1932

Abstract

Since the early 1980s, various strains of the gram-negative bacterial pathogen have been used as models for understanding plant-bacterial interactions. In 1991, a pathovar () strain, DC3000, was reported to infect not only its natural host tomato but also in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082712-102321
2013-08-04
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/51/1/annurev-phyto-082712-102321.html?itemId=/content/journals/10.1146/annurev-phyto-082712-102321&mimeType=html&fmt=ahah

Literature Cited

  1. Abramovitch RB, Anderson JC, Martin GB. 1.  2006. Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Biol. 7:601–11 [Google Scholar]
  2. Alarcon-Chaidez FJ, Penaloza-Vazquez A, Ullrich M, Bender CL. 2.  1999. Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae. Plasmid 42:210–20 [Google Scholar]
  3. Alfano JR, Charkowski AO, Deng WL, Badel JL, Petnicki-Ocwieja T. 3.  et al. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97:4856–61 [Google Scholar]
  4. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ. 4.  et al. 2004. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–79 [Google Scholar]
  5. Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH. 5.  et al. 2005. The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J. 24:2579–89 [Google Scholar]
  6. Armstead I, Donnison I, Aubry S, Harper J, Hortensteiner S. 6.  et al. 2007. Cross-species identification of Mendel's I locus. Science 315:73 [Google Scholar]
  7. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL. 7.  et al. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–83 [Google Scholar]
  8. Axtell MJ, Staskawicz BJ. 8.  2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112:369–77 [Google Scholar]
  9. Baltrus DA, Nishimura MT, Romanchuk A, Chang JH, Mukhtar MS. 9.  et al. 2011. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 7:e1002132 [Google Scholar]
  10. Beattie GA, Lindow SE. 10.  1995. The secret life of foliar bacterial pathogens on leaves. Annu. Rev. Phytopathol. 33:145–72 [Google Scholar]
  11. Belkhadir Y, Nimchuk Z, Hubert DA, Mackey D, Dangl JL. 11.  2004. Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–35 [Google Scholar]
  12. Bender CL, Alarcon-Chaidez F, Gross DC. 12.  1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266–92 [Google Scholar]
  13. Berti AD, Greve NJ, Christensen QH, Thomas MG. 13.  2007. Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J. Bacteriol. 189:6312–23 [Google Scholar]
  14. Bhattacharjee S, Halane MK, Kim SH, Gassmann W. 14.  2011. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators. Science 334:1405–8 [Google Scholar]
  15. Block A, Alfano JR. 15.  2011. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys?. Curr. Opin. Microbiol. 14:39–46 [Google Scholar]
  16. Block A, Guo M, Li G, Elowsky C, Clemente TE, Alfano JR. 16.  2010. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell Microbiol. 12:318–30 [Google Scholar]
  17. Block A, Schmelz E, Jones JB, Klee HJ. 17.  2005. Coronatine and salicylic acid: the battle between Arabidopsis and Pseudomonas for phytohormone control. Mol. Plant Pathol. 6:79–83 [Google Scholar]
  18. Boch J, Bonas U. 18.  2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48:419–36 [Google Scholar]
  19. Boller T, Felix G. 19.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  20. Boller T, He SY. 20.  2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–44 [Google Scholar]
  21. Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L. 21.  et al. 2010. Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–22 [Google Scholar]
  22. Boureau T, Routtu J, Roine E, Taira S, Romantschuk M. 22.  2002. Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves. Mol. Plant Pathol. 3:451–60 [Google Scholar]
  23. Bronstein PA, Marrichi M, Cartinhour S, Schneider DJ, DeLisa MP. 23.  2005. Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J. Bacteriol. 187:8450–61 [Google Scholar]
  24. Brooks DM, Bender CL, Kunkel BN. 24.  2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid–dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 6:629–39 [Google Scholar]
  25. Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A. 25.  et al. 2004. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 17:162–74 [Google Scholar]
  26. Browse J. 26.  2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183–205 [Google Scholar]
