1932

Abstract

Root lesion nematodes (RLNs) are one of the most economically important groups of plant nematodes. As migratory endoparasites, their presence in roots is less obvious than infestations of sedentary endoparasites; nevertheless, in many instances, they are the major crop pests. With increasing molecular information on nematode parasitism, available data now reflect the differences and, in particular, similarities in lifestyle between migratory and sedentary endoparasites. Far from being unsophisticated compared with sedentary endoparasites, migratory endoparasites are exquisitely suited to their parasitic lifestyle. What they lack in effectors required for induction of permanent feeding sites, they make up for with their versatile host range and their ability to move and feed from new host roots and survive adverse conditions. In this review, we summarize the current molecular data available for RLNs and highlight differences and similarities in effectors and molecular mechanisms between migratory and sedentary endoparasitic nematodes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080615-100257
2016-08-04
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-080615-100257.html?itemId=/content/journals/10.1146/annurev-phyto-080615-100257&mimeType=html&fmt=ahah

Literature Cited

  1. Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ. 1.  et al. 2008. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26:909–15 [Google Scholar]
  2. Al-Banna L, Ploeg A, Williamson V, Kaloshian I. 2.  2004. Discrimination of six Pratylenchus species using PCR and species-specific primers. J. Nematol. 36:142 [Google Scholar]
  3. Bakhetia M, Charlton W, Atkinson HJ, McPherson MJ. 3.  2005. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol. Plant Microbe 18:1099–106 [Google Scholar]
  4. Bauters L, Haegeman A, Kyndt T, Gheysen G. 4.  2014. Analysis of the transcriptome of Hirschmanniella oryzae to explore potential survival strategies and host-nematode interactions. Mol. Plant Pathol. 15:352–63 [Google Scholar]
  5. Berry SD, Fargette M, Spaull VW, Morand S, Cadet P. 5.  2008. Detection and quantification of root-knot nematode (Meloidogyne javanica), lesion nematode (Pratylenchus zeae) and dagger nematode (Xiphinema elongatum) parasites of sugarcane using real-time PCR. Mol. Cell. Probes 22:168–76 [Google Scholar]
  6. Blair B, Stirling G. 6.  2007. The role of plant-parasitic nematodes in reducing yield of sugarcane in fine-textured soils in Queensland, Australia. Aust. J. Exp. Agric. 47:620–34 [Google Scholar]
  7. Bobay BG, DiGennaro P, Scholl E, Imin N, Djordjevic MA, Bird DM. 7.  2013. Solution NMR studies of the plant peptide hormone CEP inform function. FEBS Lett. 587:3979–85 [Google Scholar]
  8. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R. 8.  et al. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–10 [Google Scholar]
  9. Britton MT. 9.  2009. Analysis of the genomics of Pratylenchus vulnus, a plant parasitic nematode, and its interaction with walnut roots PhD Thesis, Univ. Calif., Davis [Google Scholar]
  10. Burke M, Scholl EH, Bird DM, Schaff JE, Colman SD. 10.  et al. 2015. The plant parasite carries a minimal nematode genome. Nematology 17:621–37 [Google Scholar]
  11. Cabrera J, Díaz-Manzano FE, Barcala M, Arganda-Carreras I, Almeida-Engler J. 11.  et al. 2015. Phenotyping nematode feeding sites: three-dimensional reconstruction and volumetric measurements of giant cells induced by root-knot nematodes in Arabidopsis. New Phytol. 206:868–80 [Google Scholar]
