-aminobutyric acid–induced resistance against root-knot nematodes in rice is based on increased basal defense. Mol. Plant-Microbe Interact. 28:519–33 [Google Scholar]
  64. Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J. 64.  2012. Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 93:2208–15 [Google Scholar]
  65. Jones JDG, Dangl JL. 65.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  66. Kammerhofer N, Egger B, Dobrev P, Vankova R, Hofmann J. 66.  et al. 2015. Systemic above- and belowground cross talk: hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana. J. Exp. Bot. 66:7005–17 [Google Scholar]
  67. Kammerhofer N, Radakovic Z, Regis JMA, Dobrev P, Vankova R. 67.  et al. 2015. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol. 207:778–89 [Google Scholar]
  68. Kaplan I, Halitschke R, Kessler A, Rehill BJ, Sardanelli S, Denno RF. 68.  2008. Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol. Lett. 11:841–51 [Google Scholar]
  69. Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF. 69.  2008. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89:392–406 [Google Scholar]
  70. Kaplan I, Sardanelli S, Denno RF. 70.  2009. Field evidence for indirect interactions between foliar-feeding insect and root-feeding nematode communities on Nicotiana tabacum. Ecol. Entomol. 34:262–70 [Google Scholar]
  71. Kaplan I, Sardanelli S, Rehill BJ, Denno RF. 71.  2011. Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis. Oecologia 166:627–36 [Google Scholar]
  72. Katagiri F, Tsuda K. 72.  2010. Understanding the plant immune system. Mol. Plant-Microbe Interact. 23:1531–36 [Google Scholar]
  73. Kazan K, Lyons R. 73.  2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–309 [Google Scholar]
  74. Klink VP, Overall CC, Alkharouf NW, MacDonald MH, Matthews BF. 74.  2007. Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226:1389–409 [Google Scholar]
  75. Koornneef A, Pieterse CMJ. 75.  2008. Cross talk in defense signaling. Plant Physiol. 146:839–44 [Google Scholar]
  76. Kroes A, van Loon JJA, Dicke M. 76.  2015. Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors. Plant Cell Physiol. 56:98–106 [Google Scholar]
  77. Kubota M, Nishi K. 77.  2006. Salicylic acid accumulates in the roots and hypocotyl after inoculation of cucumber leaves with Colletotrichum lagenarium. J. Plant Physiol. 163:1111–17 [Google Scholar]
  78. Kutyniok M, Muller C. 78.  2013. Plant-mediated interactions between shoot-feeding aphids and root-feeding nematodes depend on nitrate fertilization. Oecologia 173:1367–77 [Google Scholar]
  79. Kyndt T, Denil S, Bauters L, Van Criekinge W, De Meyer T. 79.  2014. Systemic suppression of the shoot metabolism upon rice root nematode infection. PLOS ONE 9:e106858 [Google Scholar]
  80. Kyndt T, Fernandez D, Gheysen G. 80.  2014. Plant-parasitic nematode infections in rice: molecular and cellular insights. Annu. Rev. Phytopathol. 52:135–53 [Google Scholar]
  81. Kyndt T, Nahar K, Haegeman A, De Vleesschauwer D, Hofte M, Gheysen G. 81.  2012. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biol. 14:73–82 [Google Scholar]
  82. Lakshmanan V, Castaneda R, Rudrappa T, Bais HP. 82.  2013. Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta 238:657–68 [Google Scholar]
  83. Landgraf R, Schaarschmidt S, Hause B. 83.  2012. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant Cell Environ. 35:1344–57 [Google Scholar]
  84. Lawrence SD, Novak NG, El Kayal W, Ju CJT, Cooke JEK. 84.  2012. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi. Physiol. Plant. 144:303–19 [Google Scholar]
  85. Lazebnik J, Frago E, Dicke M, van Loon JJA. 85.  2014. Phytohormone mediation of interactions between herbivores and plant pathogens. J. Chem. Ecol. 40:730–41 [Google Scholar]
  86. Leath KT, Byers RA. 86.  1977. Interaction of Fusarium root-rot with pea aphid and potato leafhopper feeding on forage legumes. Phytopathology 67:226–29 [Google Scholar]
