1932

Abstract

Anther-smut fungi provide a powerful system to study host–pathogen specialization and coevolution, with hundreds of species specialized on diverse Caryophyllaceae plants, castrating their hosts through manipulation of the hosts’ reproductive organs to facilitate disease transmission. fungi have exceptional genomic characteristics, including dimorphic mating-type chromosomes, that make this genus anexcellent model for studying the evolution of mating systems and their influence on population genetics structure and adaptive potential. Important insights into adaptation, coevolution, host specialization, and mating system evolution have been gained using anther-smut fungi, with new insights made possible by the recent advent of genomic approaches. We illustrate with case studies how using a combination of comparative genomics, population genomics, and transcriptomics approaches enables the integration of different evolutionary perspectives across different timescales. We also highlight current challenges and suggest future studies that will contribute to advancing our understanding of the mechanisms underlying adaptive processes in populations of fungal pathogens.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-095947
2019-08-25
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-095947.html?itemId=/content/journals/10.1146/annurev-phyto-082718-095947&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbate JL, Antonovics J. 2014. Elevational disease distribution in a natural plant-pathogen system: insights from changes across host populations and climate. Oikos 123:91126–36
    [Google Scholar]
  2. 2. 
    Abbate JL, Gladieux P, Hood ME, de Vienne DM, Antonovics J et al. 2018. Co-occurrence among three divergent plant-castrating fungi in the same Silene host species. Mol. Ecol. 27:163357–70
    [Google Scholar]
  3. 3. 
    Aguileta G, Badouin H, Hood ME, Møller AP, Prieur SL et al. 2016. Lower prevalence but similar fitness in a parasitic fungus at higher radiation levels near Chernobyl. Mol. Ecol. 25:143370–83
    [Google Scholar]
  4. 4. 
    Aguileta G, Lengelle J, Marthey S, Chiapello H, Rodolphe F et al. 2010. Finding candidate genes under positive selection in non-model species: examples of genes involved in host specialization in pathogens. Mol. Ecol. 19:2292–306
    [Google Scholar]
  5. 5. 
    Aime MC, McTaggart AR, Mondo SJ, Duplessis S 2017. Phylogenetics and phylogenomics of rust fungi. Advances in Genetics JP Townsend, Z Wang 267–307 Cambridge, MA: Academic Press
    [Google Scholar]
  6. 6. 
    Albalat R, Cañestro C. 2016. Evolution by gene loss. Nat. Rev. Genet. 17:7379–91
    [Google Scholar]
  7. 7. 
    Alexander HM, Antonovics J. 1995. Spread of anther-smut disease (Ustilago violacea) and character correlations in a genetically variable experimental population of Silene alba. J. Ecol 83:5783–94
    [Google Scholar]
  8. 8. 
    Alexander HM, Thrall PH, Antonovics J, Jarosz AM, Oudemans PV 1996. Population dynamics and genetics of plant disease: a case study of anther-smut disease. Ecology 77:4990–96
    [Google Scholar]
  9. 9. 
    Ames RM, Money D, Ghatge VP, Whelan S, Lovell SC 2012. Determining the evolutionary history of gene families. Bioinformatics 28:148–55
    [Google Scholar]
  10. 10. 
    Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:10535–44
    [Google Scholar]
  11. 11. 
    Antonovics J, Alexander HM. 1992. Epidemiology of anther-smut infection of Silene alba (= S. latifolia) caused by Ustilago violacea: patterns of spore deposition in experimental populations. Proc. R. Soc. Lond. B 250:1328157–63
    [Google Scholar]
  12. 12. 
    Antonovics J, Hood ME, Thrall PH, Abrams JY, Duthie GM 2003. Herbarium studies on the distribution of anther-smut fungus (Microbotryum violaceum) and Silene species (Caryophyllaceae) in the eastern United States. Am. J. Bot. 90:101522–31
    [Google Scholar]
  13. 13. 