  12. Carpita NC, Gibeaut DM. 12.  1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1–30 [Google Scholar]
  13. Castillo P, Vovlas N. 13.  2007. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenecity and Management Leiden, Neth.: Brill [Google Scholar]
  14. Collins S, Wilkinson C, Kelly S, Hunter H, DeBrincat L. 14.  2013. Root lesion nematode has a picnic in 2013. DAFWA Bull. http://www.giwa.org.au/pdfs/2014/Presented_Papers/Collins%20Sarah_Root%20lesion%20nematode%20has%20a%20picnic%20in%202013_PAPER%20DR.pdf [Google Scholar]
  15. Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ. 15.  et al. 2014. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol. 15:R43 [Google Scholar]
  16. Coyne D. 16.  2007. Pre-empting plant-parasitic nematode losses on banana in Africa: Which species do we target?. Acta Hortic. 828:227–36 [Google Scholar]
  17. Danchin EG, Arguel M-J, Campan-Fournier A, Perfus-Barbeoch L, Magliano M. 17.  et al. 2013. Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PLOS Pathog. 9:10e1003745 [Google Scholar]
  18. De Boer JM, Yan Y, Wang X, Smant G, Hussey RS. 18.  et al. 1999. Developmental expression of secretory β-1,4-endoglucanases in the subventral esophageal glands of Heterodera glycines. Mol. Plant-Microbe Interact. 12:663–69 [Google Scholar]
  19. De Ley P, Blaxter M. 19.  2002. Systematic position and phylogeny. The Biology of Nematodes DL Lee 1–30 London: Taylor and Francis [Google Scholar]
  20. De Luca F, Reyes A, Troccoli A, Castillo P. 20.  2011. Molecular variability and phylogenetic relationships among different species and populations of Pratylenchus (Nematoda: Pratylenchidae) as inferred from the analysis of the ITS rDNA. Eur. J. Plant Pathol. 130:415–26 [Google Scholar]
  21. De Meutter J, Vanholme B, Bauw G, Tytgat T, Gheysen G, Gheysen G. 21.  2001. Preparation and sequencing of secreted proteins from the pharyngeal glands of the plant parasitic nematode Heterodera schachtii. Mol. Plant Pathol. 2:297–301 [Google Scholar]
  22. Ding X, Shields J, Allen R, Hussey RS. 22.  1998. A secretory cellulose-binding protein cDNA cloned from the root-knot nematode (Meloidogyne incognita). Mol. Plant-Microbe Interact. 11:952–59 [Google Scholar]
  23. Doyle EA, Lambert KN. 23.  2003. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol. Plant-Microbe Interact. 16:123–31 [Google Scholar]
  24. Eves-van den Akker S, Lilley CJ, Danchin EG, Rancurel C, Cock PJ. 24.  et al. 2014. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biol. Evol. 6:2181–94 [Google Scholar]
  25. Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE. 25.  2014. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes. PLOS Pathog. 10:9e1004391 [Google Scholar]
  26. Fanelli E, Troccoli A, Picardi E, Pousis C, De Luca F. 26.  2014. Molecular characterization and functional analysis of four β-1,4-endoglucanases from the root-lesion nematode Pratylenchus vulnus. Plant Pathol. 63:1436–45 [Google Scholar]
  27. Finkers-Tomczak A, Bakker E, de Boer J, van der Vossen E, Achenbach U. 27.  et al. 2011. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theor. Appl. Genet. 122:595–608 [Google Scholar]
  28. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 28.  1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11 [Google Scholar]
  29. Fosu-Nyarko J, Jones MGK. 29.  2015. Application of biotechnology for nematode control in crop plants. Adv. Bot. Res. 73:339–76 [Google Scholar]