  27. Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT. 27.  et al. 2003. The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 100:10181–86 [Google Scholar]
  28. Buttner D, He SY. 28.  2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150:1656–64 [Google Scholar]
  29. Caldelari I, Mann S, Crooks C, Palmer T. 29.  2006. The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence. Mol. Plant-Microbe Interact. 19:200–12 [Google Scholar]
  30. Chen Z, Agnew JL, Cohen JD, He P, Shan L. 30.  et al. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proc. Natl. Acad. Sci. USA 104:20131–36 [Google Scholar]
  31. Cheng W, Munkvold KR, Gao H, Mathieu J, Schwizer S. 31.  et al. 2011. Structural analysis of Pseudomonas syringae AvrPtoB bound to host BAK1 reveals two similar kinase-interacting domains in a type III effector. Cell Host Microbe 10:616–26 [Google Scholar]
  32. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nurnberger T. 32.  et al. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500 [Google Scholar]
  33. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM. 33.  et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–71 [Google Scholar]
  34. Chisholm ST, Coaker G, Day B, Staskawicz BJ. 34.  2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–14 [Google Scholar]
  35. Chung EH, da Cunha L, Wu AJ, Gao Z, Cherkis K. 35.  et al. 2011. Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe 9:125–36 [Google Scholar]
  36. Cui H, Wang Y, Xue L, Chu J, Yan C. 36.  et al. 2010. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe 7:164–75 [Google Scholar]
  37. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL. 37.  et al. 2005. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc. Natl. Acad. Sci. USA 102:1791–96 [Google Scholar]
  38. Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. 38.  2011. Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas syringae. Proc. Natl. Acad. Sci. USA 108:2975–80 [Google Scholar]
  39. Cunnac S, Lindeberg M, Collmer A. 39.  2009. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. Microbiol. 12:53–60 [Google Scholar]
  40. Cuppels DA. 40.  1986. Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 51:323–27 [Google Scholar]
  41. Deslandes L, Rivas S. 41.  2012. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644–55 [Google Scholar]
  42. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R. 42.  et al. 2002. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32:457–66 [Google Scholar]
  43. Dharmasiri N, Dharmasiri S, Estelle M. 43.  2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441–45 [Google Scholar]
  44. Ding X, Cao Y, Huang L, Zhao J, Xu C. 44.  et al. 2008. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20:228–40 [Google Scholar]
  45. Dou D, Zhou JM. 45.  2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12:484–95 [Google Scholar]
  46. Durrant WE, Dong X. 46.  2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185–209 [Google Scholar]
  47. Feil H, Feil WS, Chain P, Larimer F, DiBartolo G. 47.  et al. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 102:11064–69 [Google Scholar]
  48. Feng F, Zhou JM. 48.  2012. Plant-bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 15:469–76 [Google Scholar]
  49. Feys B, Benedetti CE, Penfold CN, Turner JG. 49.  1994. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–59 [Google Scholar]
  50. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A. 50.  et al. 2009. (+)-7-iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5:344–50 [Google Scholar]
  51. Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE. 51.  et al. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447:284–88 [Google Scholar]
  52. Galan JE, Collmer A. 52.  1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–28 [Google Scholar]
  53. Gao M, Liu J, Bi D, Zhang Z, Cheng F. 53.  et al. 2008. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 18:1190–98 [Google Scholar]
  54. Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PA. 54.  1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int. J. Syst. Bacteriol. 49:2469–78 [Google Scholar]
  55. Gassmann W, Hinsch ME, Staskawicz BJ. 55.  1999. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 20:265–77 [Google Scholar]
  56. Geng X, Cheng J, Gangadharan A, Mackey D. 56.  2012. The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 24:4763–74 [Google Scholar]
