1932

Abstract

Genetic transformation of host plants by and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of . Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with DNA transfer machinery and T-DNA. Homologs of virulence genes are found in many bacterial genomes, but only one non- bacterial strain, CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100101
2019-08-25
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100101.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100101&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abu-Arish A, Frenkiel-Krispin D, Fricke T, Tzfira T, Citovsky V et al. 2004. Three-dimensional reconstruction of Agrobacterium VirE2 protein with single-stranded DNA. J. Biol. Chem. 279:25359–63
    [Google Scholar]
  2. 2. 
    Albright LM, Yanofsky MF, Leroux B, Ma DQ, Nester EW 1987. Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J. Bacteriol. 169:1046–55
    [Google Scholar]
  3. 3. 
    Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–57
    [Google Scholar]
  4. 4. 
    Aly KA, Baron C. 2007. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153:3766–75
    [Google Scholar]
  5. 5. 
    Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T et al. 2007. Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19:1695–708
    [Google Scholar]
  6. 6. 
    Anand A, Uppalapati SR, Ryu CM, Allen SN, Kang L et al. 2008. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol 146:703–15
    [Google Scholar]
  7. 7. 
    Atmakuri K, Cascales E, Burton OT, Banta LM, Christie PJ 2007. Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26:2540–51
    [Google Scholar]
  8. 8. 
    Atmakuri K, Ding Z, Christie PJ 2003. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol. Microbiol 49:1699–713
    [Google Scholar]
  9. 9. 
    Backert S, Fronzes R, Waksman G 2008. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems?. Trends Microbiol 16:409–13
    [Google Scholar]
  10. 10. 
    Ballas N, Citovsky V. 1997. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. PNAS 94:10723–28
    [Google Scholar]
  11. 11. 
    Banta L, Montenegro M. 2008. Agrobacterium and plant biotechnology. Agrobacterium: From Biology to Biotechnology T Tzfira, V Citovsky 72–147 New York: Springer
    [Google Scholar]
  12. 12. 
    Barton IS, Fuqua C, Platt TG 2018. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environ. Microbiol. 20:16–29
    [Google Scholar]
  13. 13. 
    Beiko RG, Harlow TJ, Ragan MA 2005. Highways of gene sharing in prokaryotes. PNAS 102:14332–37
    [Google Scholar]
  14. 14. 
    Bhattacharjee S, Lee LY, Oltmanns H, Cao H, Veena et al. 2008. IMPa-4, an Arabidopsis importin alpha isoform, is preferentially involved in Agrobacterium-mediated plant transformation. Plant Cell 20:2661–80
    [Google Scholar]
  15. 15. 
    Bittinger MA, Gross JA, Widom J, Clardy J, Handelsman J 2000. Rhizobium etli CE3 carries vir gene homologs on a self-transmissible plasmid. Mol. Plant-Microbe Interact. 13:1019–21
    [Google Scholar]
  16. 16. 
    Black SJ, Kashkina E, Kent T, Pomerantz RT 2016. DNA polymerase theta: a unique multifunctional end-joining machine. Genes 7:67
    [Google Scholar]
  17. 17. 
    Bolton GW, Nester EW, Gordon MP 1986. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232:983–85
    [Google Scholar]
  18. 18. 
    Brencic A, Angert ER, Winans SC 2005. Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumor free. Mol. Microbiol. 57:1522–31
    [Google Scholar]
  19. 19. 
    Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM et al. 2005. Gene transfer to plants by diverse species of bacteria. Nature 433:629–33
    [Google Scholar]
  20. 20. 
    Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I 2015. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39:81–95
    [Google Scholar]
  21. 21. 
    Cangelosi GA, Ankenbauer RG, Nester EW 1990. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. PNAS 87:6708–12
    [Google Scholar]
  22. 22. 
    Cangelosi GA, Martinetti G, Leigh JA, Lee CC, Thienes C, Nester EW 1989. Role for [corrected] Agrobacterium tumefaciens ChvA protein in export of beta-1,2-glucan. J. Bacteriol. 171:1609–15
    [Google Scholar]
  23. 23. 