  30. Fosu-Nyarko J, Jones MGK, Wang Z. 30.  2009. Functional characterization of transcripts expressed in early-stage Meloidogyne javanica–induced giant cells isolated by laser microdissection. Mol. Plant Pathol. 10:237–48 [Google Scholar]
  31. Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. 31.  2015. Analysis of the transcriptome of the beet cyst nematode, Heterodera schachtii. PLOS ONE 111e0147511 [Google Scholar]
  32. Fosu-Nyarko J, Tan JC, Gill R, Agrez VG, Rao U, Jones MGK. 32.  2015. De novo analysis of the transcriptome of Pratylenchus zeae to identify transcripts for proteins required for structural integrity, sensation, locomotion and parasitism. Mol. Plant Pathol. 174532–52 [Google Scholar]
  33. Fuller VL, Lilley CJ, Urwin PE. 33.  2008. Nematode resistance. New Phytol. 180:27–44 [Google Scholar]
  34. Gao B, Allen MW, Maier TR, Davis EL, Baum TJ, Hussey RS. 34.  2002. Identification of a new β-1,4-endoglucanase gene expressed in the esophageal subventral gland cells of Heterodera glycines. J. Nematol. 34:12–15 [Google Scholar]
  35. Gao B, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS. 35.  2003. The parasitome of the phytonematode Heterodera glycines. Mol. Plant-Microbe Interact. 16:720–26 [Google Scholar]
  36. Gheysen G, Mitchum MG. 36.  2011. How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 14:415–21 [Google Scholar]
  37. Gladyshev EA, Meselson M, Arkhipova IR. 37.  2008. Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–13 [Google Scholar]
  38. Goellner M, Smant G, De Boer JM, Baum TJ, Davis EL. 38.  2000. Isolation of β-1,4-endoglucanase genes from Globodera tabacum and their expression during parasitism. J. Nematol. 32:154–65 [Google Scholar]
  39. Goto DB, Miyazawa H, Mar JC, Sato M. 39.  2013. Not to be suppressed? Rethinking the host response at a root-parasite interface. Plant Sci. 213:9–17 [Google Scholar]
  40. Gregory PJ. 40.  2008. Plant Roots: Growth, Activity and Interactions with the Soil Oxford: Blackwell Publ. [Google Scholar]
  41. Haegeman A, Jacob J, Vanholme B, Kyndt T, Gheysen G. 41.  2008. A family of GHF5 endo-1,4-β-glucanases in the migratory plant-parasitic nematode Radopholus similis. Plant Pathol. 57:581–90 [Google Scholar]
  42. Haegeman A, Joseph S, Gheysen G. 42.  2011. Analysis of the transcriptome of the root lesion nematode Pratylenchus coffeae generated by 454 sequencing technology. Mol. Biochem. Parasitol. 178:7–14 [Google Scholar]
  43. Haegeman A, Mantelin S, Jones JT, Gheysen G. 43.  2012. Functional roles of effectors of plant-parasitic nematodes. Gene 492:19–31 [Google Scholar]
  44. Haegeman A, Vanholme B, Gheysen G. 44.  2009. Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis. Mol. Plant Pathol. 10:389–401 [Google Scholar]
  45. Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG. 45.  et al. 2012. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. J. Exp. Bot. 63:3683–95 [Google Scholar]
  46. Hewezi T, Baum TJ. 46.  2015. Gene silencing in nematode feeding sites. Adv. Bot. Res. 73:221–39 [Google Scholar]
  47. Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG. 47.  et al. 2008. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–93 [Google Scholar]
  48. Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG. 48.  et al. 2010. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol. 152:968–84 [Google Scholar]
  49. Hewezi T, Juvale PS, Piya S, Maier TR, Rambani A. 49.  et al. 2015. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis. Plant Cell 27:891–907 [Google Scholar]
  50. Holterman M, Karssen G, van den Elsen S, van Megen H, Bakker J, Helder J. 50.  2009. Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99:227–35 [Google Scholar]
