1932

Abstract

Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP) have an extremely broad taxonomic distribution; they occur in bacteria, fungi, and oomycetes. NLPs come in two forms, those that are cytotoxic to eudicot plants and those that are noncytotoxic. Cytotoxic NLPs bind to glycosyl inositol phosphoryl ceramide (GIPC) sphingolipids that are abundant in the outer leaflet of plant plasma membranes. Binding allows the NLP to become cytolytic in eudicots but not monocots. The function of noncytotoxic NLPs remains enigmatic, but the expansion of genes in oomycete genomes suggests they are important. Several plant species have evolved the capacity to recognize NLPs as molecular patterns and trigger plant immunity, e.g., detects nlp peptides via the receptor-like protein RLP23. In this review, we provide a historical perspective from discovery to understanding of molecular mechanisms and describe the latest developments in the NLP field to shed light on these fascinating microbial proteins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100054
2019-08-25
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100054.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100054&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N, Lévesque CA, Buell CR 2013. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLOS ONE 8:e75072
    [Google Scholar]
  2. 2. 
    Albert I, Bohm H, Albert M, Feiler CE, Imkampe J et al. 2015. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat. Plants 1:15140
    [Google Scholar]
  3. 3. 
    Ali SS, Shao J, Lary DJ, Kronmiller B, Shen D et al. 2017. Phytophthora megakarya and P. palmivora, closely related causal agents of cacao black pod rot, underwent increases in genome sizes and gene numbers by different mechanisms. Genome Biol. Evol. 9:3536–57
    [Google Scholar]
  4. 4. 
    Amsellem Z, Cohen BA, Gressel J 2002. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat. Biotechnol. 20:1035–39
    [Google Scholar]
  5. 5. 
    Armitage AD, Lysoe E, Nellist CF, Lewis LA, Cano LM et al. 2018. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLOS ONE 13:e0202305
    [Google Scholar]
  6. 6. 
    Azmi NSA, Singkaravanit-Ogawa S, Ikeda K, Kitakura S, Inoue Y et al. 2018. Inappropriate expression of an NLP effector in Colletotrichum orbiculare impairs infection on Cucurbitaceae cultivars via plant recognition of the C-terminal region. Mol. Plant-Microbe Interact. 31:101–11
    [Google Scholar]
  7. 7. 
    Bae H, Bowers JH, Tooley PW, Bailey BA 2005. NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. Mycol. Res. 109:1373–85
    [Google Scholar]
  8. 8. 
    Bailey BA. 1995. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250–55
    [Google Scholar]
  9. 9. 
    Bailey BA, Apel-Birkhold PC, Luster DG 2002. Expression of NEP1 by Fusarium oxysporum f. sp. I after gene replacement and overexpression using polyethylene glycol-mediated transformation. Phytopathology 92:833–41
    [Google Scholar]
  10. 10. 
    Bailey BA, Jennings JC, Anderson JD 1997. The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production. Can. J. Microbiol. 43:45–55
    [Google Scholar]
  11. 11. 
    Bally J, Jung H, Mortimer C, Naim F, Philips JG et al. 2018. The rise and rise of Nicotiana benthamiana: a plant for all reasons. Annu. Rev. Phytopathol. 56:405–26
    [Google Scholar]
  12. 12. 
    Baroncelli R, Amby DB, Zapparata A, Sarrocco S, Vannacci G et al. 2016. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genom 17:555
    [Google Scholar]
  13. 13. 
    Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A et al. 2010. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330:1549–51
    [Google Scholar]
  14. 14. 
    Bernsdorff F, Doring AC, Gruner K, Schuck S, Brautigam A, Zeier J 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28:102–29
    [Google Scholar]
  15. 15. 
    Bhatti AA, Haq S, Bhat RA 2017. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111:458–67
    [Google Scholar]
  16. 16. 
    Bohm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nurnberger T 2014. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLOS Pathog 10:e1004491
    [Google Scholar]
  17. 17. 
    Cabral A, Oome S, Sander N, Kufner I, Nurnberger T, Van den Ackerveken G 2012. Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol. Plant-Microbe Interact. 25:697–708
    [Google Scholar]
  18. 18. 
    Cabral A, Stassen JH, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G 2011. Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLOS ONE 6:e19328
    [Google Scholar]
  19. 19. 
    Cacas JL, Bure C, Furt F, Maalouf JP, Badoc A et al. 2013. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity. Phytochemistry 96:191–200
    [Google Scholar]
  20. 20. 
    Cacas JL, Bure C, Grosjean K, Gerbeau-Pissot P, Lherminier J et al. 2016. Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol 170:367–84
    [Google Scholar]
  21. 21. 
    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–73
    [Google Scholar]
  22. 22. 