  57. Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP. 57.  2009. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 19:423–29 [Google Scholar]
  58. Gizjen M. 57a.  2008. Diane Cuppels and the history of Pseudomonas syringae pv. tomato DC3000. IS-MPMI Report. 1:4–5 http://www.ismpminet.org/newsletter/pdf/0801.pdf [Google Scholar]
  59. Glazebrook J. 58.  2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205–27 [Google Scholar]
  60. Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M. 59.  et al. 1998. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant-Microbe Interact. 11:156–62 [Google Scholar]
  61. Gohre V, Spallek T, Haweker H, Mersmann S, Mentzel T. 60.  et al. 2008. Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr. Biol. 18:1824–32 [Google Scholar]
  62. Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL. 61.  2006. Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu. Rev. Microbiol. 60:425–49 [Google Scholar]
  63. Greulichi F, Yoshihara T, Ichihara A. 62.  1995. Coronatine, a bacterial phytotoxin, acts as a stereospecific analog of jasmonate type signals in tomato cells and potato tubes. J. Plant Physiol. 147:359–66 [Google Scholar]
  64. Heese A, Hann DR, Gimenez-Ibanez S, Jones AM, He K. 63.  et al. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104:12217–22 [Google Scholar]
  65. Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE. 64.  2011. Arabidopsis EDS1 connects pathogen effector recognition to cell compartment–specific immune responses. Science 334:1401–4 [Google Scholar]
  66. Hirano SS, Upper CD. 65.  2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae: a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:624–53 [Google Scholar]
  67. Huang J. 66.  1986. Ultrastructure of bacterial penetration in plants. Annu. Rev. Phytopathol. 24:141–57 [Google Scholar]
  68. Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K. 67.  2006. MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J. Biol. Chem. 281:36969–76 [Google Scholar]
  69. Ishiga Y, Ishiga T, Wangdi T, Mysore KS, Uppalapati SR. 68.  2012. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. Mol. Plant-Microbe Interact. 25:294–306 [Google Scholar]
  70. Jelenska J, van Hal JA, Greenberg JT. 69.  2010. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. Proc. Natl. Acad. Sci. USA 107:13177–82 [Google Scholar]
  71. Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. 70.  2007. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol. 17:499–508 [Google Scholar]
  72. Jeong BR, Lin Y, Joe A, Guo M, Korneli C. 71.  et al. 2011. Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity. J. Biol. Chem. 286:43272–81 [Google Scholar]
  73. Joardar V, Lindeberg M, Jackson RW, Selengut J, Dodson R. 72.  et al. 2005. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J. Bacteriol. 187:6488–98 [Google Scholar]
  74. Jones AM, Wildermuth MC. 73.  2011. The phytopathogen Pseudomonas syringae pv. tomato DC3000 has three high-affinity iron-scavenging systems functional under iron limitation conditions but dispensable for pathogenesis. J. Bacteriol. 193:2767–75 [Google Scholar]
  75. Jones JD, Dangl JL. 74.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  76. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA. 75.  2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA 105:7100–5 [Google Scholar]
  77. Kelley WL. 76.  1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23:222–27 [Google Scholar]
  78. Kepinski S, Leyser O. 77.  2004. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 101:12381–86 [Google Scholar]
  79. Kepinski S, Leyser O. 78.  2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–51 [Google Scholar]
  80. Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S. 79.  et al. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–59 [Google Scholar]
  81. Kim SH, Kwon SI, Saha D, Anyanwu NC, Gassmann W. 80.  2009. Resistance to the Pseudomonas syringae effector HopA1 is governed by the TIR-NBS-LRR protein RPS6 and is enhanced by mutations in SRFR1. Plant Physiol. 150:1723–32 [Google Scholar]
  82. Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J. 81.  et al. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26:509–22 [Google Scholar]
  83. Koda Y, Kikuta Y, Kitahara T, Nishi T, Mori K. 82.  1992. Comparisons of various biological activities of stereoisomers of methyl jasmonate. Phytochemistry 31:1111–14 [Google Scholar]
