The individual sugars found within the major classes of plant cell wall polymers are dietary components of herbivores and are targeted for release in industrial processes for fermentation to liquid biofuels. With a growing understanding of the biosynthesis of the complex cell wall polymers, genetic modification strategies are being developed to target the cell wall to improve the digestibility of forage crops and to render lignocellulose less recalcitrant for bioprocessing. This raises concerns as to whether altering cell wall properties to improve biomass processing traits may inadvertently make plants more susceptible to diseases and pests. Here, we review the impacts of cell wall modification on plant defense, as assessed from studies in model plants utilizing mutants or transgenic modification and in crop plants specifically engineered for improved biomass or bioenergy traits. Such studies reveal that cell wall modifications can indeed have unintended impacts on plant defense, but these are not always negative.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams-Phillips L, Briggs AG, Bent AF. 1.  2010. Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress. Plant Physiol. 152:267–80 [Google Scholar]
  2. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. 2.  2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–80 [Google Scholar]
  3. Ahuja I, Kissen R, Bones AM. 3.  2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17:73–90 [Google Scholar]
  4. Ambavaram MMR, Krishnan A, Trijatmiko KR, Pereira A. 4.  2011. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiol. 155:916–31 [Google Scholar]
  5. Barber MS, McConnell VS, DeCaus BS. 5.  2000. Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry 54:53–56 [Google Scholar]
  6. Bart RS, Chern M, Vega-Sanchez ME, Canlas P, Ronald PC. 6.  2010. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae PLoS Genet. 6:e1001123 [Google Scholar]
  7. Bechinger C, Giebel KF, Schnell M, Leiderer P, Deising HB, Bastmeyer M. 7.  1999. Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–99 [Google Scholar]
  8. Bhuiyan NH, Selvaraj G, Wei Y, King J. 8.  2009. Gene expression profiling and silencing reveal that monolignol biosynthesis plays a critical role in penetration defence in wheat against powdery mildew invasion. J. Exp. Bot. 60:509–21 [Google Scholar]
  9. Bischoff V, Cookson SJ, Wu S, Scheible W-R. 9.  2009. Thaxtomin A affects CESA-complex density, expression of cell wall genes, cell wall composition, and causes ectopic lignification in Arabidopsis thaliana seedlings. J. Exp. Bot. 60:955–65 [Google Scholar]
  10. Boller T, Felix G. 10.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  11. Bonawitz ND, Chapple C. 11.  2010. The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu. Rev. Genet. 44:337–63 [Google Scholar]
  12. Bonawitz ND, Soltau WL, Blatchley MR, Powers BL, Hurlock AK. 12.  et al. 2011. The REF4 and REF1 subunits of the eukaryotic transcriptional coregulatory complex Mediator are required for phenylpropanoid homeostasis in Arabidopsis. J. Biol. Chem. 287:5434–45 [Google Scholar]
  13. Bradley DJ, Kjellbom P, Lamb CJ. 13.  1992. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70:21–30 [Google Scholar]
  14. Brummell DA, Harpster MH. 14.  2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 47:311–40 [Google Scholar]
  15. Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G. 15.  2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 107:9452–57 [Google Scholar]
  16. Buanafina MM, Langdon T, Hauck B, Dalton S, Morris P. 16.  2008. Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnol. J. 6:264–80 [Google Scholar]
  17. Buanafina MM, Langdon T, Hauck B, Dalton SJ, Morris P. 17.  2006. Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl. Biochem. Biotechnol. 130:416–26 [Google Scholar]
  18. Buanafina MM, Langdon T, Dalton S, Morris P. 18.  2012. Expression of a Trichoderma reesei β-1,4-endo-xylanase in tall fescue modifies cell wall structure and digestibility and elicits pathogen defence responses. Planta 236:1757–74 [Google Scholar]
  19. Cantu D, Vicente AR, Labavitch JM, Bennett AB, Powell ALT. 19.  2008. Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends Plant Sci. 13:610–17 [Google Scholar]