    Cascales E, Christie PJ. 2004. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–73
    [Google Scholar]
  24. 24. 
    Charles TC, Nester EW. 1993. A chromosomally encoded two-component sensory transduction system is required for virulence of Agrobacterium tumefaciens. J. Bacteriol 175:6614–25
    [Google Scholar]
  25. 25. 
    Chilton MD, Que Q. 2003. Targeted integration of T-DNA into the tobacco genome at double-strand breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–65
    [Google Scholar]
  26. 26. 
    Christie PJ, Ward JE, Winans SC, Nester EW 1988. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J. Bacteriol. 170:2659–67
    [Google Scholar]
  27. 27. 
    Christie PJ, Whitaker N, González-Rivera C 2014. Mechanism and structure of the bacterial type IV secretion systems. Biochim. Biophys. Acta 1843:1578–91
    [Google Scholar]
  28. 28. 
    Citovsky V, Wong ML, Zambryski PC 1989. Cooperative interaction of Agrobacterium VirE2 protein with single stranded DNA: implications for the T-DNA transfer process. PNAS 86:1193–97
    [Google Scholar]
  29. 29. 
    Citovsky V, Zupan J, Warnick D, Zambryski PC 1992. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256:1802–5
    [Google Scholar]
  30. 30. 
    Close TJ, Rogowsky PM, Kado CI, Winans SC, Yanofsky MF, Nester EW 1987. Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes. J. Bacteriol. 169:5113–18
    [Google Scholar]
  31. 31. 
    De Cleene M, De Ley J 1976. The host range of crown gall. Bot. Rev. 42:389–466
    [Google Scholar]
  32. 32. 
    de Iannino NI, Ugalde RA 1989. Biochemical characterization of avirulent Agrobacterium tumefaciens chvA mutants: synthesis and excretion of beta-(1–2)glucan. J. Bacteriol. 171:2842–49
    [Google Scholar]
  33. 33. 
    Dequivre M, Diel B, Villard C, Sismeiro O, Durot M et al. 2015. Small RNA deep-sequencing analyses reveal a new regulator of virulence in Agrobacterium fabrum C58. Mol. Plant-Microbe Interact. 28:580–89
    [Google Scholar]
  34. 34. 
    De Vos G, Zambryski PC 1989. Expression of Agrobacterium nopaline specific VirD1, VirD2, and VirC1 proteins and their requirement for T-strand production in E. coli. Mol. Plant-Microbe Interact 2:43–52
    [Google Scholar]
  35. 35. 
    Dumas F, Duckely M, Pelczar P, Van Gelder P, Hohn B 2001. An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. PNAS 98:485–90
    [Google Scholar]
  36. 36. 
    Escobar MA, Dandekar AM. 2003. Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–86
    [Google Scholar]
  37. 37. 
    Farrand SK, Van Berkum PB, Oger P 2003. Agrobacterium is a definable genus of the family Rhizobiaceae. Int. J. Syst. Evol. Microbiol. 53:1681–87
    [Google Scholar]
  38. 38. 
    Fernández-González E, de Paz HD, Alperi A, Agúndez L, Faustmann M et al. 2011. Transfer of R388 derivatives by a pathogenesis-associated type IV secretion system into both bacteria and human cells. J. Bacteriol. 193:6257–65
    [Google Scholar]
  39. 39. 
    Friesner J, Britt AB. 2003. Ku80- and DNA ligase IV–deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34:427–40
    [Google Scholar]
  40. 40. 
    Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI 2003. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–65
    [Google Scholar]
  41. 41. 
    Gao R, Lynn DG. 2005. Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J. Bacteriol. 187:2182–89
    [Google Scholar]
  42. 42. 
    García-Cano E, Hak H, Magori S, Lazarowitz SG, Citovsky V 2018. The Agrobacterium F-box protein effector VirF destabilizes the Arabidopsis GLABROUS1 enhancer/binding protein-like transcription factor VFP4, a transcriptional activator of defense response genes. Mol. Plant-Microbe Interact. 31:576–86
    [Google Scholar]
  43. 43. 