  51. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS. 51.  2006. A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol. Plant-Microbe Interact. 19:463–70 [Google Scholar]
  52. Huang G, Gao B, Maier TR, Allen R, Davis EL. 52.  et al. 2003. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol. Plant-Microb. Interact 16:376–81 [Google Scholar]
  53. 53. Int. Barley Genome Seq. Consort. 2012. A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–16 [Google Scholar]
  54. Ithal N, Recknor J, Nettleton D, Hearne L, Maier T. 54.  et al. 2007. Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. Mol. Plant-Microbe Interact. 20:293–305 [Google Scholar]
  55. Ithal N, Recknor J, Nettleton D, Maier T, Baum TJ, Mitchum MG. 55.  2007. Developmental transcript profiling of cyst nematode feeding cells in soybean roots. Mol. Plant-Microbe Interact. 20:510–25 [Google Scholar]
  56. Jacob J, Mitreva M, Vanholme B, Gheysen G. 56.  2008. Exploring the transcriptome of the burrowing nematode Radopholus similis. Mol. Genet. Genom. 280:1–17 [Google Scholar]
  57. Jammes F, Lecomte P, Almeida-Engler J, Bitton F, Martin-Magniette ML. 57.  et al. 2005. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J. 44:447–58 [Google Scholar]
  58. Jaubert S, Laffaire J-B, Abad P, Rosso M-N. 58.  2002. A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita. FEBS Lett. 522:109–12 [Google Scholar]
  59. Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J. 59.  et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946–61 [Google Scholar]
  60. Jones MGK. 60.  1981. Host cell responses to endoparasitic nematodes. Ann. Appl. Biol. 97:353–72 [Google Scholar]
  61. Jones MGK, Dropkin V. 61.  1975. Cellular alterations induced in soybean roots by three endoparasitic nematodes. Physiol. Plant Pathol. 5:119–24 [Google Scholar]
  62. Jones MGK, Dropkin V. 62.  1975. Scanning electron microscopy of syncytial transfer cells induced in roots by cyst-nematodes. Physiol. Plant Pathol. 7:259–63 [Google Scholar]
  63. Jones MGK, Fosu-Nyarko J. 63.  2014. Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann. Appl. Biol. 164:163–81 [Google Scholar]
  64. Jones MGK, Goto DB. 64.  2011. Root-knot nematodes and giant cells. Genomics and Molecular Genetics of Plant-Nematode Interactions J Jones, G Gheysen, C Fenoll 83–100 Dordrecht, Neth.: Springer. [Google Scholar]
  65. Jones MGK, Payne H. 65.  1977. The structure of syncytia induced by the phytoparasitic nematode Nacobbus aberrans in tomato roots, and the possible role of plasmodesmata in their nutrition. J. Cell Sci. 23:299–313 [Google Scholar]
  66. Jones MGK, Sadia I, Fosu-Nyarko J. 66.  2016. Belowground defense strategies against migratory nematodes. Signaling and Communications in Plants: Belowground Defence Strategies in Plants K Kazan, C Vos. Dordrecht Neth.: Springer. In press [Google Scholar]
  67. Jordaan EM, De Waele D. 67.  1988. Host status of five weed species and their effects on Pratylenchus zeae infestation of maize. J. Nematol. 20:620 [Google Scholar]
  68. Karim N, Jones JT, Okada H, Kikuchi T. 68.  2009. Analysis of expressed sequence tags and identification of genes encoding cell-wall-degrading enzymes from the fungivorous nematode Aphelenchus avenae. BMC Genom. 10:525 [Google Scholar]
  69. Kikuchi T, Li H, Karim N, Kennedy MW, Moens M, Jones JT. 69.  2009. Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematology 11:355–64 [Google Scholar]