  20. Chen F, Dixon RA. 20.  2007. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. 25:759–61 [Google Scholar]
  21. Chen L, Auh CK, Dowling P, Bell J, Chen F. 21.  et al. 2003. Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol. J. 1:437–49 [Google Scholar]
  22. Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC. 22.  2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Microbe Interact. 18:511–20 [Google Scholar]
  23. Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C. 23.  et al. 2012. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc. Natl. Acad. Sci. USA 109:17117–22 [Google Scholar]
  24. Côté F, Hahn MG. 24.  1994. Oligosaccharins: structures and signal transduction. Plant Mol. Biol. 26:1379–411 [Google Scholar]
  25. Cowan MM. 25.  1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12:564–82 [Google Scholar]
  26. Dauwe R, Morreel K, Goeminne G, Gielen G, Rohde A. 26.  et al. 2007. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J. 52:263–85 [Google Scholar]
  27. Delgado-Cerezo M, Sanchez-Rodriguez C, Escudero V, Miedes E, Fernandez PV. 27.  et al. 2012. Arabidopsis heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi. Mol. Plant 5:98–114 [Google Scholar]
  28. Ding S-Y, Liu Y-S, Zeng Y, Himmel ME, Baker JO, Bayer EA. 28.  2012. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility. Science 338:1055–60 [Google Scholar]
  29. Dong X. 29.  2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7:547–52 [Google Scholar]
  30. Ellis C, Karafyllidis I, Wasternack C, Turner JG. 30.  2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–66 [Google Scholar]
  31. Engelhardt S, Lee J, Gabler Y, Kemmerling B, Haapalainen ML. 31.  et al. 2009. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Plant J. 57:706–17 [Google Scholar]
  32. Escamilla-Treviño LL, Shen H, Uppalapati SR, Ray T, Tang Y. 32.  et al. 2010. Switchgrass (Panicum virgatum L.) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol. 185:143–55 [Google Scholar]
  33. Eudes A, George A, Mukerjee P, Kim JS, Pollet B. 33.  et al. 2012. Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol. J. 10:609–20 [Google Scholar]
  34. Eynck C, Seguin-Swartz G, Clarke WE, Parkin IA. 34.  2012. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol. Plant Pathol. 13:887–99 [Google Scholar]
  35. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F. 35.  et al. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32:375–90 [Google Scholar]
  36. Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. 36.  2007. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144:367–79 [Google Scholar]
  37. Ferrari S, Galletti R, Pontiggia D, Manfredini C, Lionetti V. 37.  et al. 2008. Transgenic expression of a fungal endo-polygalacturonase increases plant resistance to pathogens and reduces auxin sensitivity. Plant Physiol. 146:669–81 [Google Scholar]
  38. Fonseca CEL, Viands DR, Hansen JL, Pell AN. 38.  1999. Associations among forage quality traits, vigor, and disease resistance in alfalfa. Crop Sci. 39:1271–76 [Google Scholar]
  39. Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C. 39.  2002. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J. 30:47–59 [Google Scholar]
  40. Fry SC, Aldington S, Hetherington PR, Aitken J. 40.  1993. Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol. 103:1–5 [Google Scholar]
  41. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY. 41.  et al. 2011. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. USA 108:3803–8 [Google Scholar]
  42. Funnell-Harris DL, Pedersen JF, Sattler SE. 42.  2010. Alteration in lignin biosynthesis restricts growth of Fusarium spp. in brown midrib sorghum. Phytopathology 100:671–81 [Google Scholar]
  43. Funnell DL, Pederson JF. 43.  2006. Reaction of sorghum lines genetically modified for reduced lignin content to infection by Fusarium and Alternaria spp. Plant Dis. 90:331–38 [Google Scholar]
  44. Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA. 44.  2011. Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc. Natl. Acad. Sci. USA 108:20814–19 [Google Scholar]