  87. Lee B, Lee S, Ryu CM. 87.  2012. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Ann. Bot. 110:281–90 [Google Scholar]
  88. Lee JW, Colyer PD, Quisenberry SS. 88.  1990. The effect of insect defoliation on the presence and severity of Fusarium crown-rot in alfalfa. J. Entomol. Sci. 25:253–60 [Google Scholar]
  89. Lee JW, Quisenberry SS, Colyer PD. 89.  1991. Development of Fusarium crown-rot in alfalfa stressed by multiple defoliations by the yellowstriped armyworm (Lepidoptera, Noctuidae). J. Entomol. Sci. 26:85–94 [Google Scholar]
  90. Lemarie S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N. 90.  et al. 2015. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol. 56:2158–68 [Google Scholar]
  91. Lemoine R, La Camera S, Atanassova R, Deedaldeechamp F, Allario T. 91.  et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4:272 [Google Scholar]
  92. Leon-Reyes A, Du YJ, Koornneef A, Proietti S, Korbes AP. 92.  et al. 2010. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol. Plant-Microbe Interact. 23:187–97 [Google Scholar]
  93. Li RJ, Rashotte AM, Singh NK, Weaver DB, Lawrence KS, Locy RD. 93.  2015. Integrated signaling networks in plant responses to sedentary endoparasitic nematodes: a perspective. Plant Cell Rep. 34:5–22 [Google Scholar]
  94. Li SJ, Xue X, Ren SX, Cuthbertson AGS, van Dam NM, Qiu BL. 94.  2013. Root and shoot jasmonic acid induced plants differently affect the performance of Bemisia tabaci and its parasitoid Encarsia formosa. Basic Appl. Ecol. 14:670–79 [Google Scholar]
  95. Lohar DP, Bird DM. 95.  2003. Lotus japonicus: a new model to study root-parasitic nematodes. Plant Cell Physiol. 44:1176–84 [Google Scholar]
  96. Lohmann M, Scheu S, Muller C. 96.  2009. Decomposers and root feeders interactively affect plant defence in Sinapis alba. Oecologia 160:289–98 [Google Scholar]
  97. Lopez L, Camas A, Shivaji R, Ankala A, Williams P, Luthe D. 97.  2007. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta 226:517–27 [Google Scholar]
  98. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L. 98.  et al. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66:513–45 [Google Scholar]
  99. Louis J, Basu S, Varsani S, Castano-Duque L, Jiang V. 99.  et al. 2015. Ethylene contributes to maize insect resistance1-mediated maize defense against the phloem sap-sucking corn leaf aphid. Plant Physiol. 169:313–24 [Google Scholar]
  100. Louis J, Shah J. 100.  2013. Arabidopsis thalianaMyzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front. Plant Sci. 4:213 [Google Scholar]
  101. Lovelock DA, Donald CE, Conlan XA, Cahill DM. 101.  2013. Salicylic acid suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by the obligate biotroph Plasmodiophora brassicae. Austral. Plant Pathol. 42:141–53 [Google Scholar]
  102. Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR. 102.  et al. 2013. The plant vascular system: evolution, development and functions. J. Integr. Plant Biol. 55:294–388 [Google Scholar]
  103. Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. 103.  2015. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLOS ONE 10:e0121902 [Google Scholar]
  104. Machado RAR, Arce CCM, Ferrieri AP, Baldwin IT, Erb M. 104.  2015. Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. New Phytol. 207:91–105 [Google Scholar]
  105. Marley PS, Hillocks RJ. 105.  1994. Effect of root-knot nematodes on cajanol accumulation in the vascular tissues of pigeonpea after stem inoculation with Fusarium udum. Plant Pathol. 43:172–76 [Google Scholar]
  106. Masters GJ, Brown VK, Gange AC. 106.  1993. Plant mediated interactions between aboveground and belowground insect herbivores. Oikos 66:148–51 [Google Scholar]
  107. McGawley EC, Rush MC, Hollis JP. 107.  1984. Occurrence of Aphelenchoides besseyi in Louisiana rice seed and its interaction with Sclerotium oryzae in selected cultivars. J. Nematol. 16:65–68 [Google Scholar]
  108. McKenzie SW, Vanbergen AJ, Hails RS, Jones TH, Johnson SN. 108.  2013. Reciprocal feeding facilitation between above- and below-ground herbivores. Biol. Lett. 9:20130341 [Google Scholar]