  70. Kumar M, Gantasala NP, Roychowdhury T, Thakur PK, Banakar P. 70.  et al. 2014. De novo transcriptome sequencing and analysis of the cereal cyst nematode. Heterodera avenae. PLOS ONE 9:5e96311 [Google Scholar]
  71. Kyndt T, Fernandez D, Gheysen G. 71.  2014. Plant-parasitic nematode infections in rice: molecular and cellular insights. Annu. Rev. Phytopathol. 52:135–53 [Google Scholar]
  72. Lagudah ES, Moullet O, Appels R. 72.  1997. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659–65 [Google Scholar]
  73. Lee C, Chronis D, Kenning C, Peret B, Hewezi T. 73.  et al. 2011. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol. 155:866–80 [Google Scholar]
  74. Leroy S, Bouamer S, Morand S, Fargette M. 74.  2007. Genome size of plant-parasitic nematodes. Nematology 9:449–50 [Google Scholar]
  75. Lilley CJ, Bakhetia M, Charlton WL, Urwin PE. 75.  2007. Recent progress in the development of RNA interference for plant parasitic nematodes. Mol. Plant Pathol. 8:701–11 [Google Scholar]
  76. Ling HQ, Zhao S, Liu D, Wang J, Sun H. 76.  et al. 2013. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90 [Google Scholar]
  77. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA. 77.  et al. 2007. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol. Rev. 220:60–81 [Google Scholar]
  78. Lu S-W, Chen S, Wang J, Yu H, Chronis D. 78.  et al. 2009. Structural and functional diversity of CLAVATA3/ESR (CLE)-like genes from the potato cyst nematode Globodera rostochiensis. Mol. Plant-Microbe Interact. 22:1128–42 [Google Scholar]
  79. Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K. 79.  et al. 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788 [Google Scholar]
  80. McCann MC, Roberts K. 80.  1994. Changes in cell wall architecture during cell elongation. J. Exp. Bot. 45:1683–91 [Google Scholar]
  81. Mitreva M, Elling AA, Dante M, Kloek AP, Kalyanaraman A. 81.  et al. 2004. A survey of SL1-spliced transcripts from the root-lesion nematode Pratylenchus penetrans. Mol. Genet. Genom. 272:138–48 [Google Scholar]
  82. Miwa H, Kinoshita A, Fukuda H, Sawa S. 82.  2009. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. J. Plant Res. 122:31–39 [Google Scholar]
  83. Montgomery MK, Xu S, Fire A. 83.  1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. PNAS 95:15502–7 [Google Scholar]
  84. Nahar K, Kyndt T, Nzogela YB, Gheysen G. 84.  2012. Abscisic acid interacts antagonistically with classical defense pathways in rice–migratory nematode interaction. New Phytol. 196:901–13 [Google Scholar]
  85. Nicol P, Gill R, Fosu-Nyarko J, Jones MGK. 85.  2012. De novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. Int. J. Parasitol. 42:225–37 [Google Scholar]
  86. Olsen AN, Skriver K. 86.  2003. Ligand mimicry? Plant-parasitic nematode polypeptide with similarity to CLAVATA3. Cell 108:489–500 [Google Scholar]
  87. Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M. 87.  et al. 2008. Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. PNAS 105:14802–7 [Google Scholar]
  88. Qin L, Kudla U, Roze EH, Goverse A, Popeijus H. 88.  et al. 2004. Plant degradation: a nematode expansin acting on plants. Nature 427:30 [Google Scholar]
  89. Ramsay K, Jones MGK, Wang Z. 89.  2006. Laser capture microdissection: a novel approach to microanalysis of plant-microbe interactions. Mol. Plant Pathol. 7:429–35 [Google Scholar]
  90. Ramsay K, Wang Z, Jones MGK. 90.  2004. Using laser capture microdissection to study gene expression in early stages of giant cells induced by root-knot nematodes. Mol. Plant Pathol. 5:587–92 [Google Scholar]