  45. Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA. 45.  2011. Selective lignin down-regulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytol. 190:627–39 [Google Scholar]
  46. Gayoso C, Pomar F, Novo-Uzal E, Merino F, de Ilarduya OM. 46.  2010. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol. 10:232 [Google Scholar]
  47. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L. 47.  et al. 2003. A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol. Biol. 51:973–89 [Google Scholar]
  48. Grabber JH, Hatfield RD, Lu F, Ralph J. 48.  2008. Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–16 [Google Scholar]
  49. Guo D, Chen F, Wheeler J, Winder J, Selman S. 49.  et al. 2001. Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res. 10:457–64 [Google Scholar]
  50. Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, Hopkins DW. 50.  2007. Ecological impacts of trees with modified lignin. Tree Genet. Genomes 3:101–10 [Google Scholar]
  51. Hammerschmidt R, Bonnen AM, Bergstrom GC, Baker KK. 51.  1985. Association of epidermal lignification with nonhost resistance of cucurbits to fungi. Can. J. Bot. 63:2393–98 [Google Scholar]
  52. Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L. 52.  et al. 2007. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903 [Google Scholar]
  53. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR. 53.  et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–7 [Google Scholar]
  54. Huckelhoven R. 54.  2007. Cell wall–associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol. 45:101–27 [Google Scholar]
  55. Jiang L, Yang SL, Xie LF, Puah CS, Zhang XQ. 55.  et al. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–96 [Google Scholar]
  56. Juge N. 56.  2006. Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci. 11:359–67 [Google Scholar]
  57. Jung HJG, Ni W, Chapple CCS, Meyer K. 57.  1999. Impact of lignin composition on cell-wall degradability in an Arabidopsis mutant. J. Sci. Food Agric. 79:922–28 [Google Scholar]
  58. Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F. 58.  2013. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol. J. 11:709–16 [Google Scholar]
  59. Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M. 59.  et al. 1999. The small GTP-binding protein Rac is a regulator of cell death in plants. Proc. Natl. Acad. Sci. USA 96:10922–26 [Google Scholar]
  60. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K. 60.  et al. 2006. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc. Natl. Acad. Sci. USA 103:230–35 [Google Scholar]
  61. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM. 61.  et al. 2009. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–52 [Google Scholar]
  62. Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD. 62.  1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608 [Google Scholar]
  63. King B, Waxman K, Nenni N, Walker L, Bergstrom G, Gibson D. 63.  2011. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol. Biofuels 4:4 [Google Scholar]
  64. King RR, Calhoun LA. 64.  2009. The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 70:833–41 [Google Scholar]
  65. Lamb C, Dixon RA. 65.  1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251–75 [Google Scholar]
  66. Lange BM, Lapierre C, Sandermann H Jr. 66.  1995. Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol. 108:1277–87 [Google Scholar]
  67. Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J. 67.  2001. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–95 [Google Scholar]
  68. Li X, Bonawitz ND, Weng J-K, Chapple C. 68.  2010. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. Plant Cell 22:1620–32 [Google Scholar]
  69. Li X, Weng J-K, Chapple C. 69.  2008. Improvement of biomass through lignin modification. Plant J. 54:569–81 [Google Scholar]
  70. Lieberherr D, Thao NP, Nakashima A, Umemura K, Kawasaki T, Shimamoto K. 70.  2005. A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice. Plant Physiol. 138:1644–52 [Google Scholar]
  71. Limberg G, Korner R, Buchholt HC, Christensen TM, Roepstorff P, Mikkelsen JD. 71.  2000. Analysis of different de-esterification mechanisms for pectin by enzymatic fingerprinting using endopectin lyase and endopolygalacturonase II from A. niger. Carbohydr. Res. 327:293–307 [Google Scholar]