    Antonovics J, Stratton D, Thrall PH, Jarosz AM 1996. An anther-smut disease (Ustilago violacea) of fire-pink (Silene virginica): its biology and relationship to the anther-smut disease of white campion (Silene alba). Am. Midl. Nat. J. 135:1130–43
    [Google Scholar]
  14. 14. 
    Audran J-C, Batcho M. 1981. Microsporogenesis and pollen grains in Silene dioica (L.) Cl. and alterations in its anthers parasitised by Ustilago violacea (Pers.) Rouss. Acta Soc. Bot. Pol. 50:29–32
    [Google Scholar]
  15. 15. 
    Bachtrog D. 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14:2113–24
    [Google Scholar]
  16. 16. 
    Badouin H, Gladieux P, Gouzy J, Siguenza S, Aguileta G et al. 2017. Widespread selective sweeps throughout the genome of model plant pathogenic fungi and identification of effector candidates. Mol. Ecol. 26:72041–62
    [Google Scholar]
  17. 17. 
    Badouin H, Hood ME, Gouzy J, Aguileta G, Siguenza S et al. 2015. Chaos of rearrangements in the mating-type chromosomes of the anther-smut fungus Microbotryum lychnidis-dioicae. Genetics 200:41275–84
    [Google Scholar]
  18. 18. 
    Baker HG. 1947. Infection of species of Melandrium by Ustilago violacea (Pers.) Fuckel and the transmission of the resultant disease. Ann. Bot. 11:43333–48
    [Google Scholar]
  19. 19. 
    Barnes CW, Szabo LJ, May G, Groth JV 2004. Inbreeding levels of two Ustilago maydis populations. Mycologia 96:61236–44
    [Google Scholar]
  20. 20. 
    Barrett LG, Thrall PH, Burdon JJ, Linde CC 2008. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends Ecol. Evol. 23:12678–85
    [Google Scholar]
  21. 21. 
    Bartoli C, Roux F. 2017. Genome-wide association studies in plant pathosystems: toward an ecological genomics approach. Front. Plant Sci. 8:763
    [Google Scholar]
  22. 22. 
    Bazzicalupo A, Carpentier F, Otto S, Giraud T 2019. No evidence of antagonistic selection in the evolutionary strata of fungal mating-type chromosomes (Microbotryum lychnidis-dioicae). Genes Genomes Genet 9:61987–98
    [Google Scholar]
  23. 23. 
    Bergero R, Charlesworth D. 2009. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol. 24:294–102
    [Google Scholar]
  24. 24. 
    Bernasconi G, Antonovics J, Biere A, Charlesworth D, Delph LF et al. 2009. Silene as a model system in ecology and evolution. Heredity 103:15–14
    [Google Scholar]
  25. 25. 
    Biere A, Honders SC. 1998. Anther smut transmission in Silene latifolia and Silene dioica: impact of host traits, disease frequency, and host density. Int. J. Plant Sci. 159:2228–35
    [Google Scholar]
  26. 26. 
    Bierne N, Welch J, Loire E, Bonhomme F, David P 2011. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20:102044–72
    [Google Scholar]
  27. 27. 
    Branco S, Badouin H, Rodríguez de la Vega RC, Gouzy J, Carpentier F et al. 2017. Evolutionary strata on young mating-type chromosomes despite the lack of sexual antagonism. PNAS 114:277067–72
    [Google Scholar]
  28. 28. 
    Branco S, Carpentier F, Rodríguez de la Vega RC, Badouin H, Snirc A et al. 2018. Multiple convergent supergene evolution events in mating-type chromosomes. Nat. Commun. 9:1 2000.
    [Google Scholar]
  29. 29. 
    Bueker B, Eberlein C, Gladieux P, Schaefer A, Snirc A et al. 2016. Distribution and population structure of the anther smut Microbotryum silenes-acaulis parasitizing an arctic-alpine plant. Mol. Ecol. 25:3811–24
    [Google Scholar]
  30. 30. 