  109. Milano NJ, Barber NA, Adler LS. 109.  2015. Conspecific and heterospecific aboveground herbivory both reduce preference by a belowground herbivore. Environ. Entomol. 44:317–24 [Google Scholar]
  110. Milanovic S, Lazarevic J, Karadzic D, Milenkovic I, Jankovsky L. 110.  et al. 2015. Belowground infections of the invasive Phytophthora plurivora pathogen enhance the suitability of red oak leaves to the generalist herbivore Lymantria dispar. Ecol. Entomol. 40:479–82 [Google Scholar]
  111. Moellenbeck DJ, Quisenberry SS, Colyer PD. 111.  1992. Fusarium crown-rot development in alfalfa stressed by threecornered alfalfa hopper (Homoptera, Membracidae) feeding. J. Econ. Entomol. 85:1442–49 [Google Scholar]
  112. Mondal AH, Rahman L, Ahmed HJ, Miah SA. 112.  1986. The cause of increasing blast susceptibility of ufra infected rice plants. Bangladesh J. Agric. 111:77–79 [Google Scholar]
  113. Morkunas I, Ratajczak L. 113.  2014. The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiol. Plant 36:1607–19 [Google Scholar]
  114. Motallebi P, Niknam V, Ebrahimzadeh H, Hashemi M, Pisi A. 114.  et al. 2015. Methyl jasmonate strengthens wheat plants against root and crown rot pathogen Fusarium culmorum infection. J. Plant Growth Regul. 34:624–36 [Google Scholar]
  115. Nalam VJ, Keeretaweep J, Sarowar S, Shah J. 115.  2012. Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell 24:1643–53 [Google Scholar]
  116. Nalam VJ, Shah J, Nachappa P. 116.  2013. Emerging role of roots in plant responses to aboveground insect herbivory. Insect Sci. 20:286–96 [Google Scholar]
  117. Nandi B, Kundu K, Banerjee N, Babu SPS. 117.  2003. Salicylic acid–induced suppression of Meloidogyne incognita infestation of okra and cowpea. Nematology 5:747–52 [Google Scholar]
  118. Navarova H, Bernsdorff F, Doring AC, Zeier J. 118.  2012. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24:5123–41 [Google Scholar]
  119. Nguyen PV, Bellafiore S, Petitot AS, Haidar R, Bak A. 119.  et al. 2014. Meloidogyne incognita–rice (Oryza sativa) interaction: a new model system to study plant-root-knot nematode interactions in monocotyledons. Rice 7:23 [Google Scholar]
  120. Nikoo FS, Sahebani N, Aminian H, Mokhtarnejad L, Ghaderi R. 120.  2014. Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. J. Plant Prot. Res. 54:383–89 [Google Scholar]
  121. Notaguchi M, Okamoto S. 121.  2015. Dynamics of long-distance signaling via plant vascular tissues. Front. Plant Sci. 6:161 [Google Scholar]
  122. Ohgushi T. 122.  2005. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36:81–105 [Google Scholar]
  123. Orians CM, Thorn A, Gomez S. 123.  2011. Herbivore-induced resource sequestration in plants: why bother?. Oecologia 167:1–9 [Google Scholar]
  124. Orlowska E, Basile A, Kandzia I, Llorente B, Kirk HG, Cvitanich C. 124.  2012. Revealing the importance of meristems and roots for the development of hypersensitive responses and full foliar resistance to Phytophthora infestans in the resistant potato cultivar Sarpo Mira. J. Exp. Bot. 63:4765–79 [Google Scholar]
  125. Padgett GB, Russin JS, Snow JP, Boethel DJ, Berggren GT. 125.  1994. Interactions among the soybean looper (Lepidoptera, Noctuidae), threecornered alfalfa hopper (Homoptera, Membracidae), stem canker, and red crown rot in soybean. J. Entomol. Sci. 29:110–19 [Google Scholar]
  126. Park YS, Ryu CM. 126.  2014. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants. Biochem. Biophys. Res. Commun. 443:272–77 [Google Scholar]
  127. Pierre SP, Dugravot S, Herve MR, Hassan HM, van Dam NM, Cortesero AM. 127.  2013. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli. Front. Plant Sci. 4:305 [Google Scholar]
  128. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 128.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  129. Poelman EH, Broekgaarden C, Van Loon JJA, Dicke M. 129.  2008. Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol. Ecol. 17:3352–65 [Google Scholar]