  72. Lionetti V, Francocci F, Ferrari S, Volpi C, Bellincampi D. 72.  et al. 2010. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. USA 107:616–21 [Google Scholar]
  73. Lionetti V, Raiola A, Camardella L, Giovane A, Obel N. 73.  et al. 2007. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol. 143:1871–80 [Google Scholar]
  74. Liu W, Liu J, Triplett L, Leach JE, Wang G-L. 74.  2014. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 52213–41
  75. Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. 75.  2010. Callose deposition: a multifaceted plant defense response. Mol. Plant-Microbe Interact. 24:183–93 [Google Scholar]
  76. Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ. 76.  1994. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc. Natl. Acad. Sci. USA 91:7802–6 [Google Scholar]
  77. Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S. 77.  et al. 2011. Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol. 155:1068–78 [Google Scholar]
  78. Mansfield SD, Kang KY, Chapple C. 78.  2012. Designed for deconstruction: poplar trees altered in cell wall lignification improve the efficacy of bioethanol production. New Phytol. 194:91–101 [Google Scholar]
  79. Mansfield SD, Kim H, Lu F, Ralph J. 79.  2012. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7:1579–89 [Google Scholar]
  80. Mauch-Mani B, Slusarenko AJ. 80.  1996. Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203–12 [Google Scholar]
  81. Menden B, Kohlhoff M, Moerschbacher BM. 81.  2007. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochemistry 68:513–20 [Google Scholar]
  82. Mertens DR, Riday H, Reisen P, Temple S, McCaslin M. 82.  2008. In vivo digestibility of lignin downregulated alfalfa. Proc. North Am. Alfalfa Improv. Conf., 41st, Dallas June 4–8 St. Paul, MN: N. Am. Alfalfa Improv. Congr http://www.naaic.org/Meetings/National/2008meeting/Mertens.pdf [Google Scholar]
  83. Mir Derikvand M, Sierra JB, Ruel K, Pollet B, Do CT. 83.  et al. 2008. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 227:943–56 [Google Scholar]
  84. Moeder W, Yoshioka K, Klessig DF. 84.  2005. Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol. Plant-Microbe Interact. 18:116–24 [Google Scholar]
  85. Moore KJ, Jung H-JG. 85.  2001. Lignin and fiber digestion. J. Range Manag. 54:420–30 [Google Scholar]
  86. Morreel K, Ralph J, Lu F, Goeminne G, Busson R. 86.  et al. 2004. Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols. Plant Physiol. 136:4023–36 [Google Scholar]
  87. Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP. 87.  et al. 2010. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc. Natl. Acad. Sci. USA 107:17409–14 [Google Scholar]
  88. Nakashima J, Chen F, Jackson L, Shadle G, Dixon R. 88.  2008. Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa L.): effects on lignin composition in specific cell types. New Phytol. 179:738–50 [Google Scholar]
  89. Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. 89.  2010. Genome-wide analysis of phenylpropanoid defence pathways. Mol. Plant. Pathol. 11:829–46 [Google Scholar]
  90. O'Brien J, Daudi A, Butt V, Bolwell GP. 90.  2012. Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–79 [Google Scholar]
  91. Ono E, Wong HL, Kawasaki T, Hasegawa M, Kodama O, Shimamoto K. 91.  2001. Essential role of the small GTPase Rac in disease resistance of rice. Proc. Natl. Acad. Sci. USA 98:759–64 [Google Scholar]
  92. Osorio S, Castillejo C, Quesada MA, Medina-Escobar N, Brownsey GJ. 92.  et al. 2008. Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence responses in wild strawberry (Fragaria vesca). Plant J. 54:43–55 [Google Scholar]
  93. Park J, Gu Y, Lee Y, Yang Z. 93.  2004. Phosphatidic acid induces leaf cell death in Arabidopsis by activating the Rho-related small G protein GTPase-mediated pathway of reactive oxygen species generation. Plant Physiol. 134:129–36 [Google Scholar]
  94. Pattathil S, Avci U, Miller JS, Hahn MG. 94.  2012. Immunological approaches to plant cell wall and biomass characterization: glycome profiling. Meth. Mol. Biol. 908:61–72 [Google Scholar]
  95. Pedersen JF, Vogel KP, Funnell DL. 95.  2005. Impact of reduced lignin on plant fitness. Crop Sci. 45:812–19 [Google Scholar]