    Büker B, Petit E, Begerow D, Hood ME 2013. Experimental hybridization and backcrossing reveal forces of reproductive isolation in Microbotryum. BMC Evol. Biol 13:1224
    [Google Scholar]
  31. 31. 
    Carlsson U, Elmqvist T. 1992. Epidemiology of anther-smut disease (Microbotryum violaceum) and numeric regulation of populations of Silene dioica. Oecologia 90:4509–17
    [Google Scholar]
  32. 32. 
    Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA et al. 2019. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 29:944–53
    [Google Scholar]
  33. 33. 
    Casola C. 2018. From de novo to “de nono”: The majority of novel protein coding genes identified with phylostratigraphy are old genes or recent duplicates. Genome Biol. Evol. 10:112906–18
    [Google Scholar]
  34. 34. 
    Cattrall ME, Baird ML, Garber ED 1978. Genetics of Ustilago violacea. III. Crossing over and nondisjunction. Bot. Gaz. 139:2266–70
    [Google Scholar]
  35. 35. 
    Chung E, Petit E, Antonovics J, Pedersen AB, Hood ME 2012. Variation in resistance to multiple pathogen species: anther smuts of Silene uniflora. Ecol. Evol 2:92304–14
    [Google Scholar]
  36. 36. 
    Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T 2017. Fungal sex: the Basidiomycota. Microbiol. Spectr. 5:3FUNK–0046-2016
    [Google Scholar]
  37. 37. 
    Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez‐Loustau M-L, Vacher C 2012. The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:2510–19
    [Google Scholar]
  38. 38. 
    Croll D, McDonald BA. 2017. The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems. Mol. Ecol. 26:72027–40
    [Google Scholar]
  39. 39. 
    Cruickshank TE, Hahn MW. 2014. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol. Ecol. 23:133133–57
    [Google Scholar]
  40. 40. 
    Day AW, Garber ED. 1988. Ustilago violacea, anther smut of the Caryophyllaceae. Adv. Plant Pathol. 6:457–82
    [Google Scholar]
  41. 41. 
    Day AW, Jones JK. 1968. The production and characteristics of diploids in Ustilago violacea. Genet. Res 11:163–81
    [Google Scholar]
  42. 42. 
    Delmotte F, Bucheli E, Shykoff JA 1999. Host and parasite population structure in a natural plant-pathogen system. Heredity 82:3300–8
    [Google Scholar]
  43. 43. 
    Desprez‐Loustau M-L, Capron G, Dupuis F 1998. Relating germination dynamics of Melampsora pinitorqua teliospores to temperature and rainfall during overwintering. Eur. J. For. Pathol. 28:5335–47
    [Google Scholar]
  44. 44. 
    Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J et al. 2007. The fungal dimension of biological invasions. Trends Ecol. Evol. 22:9472–80
    [Google Scholar]
  45. 45. 
    de Vienne DM, Hood ME, Giraud T 2009. Phylogenetic determinants of potential host shifts in fungal pathogens. J. Evol. Biol. 22:122532–41
    [Google Scholar]
  46. 46. 
    de Vienne DM, Refrégier G, Hood ME, Guigue A, Devier B et al. 2009. Hybrid sterility and inviability in the parasitic fungal species complex Microbotryum. J. Evol. Biol 22:4683–98
    [Google Scholar]
  47. 47. 
    de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T 2013. Cospeciation versus host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol 198:2347–85
    [Google Scholar]
  48. 48. 
    Duplessis S, Cuomo CA, Lin Y-C, Aerts A, Tisserant E et al. 2011. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. PNAS 108:229166–71
    [Google Scholar]
  49. 49. 
    Enjalbert J, Duan X, Leconte M, Hovmøller MS, De Vallavieille-Pope C 2005. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striiformis f. sp. tritici) within France. Mol. Ecol. 14:72065–73
    [Google Scholar]
  50. 50. 