  91. Replogle A, Wang J, Bleckmann A, Hussey RS, Baum TJ. 91.  et al. 2011. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE. Plant J. 65:430–40 [Google Scholar]
  92. Robertson L, Robertson WM, Sobczak M, Helder J, Tetaud E. 92.  et al. 2000. Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Mol. Biochem. Parasitol. 111:41–49 [Google Scholar]
  93. Rosso M, Jones J, Abad P. 93.  2009. RNAi and functional genomics in plant parasitic nematodes. Annu. Rev. Phytopathol. 47:207–32 [Google Scholar]
  94. Saeed I, MacGuidwin A, Rouse D. 94.  1998. Effect of initial nematode population density on the interaction of Pratylenchus penetrans and Verticillium dahliae on “Russet burbank” potato. J. Nematol. 30:100 [Google Scholar]
  95. Sato E, Min YY, Shirakashi T, Wada S, Toyota K. 95.  2007. Detection of the root-lesion nematode, Pratylenchus penetrans (Cobb), in a nematode community using real-time PCR. Jpn. J. Nematol. 37:87–92 [Google Scholar]
  96. Semblat J-P, Rosso M-N, Hussey RS, Abad P, Castagnone-Sereno P. 96.  2001. Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita. Mol. Plant-Microbe Interact. 14:72–79 [Google Scholar]
  97. Siddique S, Grundler FM. 97.  2015. Metabolism in nematode feeding sites. Adv. Bot. Res. 73:119–38 [Google Scholar]
  98. Smant G, Stokkermans JP, Yan Y, De Boer JM, Baum TJ. 98.  et al. 1998. Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. PNAS 95:4906–11 [Google Scholar]
  99. Smiley RW, Gourlie JA, Yan G, Rhinhart KE. 99.  2014. Resistance and tolerance of landrace wheat in fields infested with Pratylenchus neglectus and P. thornei. Plant Dis. 98:797–805 [Google Scholar]
  100. Smiley RW, Machado S. 100.  2009. Pratylenchus neglectus reduces yield of winter wheat in dryland cropping systems. Plant Dis. 93:263–71 [Google Scholar]
  101. Smiley RW, Nicol JM. 101.  2009. Nematodes which challenge global wheat production. Wheat Science and Trade BF Carver 171–87 Hoboken, NJ: Wiley [Google Scholar]
  102. Soumi J, Gheysen G, Subramaniam K. 102.  2012. RNA interference in Pratylenchus coffeae: knockdown of Pc-pat-10 and Pc-unc-87 impedes migration. Mol. Biochem. Parasitol. 186:51–59 [Google Scholar]
  103. Souza DS, de Souza JD Jr, Grossi-de-Sá M, Rocha TL, Fragoso RR. 103.  et al. 2011. Ectopic expression of a Meloidogyne incognita dorsal gland protein in tobacco accelerates the formation of the nematode feeding site. Plant Sci. 180:276–82 [Google Scholar]
  104. Subbotin SA, Ragsdale EJ, Mullens T, Roberts PA, Mundo-Ocampo M, Baldwin JG. 104.  2008. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters. Mol. Phylogenet. Evol. 48:491–505 [Google Scholar]
  105. Tan J-ACH. 105.  2015. Characterising putative parasitism genes for root lesion nematodes and for use in RNAi studies PhD Thesis, Murdoch University, Perth, Western Australia [Google Scholar]
  106. Tan JA, Jones MGK, Fosu-Nyarko J. 106.  2013. Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp. Parasitol. 133:166–78 [Google Scholar]
  107. Tripathi L, Babirye A, Roderick H, Tripathi JN, Changa C. 107.  et al. 2015. Field resistance of transgenic plantain to nematodes has potential for future African food security. Sci. Rep. 5:8127 [Google Scholar]
  108. Uehara T, Kushida A, Momota Y. 108.  2001. PCR based cloning of two β-1,4-endoglucanases from the root-lesion nematode Pratylenchus penetrans. Nematology 3:335–41 [Google Scholar]
  109. Urwin PE, Lilley CJ, Atkinson HJ. 109.  2002. Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol. Plant Microbe 15:747–52 [Google Scholar]
