1932

Abstract

A research career investigating epidemiological and evolutionary patterns in both natural and crop host–pathogen systems emphasizes the need for flexibility in thinking and a willingness to adopt ideas from a wide diversity of subdisciplines. Here, I reflect on the pivotal issues, research areas, and interactions, including the role of science management, that shaped my career in the hope of demonstrating that career paths and collaborations in science can be as diverse and unpredictable as the natural world in which we study our organisms of choice.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-095938
2019-08-25
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-095938.html?itemId=/content/journals/10.1146/annurev-phyto-082718-095938&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams D. 1979. The Hitchhiker's Guide to the Galaxy London: Arthur Baker
  2. 2. 
    Alexander HM, Price S, Houser R, Finch D, Tourtellot M 2007. Is there reduction in disease and pre-dispersal seed predation at the border of a host plant's range? Field and herbarium studies of Carex blanda. J. Ecol 95:446–57
    [Google Scholar]
  3. 3. 
    Allan E, van Ruijven J, Crawley MJ 2010. Foliar fungal pathogens and grassland biodiversity. Ecology 91:2572–82
    [Google Scholar]
  4. 4. 
    Anderson RM, May RM. 1982. Coevolution of hosts and parasites. Parasitology 85:411–26
    [Google Scholar]
  5. 5. 
    Antonovics J. 2004. Long-term study of a plant-pathogen metapopulation. Metapopulation Ecology, Genetics, and Evolution I Hanski, OE Gaggiotti 471–88 San Diego, CA: Elsevier Acad.
    [Google Scholar]
  6. 6. 
    Antonovics J, Hood ME, Thrall PH, Abrams JY, Duthie GM 2003. Herbarium studies on the distribution of anther-smut fungus (Microbotryum violaceum) and Silene species (Caryophyllaceae) in the eastern United States. Am. J. Bot. 90:1522–31
    [Google Scholar]
  7. 7. 
    BACC II Auth. Team 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies Berlin: Springer Verlag
    [Google Scholar]
  8. 8. 
    Barbeito I, Brücker RL, Rixen C, Bebi P 2013. Snow fungi–induced mortality of Pinus cembra at the alpine treeline: evidence from plantations. Arctic Antarct. Res. 45:455–70
    [Google Scholar]
  9. 9. 
    Barrett LG, Thrall PH, Burdon JJ 2007. Evolutionary diversification through hybridization in a wild plant host–pathogen interaction. Evolution 61:1613–21
    [Google Scholar]
  10. 10. 
    Barrett LG, Thrall PH, Burdon JJ, Linde CC, Nicotra AB 2008. Population structure and diversity across sexual and asexual populations of the pathogenic fungus Melampsora lini. Mol. Ecol 17:3401–15
    [Google Scholar]
  11. 11. 
    Bergström L, Diekmann R, Flinkman J, Gårdmark A, Kornilovs G et al. 2010. Integrated ecosystem assessments of seven Baltic Sea areas covering the last three decades ICES Coop. Res. Rep. 302, ICES Copenhagen, Den:.
  12. 12. 
    Bettgenhaeuser J, Gilbert B, Ayliffe M, Moscou MJ 2014. Nonhost resistance to rust pathogens: a continuation of continua. Front. Plant Sci. 5:664
    [Google Scholar]
  13. 13. 
    Boevink PC, McLellan H, Gilroy EM, Naqvi S, He Q et al. 2016. Oomycetes seek help from the plant: Phytophthora infestans effectors target host susceptibility factors. Mol. Plant 9:636–38
    [Google Scholar]
  14. 14. 
    Bonanomi G, Mingo A, Incerti G, Mazzoleni S, Allegrezza M 2012. Fairy rings caused by a killer fungus foster plant diversity in species-rich grassland. J. Veg. Sci. 23:236–48
    [Google Scholar]
  15. 15. 
    Brown AHD, Grant JE, Burdon JJ, Grace JP, Pullen R 1985. Collection and utilisation of wild perennial Glycine. Proceedings of 3rd World Soybean Research Conference345–52 Boulder, CO: Westview Press
    [Google Scholar]
  16. 16. 