    Feldbrügge M, Kämper J, Steinberg G, Kahmann R 2004. Regulation of mating and pathogenic development in Ustilago maydis. Curr. Opin. Microbiol 7:6666–72
    [Google Scholar]
  51. 51. 
    Feurtey A, Gladieux P, Hood ME, Snirc A, Cornille A et al. 2016. Strong phylogeographic co-structure between the anther-smut fungus and its white campion host. New Phytol 212:3668–79
    [Google Scholar]
  52. 52. 
    Feurtey A, Stukenbrock EH. 2018. Interspecific gene exchange as a driver of adaptive evolution in fungi. Annu. Rev. Microbiol. 72:1377–98
    [Google Scholar]
  53. 53. 
    Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:6390739–42
    [Google Scholar]
  54. 54. 
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:7393186–94
    [Google Scholar]
  55. 55. 
    Floudas D, Binder M, Riley R, Barry K, Blanchette RA et al. 2012. The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:60891715–19
    [Google Scholar]
  56. 56. 
    Fontanillas E, Hood ME, Badouin H, Petit E, Barbe V et al. 2014. Degeneration of the non-recombining regions in the mating-type chromosomes of the anther-smut fungi. Mol. Biol. Evol. 32:4928–43
    [Google Scholar]
  57. 57. 
    Fortuna TM, Namias A, Snirc A, Branca A, Hood ME et al. 2018. Multiple infections, relatedness and virulence in the anther-smut fungus castrating Saponaria plants. Mol. Ecol. 27:234947–59
    [Google Scholar]
  58. 58. 
    Fortuna TM, Snirc A, Badouin H, Gouzy J, Siguenza S et al. 2016. Polymorphic microsatellite markers for the tetrapolar anther-smut fungus Microbotryum saponariae based on genome sequencing. PLOS ONE 11:11e0165656
    [Google Scholar]
  59. 59. 
    Fouché S, Plissonneau C, Croll D 2018. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr. Opin. Microbiol. 46:34–42
    [Google Scholar]
  60. 60. 
    Freeman AB, Duong KK, Shi T-L, Hughes CF, Perlin MH 2002. Isolates of Microbotryum violaceum from North American host species are phylogenetically distinct from their European host-derived counterparts. Mol. Phylogenet. Evol. 23:2158–70
    [Google Scholar]
  61. 61. 
    Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:8953–56
    [Google Scholar]
  62. 62. 
    Galagan JE, Selker EU. 2004. RIP: the evolutionary cost of genome defense. Trends Genet 20:417–23
    [Google Scholar]
  63. 63. 
    Gandon S, Michalakis Y. 2002. Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J. Evol. Biol. 15:3451–62
    [Google Scholar]
  64. 64. 
    Garber ED, Day AW. 1985. Genetic mapping of a phytopathogenic Basidiomycete, Ustilago violacea. Bot. Gaz. 146:4449–59
    [Google Scholar]
  65. 65. 
    Garber ED, Ruddat M. 2002. Transmission genetics of Microbotryum violaceum (Ustilago violacea): a case study. Adv. Appl. Microbiol. 51:107–27
    [Google Scholar]
  66. 66. 
    Gibson AK, Hood ME, Giraud T 2012. Sibling competition arena: selfing and a competition arena can combine to constitute a barrier to gene flow in sympatry. Evolution 66:61917–30
    [Google Scholar]
  67. 67. 
    Gibson AK, Refrégier G, Hood ME, Giraud T 2014. Performance of a hybrid fungal pathogen on pure-species and hybrid host plants. Int. J. Plant Sci. 175:6724–30
    [Google Scholar]
  68. 68. 
    Giraud T. 2004. Patterns of within population dispersal and mating of the fungus Microbotryum violaceum parasitising the plant Silene latifolia. Heredity 93:6559–65
    [Google Scholar]
  69. 69. 