  84. Krumm T, Bandemer K, Boland W. 83.  1995. Induction of volatile biosynthesis in the lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway. FEBS Lett. 377:523–29 [Google Scholar]
  85. Kvitko BH, Park DH, Velasquez AC, Wei CF, Russell AB. 84.  et al. 2009. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathog. 5:e1000388 [Google Scholar]
  86. Laurie-Berry N, Joardar V, Street IH, Kunkel BN. 85.  2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid–dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19:789–800 [Google Scholar]
  87. Lee AH, Hurley B, Felsensteiner C, Yea C, Ckurshumova W. 86.  et al. 2012. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLoS Pathog. 8:e1002523 [Google Scholar]
  88. Lewis JD, Guttman DS, Desveaux D. 87.  2009. The targeting of plant cellular systems by injected type III effector proteins. Semin. Cell Dev. Biol. 20:1055–63 [Google Scholar]
  89. Lewis JD, Wan J, Ford R, Gong Y, Fung P. 88.  et al. 2012. Quantitative interactor screening with next-generation sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genomics 13:8 [Google Scholar]
  90. Li J, Brader G, Kariola T, Palva ET. 89.  2006. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J. 46:477–91 [Google Scholar]
  91. Lim MT, Kunkel BN. 90.  2004. The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. Plant J. 40:790–98 [Google Scholar]
  92. Lindeberg M, Cartinhour S, Myers CR, Schechter LM, Schneider DJ, Collmer A. 91.  2006. Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol. Plant-Microbe Interact. 19:1151–58 [Google Scholar]
  93. Lindeberg M, Myers CR, Collmer A, Schneider DJ. 92.  2008. Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol. Plant-Microbe Interact. 21:685–700 [Google Scholar]
  94. Lindow SE, Brandl MT. 93.  2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69:1875–83 [Google Scholar]
  95. Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. 94.  2009. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol. 7:e1000139 [Google Scholar]
  96. Liu J, Elmore JM, Lin ZJ, Coaker G. 95.  2011. A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9:137–46 [Google Scholar]
  97. Lopez-Solanilla E, Bronstein PA, Schneider AR, Collmer A. 96.  2004. HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol. Microbiol. 54:353–65 [Google Scholar]
  98. Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. 97.  2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA 107:496–501 [Google Scholar]
  99. Luo Y, Caldwell KS, Wroblewski T, Wright ME, Michelmore RW. 98.  2009. Proteolysis of a negative regulator of innate immunity is dependent on resistance genes in tomato and Nicotiana benthamiana and induced by multiple bacterial effectors. Plant Cell 21:2458–72 [Google Scholar]
  100. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 99.  2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–89 [Google Scholar]
  101. Mackey D, Holt BF 3rd, Wiig A, Dangl JL. 100.  2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–54 [Google Scholar]
  102. Maekawa T, Kufer TA, Schulze-Lefert P. 101.  2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12:817–26 [Google Scholar]
  103. Mecey C, Hauck P, Trapp M, Pumplin N, Plovanich A. 102.  et al. 2011. A critical role of STAYGREEN/Mendel's I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. Plant Physiol. 157:1965–74 [Google Scholar]
  104. Melotto M, Mecey C, Niu Y, Chung HS, Katsir L. 103.  et al. 2008. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55:979–88 [Google Scholar]
  105. Melotto M, Underwood W, He SY. 104.  2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46:101–22 [Google Scholar]
  106. Melotto M, Underwood W, Koczan J, Nomura K, He SY. 105.  2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–80 [Google Scholar]
  107. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K. 106.  et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:19613–18 [Google Scholar]
  108. Mudgett MB. 107.  2005. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56:509–31 [Google Scholar]
  109. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J. 108.  et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 [Google Scholar]
  110. Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H. 109.  2006. A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J. Biol. Chem. 281:38697–704 [Google Scholar]
  111. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N. 110.  et al. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–39 [Google Scholar]