    Burdon JJ. 1987. Phenotypic and genetic patterns of resistance to the pathogen Phakopsora pachyrhizi in populations of Glycine canescens. Oecologia 73:257–67
    [Google Scholar]
  17. 17. 
    Burdon JJ, Barrett LG, Rebetzke G, Thrall PH 2014. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7:609–24
    [Google Scholar]
  18. 18. 
    Burdon JJ, Ericson L, Müller WJ 1995. Temporal and spatial relationships in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. J. Ecol. 83:979–89
    [Google Scholar]
  19. 19. 
    Burdon JJ, Groves RH, Cullen JM 1981. The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J. Appl. Ecol. 18:957–66
    [Google Scholar]
  20. 20. 
    Burdon JJ, Jarosz AM. 1991. Host–pathogen interactions in natural populations of Linum marginale and Melampsora lini: I. Patterns of resistance and racial variation in a large host population. Evolution 45:205–17
    [Google Scholar]
  21. 21. 
    Burdon JJ, Jarosz AM. 1992. Temporal variation in the racial structure of flax rust (Melampsora lini) populations growing on natural stands of wild flax (Linum marginale): local versus metapopulation dynamics. Plant Pathol 41:165–79
    [Google Scholar]
  22. 22. 
    Burdon JJ, Laine A-L. 2019. Evolutionary Dynamics of Plant-Pathogen Interactions Cambridge, UK: Cambridge Univ. Press
  23. 23. 
    Burdon JJ, Luig NH, Marshall DR 1983. Isozyme uniformity and virulence variation in Puccinia graminis f.sp. tritici and P. recondita f.sp. tritici in Australia. Aust. J. Biol. Sci 36:403–10
    [Google Scholar]
  24. 24. 
    Burdon JJ, Marshall DR. 1981. Inter- and intra-specific diversity in the disease-response of Glycine species to the leaf-rust fungus Phakopsora pachyrhizi. J. Ecol 69:381–90
    [Google Scholar]
  25. 25. 
    Burdon JJ, Marshall DR. 1981. Evaluation of Australian native species of Glycine for resistance to soybean rust. Plant Dis 65:44–45
    [Google Scholar]
  26. 26. 
    Burdon JJ, Marshall DR, Luig NH 1981. Isozyme analysis indicates that a virulent cereal rust pathogen is a somatic hybrid. Nature 293:565–66
    [Google Scholar]
  27. 27. 
    Burdon JJ, Marshall DR, Luig NH, Gow DJS 1982. Isozyme studies on the origin and evolution of Puccinia graminis f.sp. tritici in Australia. Aust. J. Biol. Sci. 35:231–38
    [Google Scholar]
  28. 28. 
    Burdon JJ, Roelfs AP. 1985. Isozyme and virulence variation in asexually reproducing populations of wheat leaf and stem rust. Phytopathology 75:907–13
    [Google Scholar]
  29. 29. 
    Burdon JJ, Roelfs AP. 1985. The effect of sexual and asexual reproduction on the isozyme structure of wheat stem rust populations. Phytopathology 75:1068–73
    [Google Scholar]
  30. 30. 
    Burdon JJ, Thrall PH. 2014. What have we learned from studies of wild plant-pathogen associations? The dynamic interplay of time, space and life-history. Eur. J. Plant Pathol. 138:417–29
    [Google Scholar]
  31. 31. 
    Burdon JJ, Thrall PH, Brown AHD 1999. Resistance and virulence structure in two Linum marginaleMelampsora lini host–pathogen metapopulations with different mating systems. Evolution 53:704–16
    [Google Scholar]
  32. 32. 
    Burdon JJ, Thrall PH, Lawrence GJ 2002. Coevolutionary patterns in the Linum marginaleMelampsora lini association at a continental scale. Can. J. Bot. 80:288–96
    [Google Scholar]
  33. 33. 
    Coltman DW, Pilkington JG, Smith JA, Pemberton JM 1999. Parasite-mediated selection against inbred soay sheep in a free-living island population. Evolution 53:1259–67
    [Google Scholar]
  34. 34. 