    Giraud T, Gladieux P, Gavrilets S 2010. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol. Evol. 25:7387–95
    [Google Scholar]
  70. 70. 
    Giraud T, Jonot O, Shykoff JA 2005. Selfing propensity under choice conditions in a parasitic fungus, Microbotryum violaceum, and parameters influencing infection success in artificial inoculations. Int. J. Plant Sci. 166:4649–57
    [Google Scholar]
  71. 71. 
    Gladieux P, Condon B, Ravel S, Soanes D, Maciel JLN et al. 2018. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9:1e01219–17
    [Google Scholar]
  72. 72. 
    Gladieux P, Devier B, Aguileta G, Cruaud C, Giraud T 2013. Purifying selection after episodes of recurrent adaptive diversification in fungal pathogens. Infect. Genet. Evol. 17:123–31
    [Google Scholar]
  73. 73. 
    Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J et al. 2015. The population biology of fungal invasions. Mol. Ecol. 24:91969–86
    [Google Scholar]
  74. 74. 
    Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G et al. 2014. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol. Ecol. 23:4753–73
    [Google Scholar]
  75. 75. 
    Gladieux P, Vercken E, Fontaine MC, Hood ME, Jonot O et al. 2011. Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. Mol. Biol. Evol. 28:1459–71
    [Google Scholar]
  76. 76. 
    Goldschmidt V. 1928. Vererbungsversuche mit den Biologischen Arten den Antherenbrandes (Ustilago violacea Pers.). Z. Bot. 21:11–90
    [Google Scholar]
  77. 77. 
    Gout L, Fudal I, Kuhn M-L, Blaise F, Eckert M et al. 2006. Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol. Microbiol 60:167–80
    [Google Scholar]
  78. 78. 
    Grünwald NJ, McDonald BA, Milgroom MG 2016. Population genomics of fungal and oomycete pathogens. Annu. Rev. Phytopathol. 54:323–46
    [Google Scholar]
  79. 79. 
    Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30:81987–97
    [Google Scholar]
  80. 80. 
    Hardison RC. 2003. Comparative genomics. PLOS Biol 1:2e58
    [Google Scholar]
  81. 81. 
    Hartmann FE, Croll D. 2017. Distinct trajectories of massive recent gene gains and losses in populations of a microbial eukaryotic pathogen. Mol. Biol. Evol. 34:112808–22
    [Google Scholar]
  82. 82. 
    Hartmann FE, McDonald BA, Croll D 2018. Genome-wide evidence for divergent selection between populations of a major agricultural pathogen. Mol. Ecol. 27:122725–41
    [Google Scholar]
  83. 83. 
    Hartmann FE, Rodríguez de la Vega RC, Brandenburg J-T, Carpentier F, Giraud T 2018. Gene presence-absence polymorphism in castrating anther-smut fungi: recent gene gains and phylogeographic structure. Genome Biol. Evol. 10:51298–314
    [Google Scholar]
  84. 84. 
    Hathaway L, Malm JU, Prentice HC 2009. Geographically congruent large-scale patterns of plastid haplotype variation in the European herbs Silene dioica and S. latifolia (Caryophyllaceae). Bot. J. Linn. Soc. 161:2153–70
    [Google Scholar]
  85. 85. 
    Heitman J, Kronstad JW, Taylors JW, Cassolton LA 2007. Sex in Fungi: Molecular Determination and Evolutionary Implications Washington, DC: ASM Press
  86. 86. 
    Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G et al. 2016. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 188:4379–97
    [Google Scholar]
  87. 87. 
    Hood ME, Mena-Alí JI, Gibson AK, Oxelman B, Giraud T et al. 2010. Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae. New Phytol 187:1217–29
    [Google Scholar]
  88. 88. 
    Hood ME, Petit E, Giraud T 2013. Extensive divergence between mating-type chromosomes of the anther-smut fungus. Genetics 193:1309–15
    [Google Scholar]
  89. 89. 