    Chen XR, Huang SX, Zhang Y, Sheng GL, Li YP, Zhu F 2018. Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Mol. Genet. Genom 293:931–43
    [Google Scholar]
  23. 23. 
    Cuesta Arenas Y, Kalkman ERIC, Schouten A, Dieho M, Vredenbregt P et al. 2010. Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea.Physiol.. Mol. Plant Pathol 74:376–86
    [Google Scholar]
  24. 24. 
    Dallal Bashi Z, Hegedus DD, Buchwaldt L, Rimmer SR, Borhan MH 2010. Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides (NEPs). Mol. Plant Pathol. 11:43–53
    [Google Scholar]
  25. 25. 
    Dong S, Kong G, Qutob D, Yu X, Tang J et al. 2012. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol. Plant-Microbe Interact. 25:896–909
    [Google Scholar]
  26. 26. 
    Dong S, Raffaele S, Kamoun S 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr. Opin. Genet. Dev. 35:57–65
    [Google Scholar]
  27. 27. 
    Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–63
    [Google Scholar]
  28. 28. 
    Fang YL, Peng YL, Fan J 2017. The Nep1-like protein family of Magnaporthe oryzae is dispensable for the infection of rice plants. Sci. Rep. 7:4372
    [Google Scholar]
  29. 29. 
    Fellbrich G, Blume B, Brunner F, Hirt H, Kroj T et al. 2000. Phytophthora parasitica elicitor-induced reactions in cells of Petroselinum crispum. Plant Cell Physiol 41:692–701
    [Google Scholar]
  30. 30. 
    Fellbrich G, Romanski A, Varet A, Blume B, Brunner F et al. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375–90
    [Google Scholar]
  31. 31. 
    Gan P, Ikeda K, Irieda H, Narusaka M, O'Connell RJ et al. 2012. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–49
    [Google Scholar]
  32. 32. 
    Garcia O, Macedo JA, Tiburcio R, Zaparoli G, Rincones J et al. 2007. Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao. Mycol. Res 111:443–55
    [Google Scholar]
  33. 33. 
    Gijzen M, Nurnberger T. 2006. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–7
    [Google Scholar]
  34. 34. 
    Gomez-Gomez L, Boller T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis.. Mol. Cell 5:1003–11
    [Google Scholar]
  35. 35. 
    Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–98
    [Google Scholar]
  36. 36. 
    Horner NR, Grenville-Briggs LJ, van West P 2012. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol 116:24–41
    [Google Scholar]
  37. 37. 
    Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H et al. 2014. Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 26:2265–81
    [Google Scholar]
  38. 38. 
    Jacobson DJ, Dettman JR, Adams RI, Boesl C, Sultana S et al. 2006. New findings of Neurospora in Europe and comparisons of diversity in temperate climates on continental scales. Mycologia 98:550–59
    [Google Scholar]
  39. 39. 
    Jennings JC, Apel-Birkhold PC, Bailey BA, Anderson JD 2000. Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein. Weed Sci 48:7–14
    [Google Scholar]
  40. 40. 
    Jennings JC, Apel-Birkhold PC, Mock NM, Baker CJ, Anderson JD, Bailey BA 2001. Induction of defense responses in tobacco by the protein Nep1 from Fusarium oxysporum. Plant Sci 161:891–99
    [Google Scholar]
  41. 41. 
    Jiang RHY, Dawe AL, Weide R, van Staveren M, Peters S et al. 2005. Elicitin genes in Phytophthora infestans are clustered and interspersed with various transposon-like elements. Mol. Genet. Genom. 273:20–32
    [Google Scholar]
  42. 42. 
    Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Lobach L et al. 2013. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLOS Genet 9:e1003272
    [Google Scholar]
  43. 43. 
    Judelson HS, Ah-Fong AM. 2010. The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups. BMC Genom 11:700
    [Google Scholar]
  44. 44. 
    Kanneganti TD, Huitema E, Cakir C, Kamoun S 2006. Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nepl-like protein PiNPP1.1 and INF1 elicitin. Mol. Plant-Microbe Interact. 19:854–63
    [Google Scholar]
  45. 45. 
    Kapila J, De Rycke R, Van Montagu M, Angenon G 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–8
    [Google Scholar]
  46. 46. 
    Katoh K, Misawa K, Kuma K, Miyata T 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–66
    [Google Scholar]
  47. 47. 
    Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL et al. 2011. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLOS Biol 9:e1001094
    [Google Scholar]
  48. 48. 
    Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, Ver Loren van Themaat E et al. 2012. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLOS Pathog 8:e1002643
    [Google Scholar]
  49. 49. 
    Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE et al. 2011. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLOS Pathog 7:e1002137
    [Google Scholar]
  50. 50. 
    Lenarčič T, Albert I, Bohm H, Hodnik V, Pirc K et al. 2017. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science 358:1431–34
    [Google Scholar]
  51. 51. 