  96. Pelloux J, Rusterucci C, Mellerowicz EJ. 96.  2007. New insights into pectin methylesterase structure and function. Trends Plant Sci. 12:267–77 [Google Scholar]
  97. Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C. 97.  et al. 2002. Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol. 20:607–12 [Google Scholar]
  98. Pilling J, Willmitzer L, Bucking H, Fisahn J. 98.  2004. Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219:32–40 [Google Scholar]
  99. Pogorelko G, Fursova O, Lin M, Pyle E, Jass J, Zabotina OA. 99.  2011. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast. Plant Mol. Biol. 77:433–45 [Google Scholar]
  100. Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi M. 100.  et al. 2013. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens. Plant Physiol. 162:9–23 [Google Scholar]
  101. Pomar F, Novo M, Bernal MA, Merino F, Barceló AR. 101.  2004. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol. 163:111–23 [Google Scholar]
  102. Quentin M, Allasia V, Pegard A, Allais F, Ducrot PH. 102.  et al. 2009. Imbalanced lignin biosynthesis promotes the sexual reproduction of homothallic oomycete pathogens. PLoS Pathog. 5:e1000264 [Google Scholar]
  103. Raiola A, Camardella L, Giovane A, Mattei B, De Lorenzo G. 103.  et al. 2004. Two Arabidopsis thaliana genes encode functional pectin methylesterase inhibitors. FEBS Lett. 557:199–203 [Google Scholar]
  104. Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ. 104.  et al. 2011. Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol. Plant-Microbe Interact. 24:432–40 [Google Scholar]
  105. Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. 105.  2005. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. USA 102:16573–78 [Google Scholar]
  106. Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM. 106.  2011. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PLoS ONE 6:e16416 [Google Scholar]
  107. Saballos A, Vermerris W, Rivera L, Ejeta G. 107.  2008. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum [Sorghum bicolor (L.) Moench]. BioEnergy Res. 1:193–204 [Google Scholar]
  108. Sattler SE, Funnell-Harris DL. 108.  2013. Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?. Front. Plant Sci. 4:70 [Google Scholar]
  109. Scheller HV, Ulvskov P. 109.  2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–89 [Google Scholar]
  110. Shadle G, Chen F, Reddy MSS, Jackson L, Nakashima J, Dixon RA. 110.  2007. Down-regulation of hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase in transgenic alfalfa impacts lignification, development and forage quality. Phytochemistry 68:1521–29 [Google Scholar]
  111. Shen H, He X, Poovaiah CR, Wuddineh WA, Ma J. 111.  et al. 2011. Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol. 193:121–36 [Google Scholar]
  112. Shen H, Poovaiah CR, Ziebell A, Tschaplinski TJ, Pattathil S. 112.  et al. 2013. Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol. Biofuels 6:71 [Google Scholar]
  113. Somerville C. 113.  2006. Cellulose synthesis in higher plants. Annu. Rev. Cell Dev. Biol. 22:53–78 [Google Scholar]
  114. Stewart A, Cromey M. 114.  2011. Identifying disease threats and management practices for bio-energy crops. Curr. Opin. Environ. Sustain. 3:75–80 [Google Scholar]
  115. Sticklen M. 115.  2006. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol. 17:315–19 [Google Scholar]
  116. Suzuki S, Umezawa T. 116.  2007. Biosynthesis of ligans and norlignans. J. Wood Sci. 53:273–84 [Google Scholar]
  117. Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK. 117.  2011. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Mol. Plant Pathol. 12:855–65 [Google Scholar]
  118. Talbot NJ. 118.  2003. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57:177–202 [Google Scholar]
  119. Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR. 119.  2003. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl. Acad. Sci. USA 100:1450–55 [Google Scholar]
  120. Tronchet M, Balague C, Kroj T, Jouanin L, Roby D. 120.  2010. Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 11:83–92 [Google Scholar]
  121. Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. 121.  2006. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol. 140:210–20 [Google Scholar]