  112. Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY. 111.  2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–23 [Google Scholar]
  113. Nomura K, Mecey C, Lee YN, Imboden LA, Chang JH, He SY. 112.  2011. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. Proc. Natl. Acad. Sci. USA 108:10774–79 [Google Scholar]
  114. Nomura K, Melotto M, He SY. 113.  2005. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr. Opin. Plant Biol. 8:361–68 [Google Scholar]
  115. Nuhse TS, Peck SC, Hirt H, Boller T. 114.  2000. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J. Biol. Chem. 275:7521–26 [Google Scholar]
  116. O'Brien HE, Thakur S, Guttman DS. 115.  2011. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. Annu. Rev. Phytopathol. 49:269–89 [Google Scholar]
  117. Palmer DA, Bender CL. 116.  1995. Ultrastructure of tomato leaf tissue treated with the pseudomonad phytotoxin coronatine and comparison with methyl jasmonate. Mol. Plant-Microbe Interact. 8:683–92 [Google Scholar]
  118. Palmer T, Berks BC. 117.  2012. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol. 10:483–96 [Google Scholar]
  119. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W. 118.  et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–91 [Google Scholar]
  120. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U. 119.  et al. 2000. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–20 [Google Scholar]
  121. Qiu JL, Zhou L, Yun BW, Nielsen HB, Fiil BK. 120.  et al. 2008. Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol. 148:212–22 [Google Scholar]
  122. Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL. 121.  2009. De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res. 19:294–305 [Google Scholar]
  123. Robert-Seilaniantz A, Grant M, Jones JD. 122.  2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317–43 [Google Scholar]
  124. Rodriguez-Herva JJ, Gonzalez-Melendi P, Cuartas-Lanza R, Antunez-Lamas M, Rio-Alvarez I. 123.  et al. 2012. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol. 14:669–81 [Google Scholar]
  125. Rosebrock TR, Zeng L, Brady JJ, Abramovitch RB, Xiao F, Martin GB. 124.  2007. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 448:370–74 [Google Scholar]
  126. Rouse DI, Nordheim EV, Hirano SS, Upper CD. 125.  1985. A model relating the probability of foliar disease incidence to the population frequencies of bacterial plant pathogens. Phytopathology 75:505–9 [Google Scholar]
  127. Schwessinger B, Ronald PC. 126.  2012. Plant innate immunity: perception of conserved microbial signatures. Annu. Rev. Plant Biol. 63:451–82 [Google Scholar]
  128. Shan L, He P, Li J, Heese A, Peck SC. 127.  et al. 2008. Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity. Cell Host Microbe 4:17–27 [Google Scholar]
  129. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G. 128.  et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–5 [Google Scholar]
  130. Sohn KH, Hughes RK, Piquerez SJ, Jones JD, Banfield MJ. 129.  2012. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Proc. Natl. Acad. Sci. USA 109:16371–76 [Google Scholar]
  131. Spoel SH, Dong X. 130.  2012. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 12:89–100 [Google Scholar]
  132. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA. 131.  et al. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–70 [Google Scholar]
  133. Sreedharan A, Penaloza-Vazquez A, Kunkel BN, Bender CL. 132.  2006. CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 19:768–79 [Google Scholar]
  134. Staswick PE, Tiryaki I. 133.  2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–27 [Google Scholar]
  135. Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H, Su SH. 134.  et al. 2007. MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol. 143:661–69 [Google Scholar]
  136. Taguchi F, Suzuki T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 135.  2010. The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J. Bacteriol. 192:117–26 [Google Scholar]
  137. Takken FL, Goverse A. 136.  2012. How to build a pathogen detector: structural basis of NB-LRR function. Curr. Opin. Plant Biol. 15:375–84 [Google Scholar]
  138. Tamogami S, Kodama O. 137.  2000. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 54:689–94 [Google Scholar]
  139. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV. 138.  et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45 [Google Scholar]