    Levesque CA, Brouwer H, Cano L, Hamilton JP, Holt C et al. 2010. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biol 11:R73
    [Google Scholar]
  52. 52. 
    Links MG, Holub E, Jiang RH, Sharpe AG, Hegedus D et al. 2011. De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes. BMC Genom 12:503
    [Google Scholar]
  53. 53. 
    Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. Mol. Cell 54:2263–72
    [Google Scholar]
  54. 54. 
    Mattinen L, Tshuikina M, Mae A, Pirhonen M 2004. Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 17:1366–75
    [Google Scholar]
  55. 55. 
    McGowan J, Fitzpatrick DA. 2017. Genomic, network, and phylogenetic analysis of the oomycete effector arsenal. mSphere 2:6e00408–17
    [Google Scholar]
  56. 56. 
    Morris PF, Schlosser LR, Onasch KD, Wittenschlaeger T, Austin R, Provart N 2009. Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome. PLOS ONE 4:e6133
    [Google Scholar]
  57. 57. 
    Motteram J, Kufner I, Deller S, Brunner F, Hammond-Kosack KE et al. 2009. Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. Mol. Plant-Microbe Interact 22:790–99
    [Google Scholar]
  58. 58. 
    Nelson AJ, Apel-Birkhold PC, Bailey BA 1998. Sequence announcements: GenBank accession no. AF036580. Plant Mol. Biol. 38:911–12
    [Google Scholar]
  59. 59. 
    Oome S, Raaymakers TM, Cabral A, Samwel S, Bohm H et al. 2014. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. PNAS 111:16955–60
    [Google Scholar]
  60. 60. 
    Oome S, Van den Ackerveken G 2014. Comparative and functional analysis of the widely occurring family of Nep1-like proteins. Mol. Plant-Microbe Interact. 27:1081–94
    [Google Scholar]
  61. 61. 
    Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F et al. 2009. A common toxin fold mediates microbial attack and plant defense. PNAS 106:10359–64
    [Google Scholar]
  62. 62. 
    Pemberton CL, Salmond GP. 2004. The Nep1-like proteins: a growing family of microbial elicitors of plant necrosis. Mol. Plant Pathol. 5:353–59
    [Google Scholar]
  63. 63. 
    Pemberton CL, Whitehead NA, Sebaihia M, Bell KS, Hyman LJ et al. 2005. Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. Mol. Plant-Microbe Interact. 18:343–53
    [Google Scholar]
  64. 64. 
    Qutob D, Kamoun S, Gijzen M 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32:361–73
    [Google Scholar]
  65. 65. 
    Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S et al. 2006. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18:3721–44
    [Google Scholar]
  66. 66. 
    Raaymakers TM. 2018. Activation of plant immunity by microbial NEP1-like protein patterns PhD Thesis, Utrecht Univ., Neth .
    [Google Scholar]
  67. 67. 
    Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D et al. 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–43
    [Google Scholar]
  68. 68. 
    Raffaele S, Kamoun S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol. 10:417–30
    [Google Scholar]
  69. 69. 
    Rauhut T, Luberacki B, Seitz HU, Glawischnig E 2009. Inducible expression of a Nep1-like protein serves as a model trigger system of camalexin biosynthesis. Phytochemistry 70:185–89
    [Google Scholar]
  70. 70. 
    Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8:14953
    [Google Scholar]
  71. 71. 
    Richards TA, Dacks JB, Jenkinson JM, Thornton CR, Talbot NJ 2006. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms. Curr. Biol. 16:1857–64
    [Google Scholar]
  72. 72. 
    Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G et al. 2011. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. PNAS 108:15258–63
    [Google Scholar]
  73. 73. 
    Rodriguez-Moreno L, Song Y, Thomma BP 2017. Transfer and engineering of immune receptors to improve recognition capacities in crops. Curr. Opin. Plant Biol. 38:42–49
    [Google Scholar]
  74. 74. 
    Rojko N, Dalla Serra M, Macek P, Anderluh G 2016. Pore formation by actinoporins, cytolysins from sea anemones. Biochim. Biophys. Acta 1858:446–56
    [Google Scholar]
  75. 75. 
    Santhanam P, van Esse HP, Albert I, Faino L, Nurnberger T, Thomma BP 2013. Evidence for functional diversification within a fungal NEP1-like protein family. Mol. Plant-Microbe Interact. 26:278–86
    [Google Scholar]
  76. 76. 
    Seidl MF, Faino L, Shi-Kunne X, van den Berg GC, Bolton MD, Thomma BP 2015. The genome of the saprophytic fungus Verticillium tricorpus reveals a complex effector repertoire resembling that of its pathogenic relatives. Mol. Plant-Microbe Interact. 28:362–73
    [Google Scholar]
  77. 77. 