  110. Vanholme B, Haegeman A, Jacob J, Cannoot B, Gheysen G. 110.  2009. Arabinogalactan endo-1,4-β-galactosidase: a putative plant cell wall–degrading enzyme of plant-parasitic nematodes. Nematology 11:739–47 [Google Scholar]
  111. Vanstone VA, Hollaway GJ, Stirling GR. 111.  2008. Managing nematode pests in the southern and western regions of the Australian cereal industry: continuing progress in a challenging environment. Aust. Plant Pathol. 37:220–34 [Google Scholar]
  112. Vieira P, Eves-van den Akker S, Verma R, Wantoch S, Eisenback JD. 112.  et al. 2015. The Pratylenchus penetrans transcriptome as a source for the development of alternative control strategies: mining for putative genes involved in parasitism and evaluation of in planta RNAi. PLOS ONE 10:e0144674 [Google Scholar]
  113. Vieira P, Wantoch S, Lilley CJ, Chitwood DJ, Atkinson HJ, Kamo K. 113.  2015. Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. “Nellie White.”. Transgenic Res. 24:421–32 [Google Scholar]
  114. Walawage SL, Britton MT, Leslie CA, Uratsu SL, Li Y, Dandekar AM. 114.  2013. Stacking resistance to crown gall and nematodes in walnut rootstocks. BMC Genom. 14:668 [Google Scholar]
  115. Wang J, Replogle A, Hussey R, Baum T, Wang X. 115.  et al. 2011. Identification of potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the plant-parasitic nematode Heterodera schachtii. Mol. Plant Pathol. 12:177–86 [Google Scholar]
  116. Wang X, Mitchum MG, Gao B, Li C, Diab H. 116.  et al. 2005. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol. Plant Pathol. 6:187–91 [Google Scholar]
  117. Wang Z, Potter RH, Jones MGK. 117.  2003. Differential display analysis of gene expression in the cytoplasm of giant cells induced in tomato roots by Meloidogyne javanica. Mol. Plant Pathol. 4:361–71 [Google Scholar]
  118. Weerasinghe RR, Bird DM, Allen NS. 118.  2005. Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicus. PNAS 102:3147–52 [Google Scholar]
  119. Williamson VM, Kumar A. 119.  2006. Nematode resistance in plants: the battle underground. Trends Genet. 22:396–403 [Google Scholar]
  120. Wubben MJ, Ganji S, Callahan FE. 120.  2010. Identification and molecular characterization of a β-1,4-endoglucanase gene (Rr-eng-1) from Rotylenchulus reniformis. J. Nematol. 42:342–51 [Google Scholar]
  121. Yadav S, Yadav PK, Yadav D, Yadav KDS. 121.  2009. Pectin lyase: a review. Process Biochem. 44:1–10 [Google Scholar]
  122. Yan G, Smiley RW, Okubara PA. 122.  2011. Detection and quantification of Pratylenchus thornei in DNA extracted from soil using real-time PCR. Phytopathology 102:14–22 [Google Scholar]
  123. Yu Y, Zeng L, Yan Z, Liu T, Sun K. 123.  et al. 2015. Identification of ramie genes in response to Pratylenchus coffeae infection challenge by digital gene expression analysis. Int. J. Mol. Sci. 16:21989–2007 [Google Scholar]
  124. Zhu S, Tang S, Tang Q, Liu T. 124.  2014. Genome-wide transcriptional changes of ramie (Boehmeria nivea L. Gaud) in response to root-lesion nematode infection. Gene 552:67–74 [Google Scholar]
  125. Zunke U. 125.  1990. Observations on the invasion and endoparasitic behavior of the root lesion nematode Pratylenchus penetrans. J. Nematol. 22:309–20 [Google Scholar]
  126. Zunke U. 126.  1990. Ectoparasitic feeding behaviour of the root lesion nematode, Pratylenchus penetrans, on root hairs of different host plants. Rev. Nématol. 13:331–37 [Google Scholar]
/content/journals/10.1146/annurev-phyto-080615-100257
Loading
/content/journals/10.1146/annurev-phyto-080615-100257
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error