    Hood ME, Scott M, Hwang M 2015. Breaking linkage between mating compatibility factors: tetrapolarity in Microbotryum. Evolution 69:102561–72
    [Google Scholar]
  90. 90. 
    Horns F, Petit E, Hood ME 2017. Massive expansion of gypsy-like retrotransposons in Microbotryum fungi. Genome Biol. Evol. 9:2363–71
    [Google Scholar]
  91. 91. 
    Horns F, Petit E, Yockteng R, Hood ME 2012. Patterns of repeat-induced point mutation in transposable elements of Basidiomycete fungi. Genome Biol. Evol. 4:3240–47
    [Google Scholar]
  92. 92. 
    Ironside JE. 2010. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. BioEssays 32:8718–26
    [Google Scholar]
  93. 93. 
    Kaltz O, Gandon S, Michalakis Y, Shykoff JA 1999. Local maladaptation in the anther-smut fungus Microbotryum violaceum to its host plant Silene latifolia: evidence from a cross-inoculation experiment. Evol. Int. J. Org. Evol. 53:2395–407
    [Google Scholar]
  94. 94. 
    Kaltz O, Shykoff JA. 2001. Male and female Silene latifolia plants differ in per-contact risk of infection by a sexually transmitted disease. J. Ecol. 89:199–109
    [Google Scholar]
  95. 95. 
    Kaltz O, Shykoff JA. 2002. Within- and among-population variation in infectivity, latency and spore production in a host-pathogen system. J. Evol. Biol. 15:5850–60
    [Google Scholar]
  96. 96. 
    Kemler M, Göker M, Oberwinkler F, Begerow D 2006. Implications of molecular characters for the phylogeny of the Microbotryaceae (Basidiomycota: Urediniomycetes). BMC Evol. Biol. 6:35
    [Google Scholar]
  97. 97. 
    Kneip H. 1919. Untersuchungen uber den Antherenbrand (Ustilago violacea Pers.): Ein Beitrag zum Sexualitätproblem. Z. Bot. 11:275–84
    [Google Scholar]
  98. 98. 
    Kües U. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev 64:2316–53
    [Google Scholar]
  99. 99. 
    Kulkarni RD, Thon MR, Pan H, Dean RA 2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6:3R24
    [Google Scholar]
  100. 100. 
    Kuppireddy V, Uversky V, Toh S, Tsai M-C, Beckerson W et al. 2017. Identification and initial characterization of the effectors of an anther smut fungus and potential host target proteins. Int. J. Mol. Sci. 18:11e2489
    [Google Scholar]
  101. 101. 
    Le Gac M, Hood ME, Fournier E, Giraud T 2007. Phylogenetic evidence of host-specific cryptic species in the anther smut fungus. Evol. Int. J. Org. Evol. 61:115–26
    [Google Scholar]
  102. 102. 
    Le Gac M, Hood ME, Giraud T 2007. Evolution of reproductive isolation within a parasitic fungal species complex. Evolution 61:71781–87
    [Google Scholar]
  103. 103. 
    Levasseur A, Pontarotti P. 2011. The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol. Direct 6:11
    [Google Scholar]
  104. 104. 
    McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:6328652–54
    [Google Scholar]
  105. 105. 
    Mohd-Assaad N, McDonald BA, Croll D 2018. Genome-wide detection of genes under positive selection in worldwide populations of the barley scald pathogen. Genome Biol. Evol. 10:51315–32
    [Google Scholar]
  106. 106. 
    Nagy LG, Riley R, Tritt A, Adam C, Daum C et al. 2016. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol. Biol. Evol. 33:4959–70
    [Google Scholar]
  107. 107. 
    Nieuwenhuis BPS, Billiard S, Vuilleumier S, Petit E, Hood ME, Giraud T 2013. Evolution of uni- and bifactorial sexual compatibility systems in fungi. Heredity 111:6445–55
    [Google Scholar]
  108. 108. 