    Seidl MF, Thomma BPHJ. 2014. Sex or no sex: evolutionary adaptation occurs regardless. BioEssays 36:335–45
    [Google Scholar]
  78. 78. 
    Seidl MF, Thomma BPHJ. 2017. Transposable elements direct the coevolution between plants and microbes. Trends Genet 33:842–51
    [Google Scholar]
  79. 79. 
    Seidl MF, Van den Ackerveken G, Govers F, Snel B 2011. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization. Plant Physiol 155:628–44
    [Google Scholar]
  80. 80. 
    Seidl MF, Van den Ackerveken G, Govers F, Snel B 2012. Reconstruction of oomycete genome evolution identifies differences in evolutionary trajectories leading to present-day large gene families. Genome Biol. Evol. 4:199–211
    [Google Scholar]
  81. 81. 
    Staats M, van Baarlen P, Schouten A, van Kan JAL 2007. Functional analysis of NLP genes from Botrytis elliptica. Mol. Plant Pathol 8:209–14
    [Google Scholar]
  82. 82. 
    Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–13
    [Google Scholar]
  83. 83. 
    Stringlis IA, Zhang H, Pieterse CMJ, Bolton MD, de Jonge R 2018. Microbial small molecules: weapons of plant subversion. Nat. Prod. Rep. 35:410–33
    [Google Scholar]
  84. 84. 
    Tekaia F, Latge JP. 2005. Aspergillus fumigatus: saprophyte or pathogen?. Curr. Opin. Microbiol. 8:385–92
    [Google Scholar]
  85. 85. 
    Tiburcio RA, Costa GG, Carazzolle MF, Mondego JM, Schuster SC et al. 2010. Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. J. Mol. Evol. 70:85–97
    [Google Scholar]
  86. 86. 
    Torto TA, Rauser L, Kamoun S 2002. The pipg1 gene of the oomycete Phytophthora infestans encodes a fungal-like endopolygalacturonase. Curr. Genet. 40:385–90
    [Google Scholar]
  87. 87. 
    Toruno TY, Stergiopoulos I, Coaker G 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54:419–41
    [Google Scholar]
  88. 88. 
    Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH et al. 2006. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–66
    [Google Scholar]
  89. 89. 
    UniProt Consort 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–69
    [Google Scholar]
  90. 90. 
    Van den Ackerveken G. 2017. How plants differ in toxin-sensitivity. Science 358:1383–84
    [Google Scholar]
  91. 91. 
    Van den Ackerveken GF, Vossen P, De Wit PJ 1993. The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol 103:91–96
    [Google Scholar]
  92. 92. 
    van Hooff JJ, Snel B, Seidl MF 2014. Small homologous blocks in Phytophthora genomes do not point to an ancient whole-genome duplication. Genome Biol. Evol. 6:1079–85
    [Google Scholar]
  93. 93. 
    Varden FA, De la Concepcion JC, Maidment JH, Banfield MJ 2017. Taking the stage: effectors in the spotlight. Curr. Opin. Plant Biol. 38:25–33
    [Google Scholar]
  94. 94. 
    Varrot A, Basheer SM, Imberty A 2013. Fungal lectins: structure, function and potential applications. Curr. Opin. Struct. Biol. 23:678–85
    [Google Scholar]
  95. 95. 
    Veit S, Worle JM, Nurnberger T, Koch W, Seitz HU 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco. Plant Physiol 127:832–41
    [Google Scholar]
  96. 96. 
    Villela-Dias C, Camillo LR, de Oliveira GA, Sena JA, Santiago AS et al. 2014. Nep1-like protein from Moniliophthora perniciosa induces a rapid proteome and metabolome reprogramming in cells of Nicotiana benthamiana. Physiol. Plant 150:1–17
    [Google Scholar]
  97. 97. 
    Wan WL, Zhang L, Pruitt R, Zaidem M, Brugman R et al. 2018. Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytol 221:42080–95
    [Google Scholar]
  98. 98. 
    Wang X, Jiang N, Liu J, Liu W, Wang GL 2014. The role of effectors and host immunity in plant-necrotrophic fungal interactions. Virulence 5:722–32
    [Google Scholar]
  99. 99. 
    Zaparoli G, Barsottini MR, de Oliveira JF, Dyszy F, Teixeira PJ et al. 2011. The crystal structure of necrosis- and ethylene-inducing protein 2 from the causal agent of cacao's witches' broom disease reveals key elements for its activity. Biochemistry 50:9901–10
    [Google Scholar]
  100. 100. 
    Zhou BJ, Jia PS, Gao F, Guo HS 2012. Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae.. Mol. Plant-Microbe Interact 25:964–75
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100054
Loading
/content/journals/10.1146/annurev-phyto-082718-100054
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error