    Cook RJ. 2007. Tell me again what it is that you do. Annu. Rev. Phytopathol. 45:1–23
    [Google Scholar]
  35. 35. 
    Dangl JL, Horvath DM, Staskawicz BJ 2013. Pivoting the plant immune system from dissection to deployment. Science 341:746–51
    [Google Scholar]
  36. 36. 
    Dobzhansky T. 1973. Nothing in biology makes sense except in light of evolution. Am. Biol. Teach. 35:125–29
    [Google Scholar]
  37. 37. 
    Ebert D. 1998. Experimental evolution of parasites. Science 282:1432–35
    [Google Scholar]
  38. 38. 
    Ebert D. 2008. Host–parasite coevolution: insights from the Daphnia–parasite model system. Curr. Opin. Microbiol. 11:290–301
    [Google Scholar]
  39. 39. 
    Ericson L, Burdon JJ, Müller WJ 2002. The rust pathogen Triphragmium ulmariae as a selective force affecting its host, Filipendula ulmaria. J. Ecol. 90:167–78
    [Google Scholar]
  40. 40. 
    Hamilton WD, Zuk M. 1982. Heritable true fitness and brightness in birds: a role for parasites?. Science 218:384–87
    [Google Scholar]
  41. 41. 
    Jarosz AM, Burdon JJ. 1991. Host–pathogen interactions in natural populations of Linum marginale and Melampsora lini: II. Local and regional variation in patterns of resistance and racial structure. Evolution 45:1618–27
    [Google Scholar]
  42. 42. 
    Jarosz AM, Burdon JJ. 1992. Host–pathogen interactions in natural populations of Linum marginale and Melampsora lini: III. Influence of pathogen epidemics on host survivorship and flower production. Oecologia 89:53–61
    [Google Scholar]
  43. 43. 
    Johnson T. 1961. Man-guided evolution in plant rusts. Science 133:357–62
    [Google Scholar]
  44. 44. 
    Jousimo J, Tack AJM, Ovaskainen O, Mononen T, Susi H et al. 2014. Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science 344:1289–93
    [Google Scholar]
  45. 45. 
    Kawashima CG, Guimarães GA, Nogueira SR, MacLean D, Cook DR et al. 2016. A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat. Biotechnol. 34:661–65
    [Google Scholar]
  46. 46. 
    Laine A-L. 2006. Evolution of host resistance: looking for coevolutionary hotspots at small spatial scales. Proc. R. Soc. Lond. B 273:267–73
    [Google Scholar]
  47. 47. 
    Lenski RE, Levin BR. 1985. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125:585–602
    [Google Scholar]
  48. 48. 
    McDonald BA. 2014. Using dynamic diversity to achieve durable disease resistance in agricultural ecosystems. Trop. Plant Pathol. 39:191–96
    [Google Scholar]
  49. 49. 
    McDonald BA, Linde CC. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79
    [Google Scholar]
  50. 50. 
    Ovaskainen O, Laine A-L. 2006. Inferring evolutionary signals from ecological data in a plant-pathogen metapopulation. Ecology 87:880–91
    [Google Scholar]
  51. 51. 
    Penczykowski RM, Laine A-L, Koskella B 2016. Understanding the ecology and evolution of host–parasite interactions across scales. Evol. Appl. 9:37–52
    [Google Scholar]
  52. 52. 
    Smith DL, Ericson L, Burdon JJ 2003. Epidemiological patterns at multiple spatial scales: an 11-year study of a Triphragmium ulmariaeFilipendula ulmaria metapopulation. J. Ecol. 91:890–903
    [Google Scholar]
  53. 53. 
    Smith DL, Ericson L, Burdon JJ 2011. Co-evolutionary hot and cold spots of selective pressure move in space and time. J. Ecol. 99:634–41
    [Google Scholar]
  54. 54. 
    Springer YP. 2007. Clinal resistance structure and pathogen local adaptation in a serpentine flax-flax rust interaction. Evolution 61:1812–22
    [Google Scholar]
  55. 55. 