  130. Proels RK, Huckelhoven R. 130.  2014. Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses. Mol. Plant Pathol. 15:858–64 [Google Scholar]
  131. Puthoff DP, Nettleton D, Rodermel SR, Baum TJ. 131.  2003. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J. 33:911–21 [Google Scholar]
  132. Rasmann S, Agrawal AA. 132.  2008. In defense of roots: a research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146:875–80 [Google Scholar]
  133. Robert CAM, Ferrieri RA, Schirmer S, Babst BA, Schueller MJ. 133.  et al. 2014. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. Plant Cell Environ. 37:2613–22 [Google Scholar]
  134. Robert-Seilaniantz A, Grant M, Jones JDG. 134.  2011. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu. Rev. Phytopathol. 49:317–43 [Google Scholar]
  135. Rudrappa T, Czymmek KJ, Pare PW, Bais HP. 135.  2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:1547–56 [Google Scholar]
  136. Schlink K. 136.  2010. Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Funct. Integr. Genom. 10:253–64 [Google Scholar]
  137. Schmelz EA. 137.  2015. Impacts of insect oral secretions on defoliation-induced plant defense. Curr. Opin. Insect Sci. 9:7–15 [Google Scholar]
  138. Siddiqui WM, Halisky PM, Lund S. 138.  1968. Relationship of clipping frequency to root and crown deterioration in red clover. Phytopathology 58:486–88 [Google Scholar]
  139. Sidhu G, Webster JM. 139.  1977. Predisposition of tomato to wilt fungus (Fusarium oxysporum lycopersici) by root knot nematode (Meloidogyne incognita). Nematologica 23:436–42 [Google Scholar]
  140. Sidonskaya E, Schweighofer A, Shubchynskyy V, Kammerhofer N, Hofmann J. 140.  et al. 2016. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. J. Exp. Bot. 67:107–18 [Google Scholar]
  141. Singh V, Louis J, Ayre BG, Reese JC, Shah J. 141.  2011. TREHALOSE PHOSPHATE SYNTHASE11–dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J. 67:94–104 [Google Scholar]
  142. Soler R, Badenes-Perez FR, Broekgaarden C, Zheng SJ, David A. 142.  et al. 2012. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct. Ecol. 26:156–66 [Google Scholar]
  143. Soler R, Bezemer TM, Cortesero AM, Van der Putten WH, Vet LEM, Harvey JA. 143.  2007. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152:257–64 [Google Scholar]
  144. Soler R, Erb M, Kaplan I. 144.  2013. Long distance root-shoot signalling in plant-insect community interactions. Trends Plant Sci. 18:149–56 [Google Scholar]
  145. Soler R, Van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM. 145.  2012. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J. Chem. Ecol. 38:755–67 [Google Scholar]
  146. Song GC, Lee S, Hong J, Choi HK, Hong GH. 146.  et al. 2015. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation. New Phytol. 207:148–58 [Google Scholar]
  147. Sonnemann I, Finkhaeuser K, Wolters V. 147.  2002. Does induced resistance in plants affect the belowground community?. Appl. Soil Ecol. 21:179–85 [Google Scholar]
  148. Sonnewald S, Priller JPR, Schuster J, Glickmann E, Hajirezaei MR. 148.  et al. 2012. Regulation of cell wall–bound invertase in pepper leaves by Xanthomonas campestris pv. vesicatoria type three effectors. PLOS ONE 7:e51763 [Google Scholar]
  149. Spletzer ME, Enyedi AJ. 149.  1999. Salicylic acid induces resistance to Alternaria solani in hydroponically grown tomato. Phytopathology 89:722–27 [Google Scholar]
  150. Spoel SH, Johnson JS, Dong X. 150.  2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. PNAS 104:18842–47 [Google Scholar]
  151. Tack AJM, Dicke M. 151.  2013. Plant pathogens structure arthropod communities across multiple spatial and temporal scales. Funct. Ecol. 27:633–45 [Google Scholar]
  152. Thaler JS, Humphrey PT, Whiteman NK. 152.  2012. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17:260–70 [Google Scholar]