  140. Tang X, Xiao Y, Zhou JM. 139.  2006. Regulation of the type III secretion system in phytopathogenic bacteria. Mol. Plant-Microbe Interact. 19:1159–66 [Google Scholar]
  141. Thilmony R, Underwood W, He SY. 140.  2006. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J. 46:34–53 [Google Scholar]
  142. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A. 141.  et al. 2007. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–65 [Google Scholar]
  143. Turner JG, Ellis C, Devoto A. 142.  2002. The jasmonate signal pathway. Plant Cell 14:Suppl.S153–64 [Google Scholar]
  144. Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE. 143.  et al. 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42:201–17 [Google Scholar]
  145. Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A. 144.  et al. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol. Plant-Microbe Interact. 20:955–65 [Google Scholar]
  146. Vlot AC, Dempsey DA, Klessig DF. 145.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  147. Wan J, Zhang XC, Neece D, Ramonell KM, Clough S. 146.  et al. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–81 [Google Scholar]
  148. Wang Y, Li J, Hou S, Wang X, Li Y. 147.  et al. 2010. A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell 22:2033–44 [Google Scholar]
  149. Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR. 148.  et al. 2007. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J. 51:32–46 [Google Scholar]
  150. Weiler EW, Kutchan TM, Gorba T, Brodschelm W, Niesel U, Bublitz F. 149.  1994. The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett. 345:9–13 [Google Scholar]
  151. Whalen MC, Innes RW, Bent AF, Staskawicz BJ. 150.  1991. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59 [Google Scholar]
  152. Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D. 151.  et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA 108:19824–29 [Google Scholar]
  153. Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D. 152.  2010. The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc. Natl. Acad. Sci. USA 107:2349–54 [Google Scholar]
  154. Wu S, Lu D, Kabbage M, Wei HL, Swingle B. 153.  et al. 2011. Bacterial effector HopF2 suppresses Arabidopsis innate immunity at the plasma membrane. Mol. Plant-Microbe Interact. 24:585–93 [Google Scholar]
  155. Xiang T, Zong N, Zhang J, Chen J, Chen M, Zhou JM. 154.  2011. BAK1 is not a target of the Pseudomonas syringae effector AvrPto. Mol. Plant-Microbe Interact. 24:100–7 [Google Scholar]
  156. Xiang T, Zong N, Zou Y, Wu Y, Zhang J. 155.  et al. 2008. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr. Biol. 18:74–80 [Google Scholar]
  157. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. 156.  1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–94 [Google Scholar]
  158. Xu L, Liu F, Lechner E, Genschik P, Crosby WL. 157.  et al. 2002. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–35 [Google Scholar]
  159. Zeng L, Velasquez AC, Munkvold KR, Zhang J, Martin GB. 158.  2012. A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant J. 69:92–103 [Google Scholar]
  160. Zeng W, Brutus A, Kremer JM, Withers JC, Gao X. 159.  et al. 2011. A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathog. 7:e1002291 [Google Scholar]
  161. Zeng W, He SY. 160.  2010. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Plant Physiol. 153:1188–98 [Google Scholar]
  162. Zhang J, Li W, Xiang T, Liu Z, Laluk K. 161.  et al. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301 [Google Scholar]
  163. Zhang J, Shao F, Li Y, Cui H, Chen L. 162.  et al. 2007. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–85 [Google Scholar]
  164. Zhang Z, Wu Y, Gao M, Zhang J, Kong Q. 163.  et al. 2012. Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11:253–63 [Google Scholar]
  165. Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA. 164.  2003. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J. 36:485–99 [Google Scholar]
  166. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ. 165.  et al. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–96 [Google Scholar]
  167. Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, Ma W. 166.  2011. Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe 9:177–86 [Google Scholar]
/content/journals/10.1146/annurev-phyto-082712-102321
Loading
/content/journals/10.1146/annurev-phyto-082712-102321
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error