    Perlin MH, Amselem J, Fontanillas E, Toh SS, Chen Z et al. 2015. Sex and parasites: genomic and transcriptomic analysis of Microbotryum lychnidis-dioicae, the biotrophic and plant-castrating anther smut fungus. BMC Genom 16:461
    [Google Scholar]
  109. 109. 
    Petit E, Silver C, Cornille A, Gladieux P, Rosenthal L et al. 2017. Co-occurrence and hybridization of anther-smut pathogens specialized on Dianthus hosts. Mol. Ecol. 26:71877–90
    [Google Scholar]
  110. 110. 
    Pfeifer B, Wittelsbürger U, Ramos-Onsins SE, Lercher MJ 2014. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31:71929–36
    [Google Scholar]
  111. 111. 
    Plissonneau C, Benevenuto J, Mohd-Assaad N, Fouché S, Hartmann FE, Croll D 2017. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front. Plant Sci. 8:119
    [Google Scholar]
  112. 112. 
    Ponnikas S, Sigeman H, Abbott JK, Hansson B 2018. Why do sex chromosomes stop recombining?. Trends Genet 34:7492–503
    [Google Scholar]
  113. 113. 
    Rautenberg A, Hathaway L, Oxelman B, Prentice HC 2010. Geographic and phylogenetic patterns in Silene section Melandrium (Caryophyllaceae) as inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 57:3978–91
    [Google Scholar]
  114. 114. 
    Refrégier G, Hood ME, Giraud T 2010. No evidence of reproductive character displacement between two sister fungal species causing anther smut disease in Silene. Int. J. Plant Sci 171:8847–59
    [Google Scholar]
  115. 115. 
    Refrégier G, Le Gac M, Jabbour F, Widmer A, Shykoff JA et al. 2008. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation. BMC Evol. Biol. 8:100
    [Google Scholar]
  116. 116. 
    Salvaudon L, Giraud T, Shykoff JA 2008. Genetic diversity in natural populations: a fundamental component of plant-microbe interactions. Curr. Opin. Plant Biol. 11:2135–43
    [Google Scholar]
  117. 117. 
    Sánchez‐Vallet A, Hartmann FE, Marcel TC, Croll D 2018. Nature's genetic screens: using genome-wide association studies for effector discovery. Mol. Plant Pathol. 19:13–6
    [Google Scholar]
  118. 118. 
    Schäfer AM, Kemler M, Bauer R, Begerow D 2010. The illustrated life cycle of Microbotryum on the host plant Silene latifolia. Botany 88:10875–85
    [Google Scholar]
  119. 119. 
    Schirrmann MK, Zoller S, Croll D, Stukenbrock EH, Leuchtmann A, Fior S 2018. Genomewide signatures of selection in Epichloë reveal candidate genes for host specialization. Mol. Ecol. 27:153070–86
    [Google Scholar]
  120. 120. 
    Sharma R, Mishra B, Runge F, Thines M 2014. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the smut fungus Melanopsichium pennsylvanicum. Genome Biol. Evol 6:82034–49
    [Google Scholar]
  121. 121. 
    Sloan DB, Giraud T, Hood ME 2008. Maximized virulence in a sterilizing pathogen: the anther-smut fungus and its co-evolved hosts. J. Evol. Biol. 21:61544–54
    [Google Scholar]
  122. 122. 
    Steenwyk J, Rokas A. 2017. Extensive copy number variation in fermentation-related genes among Saccharomyces cerevisiae wine strains. Genes Genomes Genet 7:51475–85
    [Google Scholar]
  123. 123. 
    Steenwyk JL, Soghigian JS, Perfect JR, Gibbons JG 2016. Copy number variation contributes to cryptic genetic variation in outbreak lineages of Cryptococcus gattii from the North American Pacific Northwest. BMC Genom 17:1700
    [Google Scholar]
  124. 124. 
    Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH 2012. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. PNAS 109:2710954–59
    [Google Scholar]
  125. 125. 
    Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L et al. 2017. Sources of fungal genetic variation and associating it with phenotypic diversity. Microbiol. Spectr. 5:5FUNK–0057-2016
    [Google Scholar]
  126. 126. 
    Thrall PH, Biere A, Antonovics J 1993. Plant life-history and disease susceptibility: the occurrence of Ustilago violacea on different species within the Caryophyllaceae. J. Ecol. 81:3489–98
    [Google Scholar]
  127. 127. 
    Thrall PH, Burdon JJ. 2004. Host-pathogen life history interactions affect biological control success. Weed Technol 18:sp11269–74
    [Google Scholar]
  128. 128. 
    Toh SS, Chen Z, Rouchka EC, Schultz DJ, Cuomo CA, Perlin MH 2018. Pas de deux: an intricate dance of anther smut and its host. Genes Genomes Genet 8:2505–18
    [Google Scholar]
  129. 129. 
    Toh SS, Chen Z, Schultz DJ, Cuomo CA, Perlin MH 2017. Transcriptional analysis of mating and pre-infection stages of the anther smut, Microbotryum lychnidis-dioicae. Microbiology 163:3410–20
    [Google Scholar]
  130. 130. 
    Toh SS, Perlin MH. 2016. Resurgence of less-studied smut fungi as models of phytopathogenesis in the omics age. Phytopathology 106:111244–54
    [Google Scholar]
  131. 131. 
    Toh SS, Treves DS, Barati MT, Perlin MH 2016. Reliable transformation system for Microbotryum lychnidis-dioicae informed by genome and transcriptome project. Arch. Microbiol. 198:8813–25
    [Google Scholar]
  132. 132. 
    Vacher C, Vile D, Helion E, Piou D, Desprez-Loustau M-L 2008. Distribution of parasitic fungal species richness: influence of climate versus host species diversity. Divers. Distrib. 14:5786–98
    [Google Scholar]
  133. 133. 
    Valente LM, Savolainen V, Vargas P 2010. Unparalleled rates of species diversification in Europe. Proc. R. Soc. Lond. B 277:16871489–96
    [Google Scholar]
  134. 134. 
    van Putten WF, Biere A, van Damme JMM 2003. Intraspecific competition and mating between fungal strains of the anther smut Microbotryum violaceum from the host plants Silene latifolia and S. dioica. Evolution 57:4766–76
    [Google Scholar]
  135. 135. 
    van Putten WF, Biere A, van Damme JMM 2005. Host-related genetic differentiation in the anther smut fungus Microbotryum violaceum in sympatric, parapatric and allopatric populations of two host species Silene latifolia and S. dioica. J. Evol. Biol 18:1203–12
    [Google Scholar]
  136. 136. 
    Vercken E, Fontaine MC, Gladieux P, Hood ME, Jonot O, Giraud T 2010. Glacial refugia in pathogens: European genetic structure of anther smut pathogens on Silene latifolia and Silene dioica. PLOS Pathog 6:12e1001229
    [Google Scholar]
  137. 137. 
    Whittle CA, Votintseva A, Ridout K, Filatov DA 2015. Recent and massive expansion of the mating-type-specific region in the smut fungus Microbotryum. Genetics 199:3809–16
    [Google Scholar]
  138. 138. 
    Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:81586–91
    [Google Scholar]
  139. 139. 
    Yockteng R, Marthey S, Chiapello H, Gendrault A, Hood ME et al. 2007. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes. BMC Genom 8:1272
    [Google Scholar]
  140. 140. 
    Zemp N, Tavares R, Widmer A 2015. Fungal infection induces sex-specific transcriptional changes and alters sexual dimorphism in the dioecious plant Silene latifolia. PLOS Genet 11:10e1005536
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-095947
Loading
/content/journals/10.1146/annurev-phyto-082718-095947
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error