    Stakman EC. 1944. Plant diseases are shifty enemies. Minn. Farm. Home Sci. 2:8–9
    [Google Scholar]
  56. 56. 
    Susi H, Thrall PH, Barrett LG, Burdon JJ 2017. Local demographic and epidemiological patterns in the Linum marginaleMelampsora lini association over a twelve year period. J. Ecol. 105:1399–412
    [Google Scholar]
  57. 57. 
    Thompson JN. 1990. Coevolution and the evolutionary genetics of interactions among plants and insects and pathogens. Pests, Pathogens, and Plant Communities JJ Burdon, SR Leather 249–71 Oxford, UK: Blackwell
    [Google Scholar]
  58. 58. 
    Thrall PH, Barrett LG, Burdon JJ, Alexander HM 2005. Variation in pathogen aggressiveness within a metapopulation of the Cakile maritimaAlternaria brassicicola host–pathogen association. Plant Pathol 54:265–74
    [Google Scholar]
  59. 59. 
    Thrall PH, Burdon JJ. 2003. Evolution of virulence in a plant host–pathogen metapopulation. Science 299:1735–37
    [Google Scholar]
  60. 60. 
    Thrall PH, Burdon JJ, Bever JD 2002. Local adaptation in the Linum marginaleMelampsora lini host–pathogen interaction. Evolution 56:1340–51
    [Google Scholar]
  61. 61. 
    Thrall PH, Burdon JJ, Bock CH 2001. Short-term epidemic dynamics in the Cakile maritimaAlternaria brassicicola host–pathogen metapopulation association. J. Ecol. 89:723–35
    [Google Scholar]
  62. 62. 
    Thrall PH, Laine A-L, Ravensdale M, Nemri A, Dodds PN, Burdon JJ 2012. Rapid genetic change underpins antagonistic coevolution in a natural host–pathogen metapopulation. Ecol. Lett. 15:425–35
    [Google Scholar]
  63. 63. 
    van der Merwe MM, Barrett LG, Kinnear M, Ericson L, Dodds P et al. 2009. Positive selection in AvrP4 avirulence gene homologs across the genus Melampsora. Proc. R. Soc. Lond. B 276:2913–22
    [Google Scholar]
  64. 64. 
    van der Merwe MM, Ericson L, Walker J, Thrall PH, Burdon JJ 2007. Evolutionary relationships among species of Puccinia and Uromyces (Pucciniaceae, Uredinales) inferred from partial protein coding gene phylogenies. Mycol. Res. 111:163–75
    [Google Scholar]
  65. 65. 
    van der Merwe MM, Walker J, Ericson L, Burdon JJ 2008. Coevolution with higher taxonomic host groups within the Puccinia/Uromyces lineage obscured by host jumps. Mycol. Res. 112:1387–408
    [Google Scholar]
  66. 66. 
    Watson IA, de Sousa CNA 1983. Long distance transport of spores of Puccinia graminis tritici in the Southern Hemisphere. Proc. Linn. Soc. NSW 106:311–21
    [Google Scholar]
  67. 67. 
    Webster RK. 2005. Being at the right place, at the right time, for the right reasons: plant pathology. Annu. Rev. Phytopathol. 43:1–24
    [Google Scholar]
  68. 68. 
    Wingfield B, Ericson L, Szaro T, Burdon JJ 2004. Phylogenetic patterns in the Uredinales. Aust. Plant Pathol. 33:327–35
    [Google Scholar]
  69. 69. 
    Zhan J, Ericson L, Burdon JJ 2018. Climate change accelerates local disease extinction rates in a long-term wild host–pathogen association. Glob. Change Biol. 24:3526–36
    [Google Scholar]
  70. 70. 
    Zhan J, Thrall PH, Burdon JJ 2014. Achieving sustainable plant disease management through evolutionary principles. Trends Plant Sci 19:570–75
    [Google Scholar]
  71. 71. 
    Zhan J, Thrall PH, Papaïx J, Xie L, Burdon JJ 2015. Playing on a pathogen's weakness: using evolution to guide sustainable plant disease control strategies. Annu. Rev. Phytopathol. 53:19–43
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-095938
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error