    García-Cano E, Magori S, Sun Q, Zhang S, Lazarowitz SG, Citovsky V 2015. Interaction of Arabidopsis trihelix-domain transcription factors VFP3 and VFP5 with Agrobacterium virulence protein VirF. PLOS ONE 10:e014212
    [Google Scholar]
  44. 44. 
    Gelvin SB. 1998. Agrobacterium VirE2 proteins can form a complex with T strands in the plant cytoplasm. J. Bacteriol. 180:4300–2
    [Google Scholar]
  45. 45. 
    Gelvin SB. 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67:16–37
    [Google Scholar]
  46. 46. 
    Gelvin SB. 2017. Integration of Agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 51:195–217
    [Google Scholar]
  47. 47. 
    Ghai J, Das A. 1989. The virD operon of Agrobacterium tumefaciens Ti plasmid encodes a DNA-relaxing enzyme. PNAS 86:3109–13
    [Google Scholar]
  48. 48. 
    Gheysen G, Villarroel R, Van Montagu M 1991. Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–97
    [Google Scholar]
  49. 49. 
    Guo M, Hou Q, Hew CL, Pan SQ 2007. Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol. Plant-Microbe Interact. 20:1201–12
    [Google Scholar]
  50. 50. 
    Guo M, Huang Z, Yang J 2017. Is there any crosstalk between the chemotaxis and virulence induction signaling in Agrobacterium tumefaciens?. Biotechnol. Adv. 35:505–11
    [Google Scholar]
  51. 51. 
    Guo M, Jin S, Sun D, Hew CL, Pan SQ 2007. Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. PNAS 104:20019–24
    [Google Scholar]
  52. 52. 
    Heckel BC, Tomlinson AD, Morton ER, Choi JH, Fuqua C 2014. Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J. Bacteriol. 196:3221–33
    [Google Scholar]
  53. 53. 
    Hirsch AM. 1999. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr. Opin. Plant Biol. 2:320–26
    [Google Scholar]
  54. 54. 
    Hodges LD, Cuperus J, Ream W 2004. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J. Bacteriol. 186:3065–77
    [Google Scholar]
  55. 55. 
    Hodges LD, Lee LY, McNett H, Gelvin SB, Ream W 2008. Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants. J. Bacteriol. 191:355–64
    [Google Scholar]
  56. 56. 
    Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A 1977. Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J. Gen. Microbiol 98:477–84
    [Google Scholar]
  57. 57. 
    Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW et al. 1986. Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. PNAS 83:2571–75
    [Google Scholar]
  58. 58. 
    Husnik F, McCutcheon JP. 2018. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16:67–79
    [Google Scholar]
  59. 59. 
    Hwang HH, Gelvin SB. 2004. Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16:3148–67
    [Google Scholar]
  60. 60. 
    Iwakawa H, Carter BC, Bishop BC, Ogas J, Gelvin SB 2017. Perturbation of H3K27me3-associated epigenetic processes increases Agrobacterium-mediated transformation. Mol. Plant-Microbe Interact. 30:35–44
    [Google Scholar]
  61. 61. 
    Joubert P, Beaupère D, Wadouachi A, Chateau S, Sangwan RS, Sangwan-Norreel BS 2004. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. J. Nat. Prod. 67:348–51
    [Google Scholar]
  62. 62. 
    Kado CI. 2000. The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr. Opin. Microbiol. 3:643–48
    [Google Scholar]
  63. 63. 
    Kim SI, Veena, Gelvin SB 2007. Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–91
    [Google Scholar]
  64. 64. 
    Lacroix B, Citovsky V. 2011. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant. PLOS ONE 6:e25578
    [Google Scholar]
  65. 65. 
    Lacroix B, Citovsky V. 2013. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int. J. Dev. Biol. 57:467–81
    [Google Scholar]
  66. 66. 
    Lacroix B, Citovsky V. 2015. Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein. Sci. Rep. 5:16610
    [Google Scholar]
  67. 67. 