  153. Thaler JS, Owen B, Higgins VJ. 153.  2004. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol. 135:530–38 [Google Scholar]
  154. Thatcher LF, Manners JM, Kazan K. 154.  2009. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J. 58:927–39 [Google Scholar]
  155. Thompson GA, Goggin FL. 155.  2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp. Bot. 57:755–66 [Google Scholar]
  156. Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ. 156.  2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant-Microbe Interact. 15:27–34 [Google Scholar]
  157. Tsuda K, Somssich IE. 157.  2015. Transcriptional networks in plant immunity. New Phytol. 206:932–47 [Google Scholar]
  158. Tytgat TOG, Verhoeven KJF, Jansen JJ, Raaijmakers CE, Bakx-Schotman T. 158.  et al. 2013. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLOS ONE 8:e65502 [Google Scholar]
  159. van Dam NM. 159.  2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Syst. 40:373–91 [Google Scholar]
  160. van Dam NM, Harvey JA, Wackers FL, Bezemer TM, van der Putten WH, Vet LEM. 160.  2003. Interactions between aboveground and belowground induced responses against phytophages. Basic Appl. Ecol. 4:63–77 [Google Scholar]
  161. van Dam NM, Heil M. 161.  2011. Multitrophic interactions below and above ground: en route to the next level. J. Ecol. 99:77–88 [Google Scholar]
  162. van Dam NM, Oomen MWAT. 162.  2008. Root and shoot jasmonic acid applications differentially affect leaf chemistry and herbivore growth. Plant Signal. Behav. 3:91–98 [Google Scholar]
  163. van Dam NM, Raaijmakers CE, van der Putten WH. 163.  2005. Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol. Exp. Appl. 115:161–70 [Google Scholar]
  164. van Dam NM, Witjes L, Svatos A. 164.  2004. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol. 161:801–10 [Google Scholar]
  165. Van der Putten WH, Vet LEM, Harvey JA, Wackers FL. 165.  2001. Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 16:547–54 [Google Scholar]
  166. Wasternack C, Hause B. 166.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111:1021–58 [Google Scholar]
  167. Will T, Tjallingii WF, Thonnessen A, van Bel AJE. 167.  2007. Molecular sabotage of plant defense by aphid saliva. PNAS 104:10536–41 [Google Scholar]
  168. Wondafrash M, Van Dam NM, Tytgat TOG. 168.  2013. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Front. Plant Sci. 4:87 [Google Scholar]
  169. Wu YL, Yi GJ, Peng XX, Huang BZ, Liu E, Zhang JJ. 169.  2013. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J. Plant Physiol. 170:1039–46 [Google Scholar]
  170. Wubben MJE, Jin J, Baum TJ. 170.  2008. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Mol. Plant-Microbe Interact. 21:424–32 [Google Scholar]
  171. Xin X-F, He SY. 171.  2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51:473–98 [Google Scholar]
  172. Yan SP, Dong XN. 172.  2014. Perception of the plant immune signal salicylic acid. Curr. Opin. Plant Biol. 20:64–68 [Google Scholar]
  173. Yang JW, Yi HS, Kim H, Lee B, Lee S. 173.  et al. 2011. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora. J. Ecol. 99:46–56 [Google Scholar]
  174. Zahid MI, Gurr GM, Nikandrow A, Hodda M, Fulkerson WJ, Nichol HI. 174.  2002. Effects of root and stolon-infecting fungi on root-colonizing nematodes of white clover. Plant Pathol. 51:242–50 [Google Scholar]
  175. Zamioudis C, Pieterse CMJ. 175.  2012. Modulation of host immunity by beneficial microbes. Mol. Plant-Microbe Interact. 25:139–50 [Google Scholar]
  176. Zhao WC, Li ZL, Fan JW, Hu CL, Yang R. 176.  et al. 2015. Identification of jasmonic acid–associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J. Exp. Bot. 66:4653–67 [Google Scholar]
  177. Zhong YP, Wang B, Yan JH, Cheng LJ, Yao LM. 177.  et al. 2014. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae). PLOS ONE 9:e85142 [Google Scholar]
  178. Zhou SQ, Lou YR, Tzin V, Jander G. 178.  2015. Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–98 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error