  122. Tschaplinski TJ, Standaert RF, Engle NL, Martin MZ, Sangha AK. 122.  et al. 2013. Down-regulation of the caffeic acid O-methyltransferase gene in switchgrass reveals a novel monolignol analog. Biotechnol. Biofuels 5:71 [Google Scholar]
  123. Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M. 123.  et al. 2010. Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 22:3357–73 [Google Scholar]
  124. Underwood W. 124.  2012. The plant cell wall: a dynamic barrier against pathogen invasion. Front. Plant Sci. 3:85 [Google Scholar]
  125. Uppalapati S, Serba D, Ishiga Y, Szabo L, Mittal S. 125.  et al. 2013. Characterization of the rust fungus, Puccinia emaculata, and evaluation of genetic variability for rust resistance in switchgrass populations. BioEnergy Res. 6:458–68 [Google Scholar]
  126. Vallarino JG, Osorio S. 126.  2012. Signaling role of oligogalacturonides derived during cell wall degradation. Plant Signal. Behav. 7:1477–83 [Google Scholar]
  127. Van Acker R, Vanholme R, Storme V, Moetimer JC, Dupree P, Boerjan W. 127.  2013. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol. Biofuels 6:46 [Google Scholar]
  128. van Wees SC, Chang HS, Zhu T, Glazebrook J. 128.  2003. Characterization of the early response of Arabidopsis to Alternaria brassicicola infection using expression profiling. Plant Physiol. 132:606–17 [Google Scholar]
  129. Vance CP, Kirk TK, Sherwood RT. 129.  1980. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18:259–88 [Google Scholar]
  130. Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH. 130.  et al. 2012. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–29 [Google Scholar]
  131. Vega-Sanchez ME, Verhertbruggen Y, Christensen U, Chen X, Sharma V. 131.  et al. 2012. Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol. 159:56–69 [Google Scholar]
  132. Vogel JP, Raab TK, Schiff C, Somerville SC. 132.  2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–106 [Google Scholar]
  133. Vogel JP, Raab TK, Somerville CR, Somerville SC. 133.  2004. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J. 40:968–78 [Google Scholar]
  134. Volpi C, Janni M, Lionetti V, Bellincampi D, Favaron F, D'Ovidio R. 134.  2011. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. Mol. Plant-Microbe Interact. 24:1012–19 [Google Scholar]
  135. Vorwerk S, Somerville S, Somerville C. 135.  2004. The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci. 9:203–9 [Google Scholar]
  136. Wuyts N, Lognay G, Swennen R, De Waele D. 136.  2006. Nematode infection and reproduction in transgenic and mutant Arabidopsis and tobacco with an altered phenylpropanoid metabolism. J. Exp. Bot. 57:2825–35 [Google Scholar]
  137. Yang F, Mitra P, Zhang L, Prak L, Vehertbruggen Y. 137.  et al. 2013. Engineering secondary cell wall formation in plants. Plant Biotechnol. J. 11:325–35 [Google Scholar]
  138. Zhang K, Bhuiya MW, Pazo JR, Miao Y, Kim H. 138.  et al. 2012. An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24:3135–52 [Google Scholar]
  139. Zhao Q, Dixon RA. 139.  2011. Transcriptional networks for lignin biosynthesis: more complex than we thought?. Trends Plant Sci. 16:227–33 [Google Scholar]
  140. Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY. 140.  et al. 2010. An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula. Plant J. 63:100–14 [Google Scholar]
  141. Zhao Q, Tobamitsu Y, Zhou R, Pattathil S, Gallego-Giraldo L. 141.  et al. 2013. Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and temperature-sensitive growth reduction in Medicago truncatula. Proc. Natl. Acad. Sci. USA 110:13660–65 [Google Scholar]
  142. Zhou R, Nakashima J, Jackson L, Shadle G, Temple S. 142.  et al. 2010. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc. Natl. Acad. Sci. USA 107:17803–8 [Google Scholar]
  143. Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S. 143.  2004. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J. 40:633–46 [Google Scholar]
  144. Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD. 144.  et al. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–67 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error