    Lacroix B, Citovsky V. 2016. A functional bacterium-to-plant DNA transfer machinery of Rhizobium etli. PLOS Pathog 12:e1005502
    [Google Scholar]
  68. 68. 
    Lacroix B, Citovsky V. 2016. Transfer of DNA from bacteria to eukaryotes. mBio 7:00863–16
    [Google Scholar]
  69. 69. 
    Lacroix B, Loyter A, Citovsky V 2008. Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. PNAS 105:15429–34
    [Google Scholar]
  70. 70. 
    Lacroix B, Tzfira T, Vainstein A, Citovsky V 2006. A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37
    [Google Scholar]
  71. 71. 
    Lacroix B, Vaidya M, Tzfira T, Citovsky V 2005. The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24:428–37
    [Google Scholar]
  72. 72. 
    Lapham R, Lee LY, Tsugama D, Lee S, Mengiste T, Gelvin SB 2018. VIP1 and its homologs are not required for Agrobacterium-mediated transformation, but play a role in Botrytis and salt stress responses. Front. Plant Sci. 9:749
    [Google Scholar]
  73. 73. 
    Lee LY, Fang MJ, Kuang LY, Gelvin SB 2008. Vectors for multi-color bimolecular fluorescence complementation to investigate protein–protein interactions in living plant cells. Plant Methods 4:24
    [Google Scholar]
  74. 74. 
    Lee YW, Jin S, Sim WS, Nester EW 1995. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. PNAS 92:12245–49
    [Google Scholar]
  75. 75. 
    Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T 2005. Involvement of KU80 in T-DNA integration in plant cells. PNAS 102:19231–36
    [Google Scholar]
  76. 76. 
    Li X, Pan SQ. 2017. Agrobacterium delivers VirE2 protein into host cells via clathrin-mediated endocytosis. Sci. Adv. 3:e1601528
    [Google Scholar]
  77. 77. 
    Li X, Tu H, Pan SQ 2018. Agrobacterium delivers anchorage protein VirE3 for companion VirE2 to aggregate at host entry sites for T-DNA protection. Cell Rep 25:302–11.e6
    [Google Scholar]
  78. 78. 
    Li X, Yang Q, Tu H, Lim Z, Pan SQ 2014. Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. Plant J 77:487–95
    [Google Scholar]
  79. 79. 
    Liu P, Nester EW. 2006. Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. PNAS 103:4658–62
    [Google Scholar]
  80. 80. 
    Lohrke SM, Yang H, Jin S 2001. Reconstitution of acetosyringone-mediated Agrobacterium tumefaciens virulence gene expression in the heterologous host Escherichia coli. J. Bacteriol 183:3704–11
    [Google Scholar]
  81. 81. 
    Loyter A, Rosenbluh J, Zakai N, Li J, Kozlovsky SV et al. 2005. The plant VirE2 interacting protein 1. A molecular link between the Agrobacterium T-complex and the host cell chromatin?. Plant Physiol 138:1318–21
    [Google Scholar]
  82. 82. 
    Magori S, Citovsky V. 2011. Agrobacterium counteracts host-induced degradation of its F-box protein effector. Sci. Signal. 4:ra69
    [Google Scholar]
  83. 83. 
    Matthysse AG. 1983. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol. 154:906–15
    [Google Scholar]
  84. 84. 
    Matthysse AG. 1987. Characterization of nonattaching mutants of Agrobacterium tumefaciens. J. Bacteriol 169:313–23
    [Google Scholar]
  85. 85. 
    Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A et al. 1991. T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704
    [Google Scholar]
  86. 86. 
    Melchers LS, Maroney MJ, den Dulk-Ras A, Thompson DV, van Vuuren HA et al. 1990. Octopine and nopaline strains of Agrobacterium tumefaciens differ in virulence; molecular characterization of the virF locus. Plant Mol. Biol. 14:249–59
    [Google Scholar]
  87. 87. 
    Melchers LS, Regensburg-Tuink AJ, Schilperoort RA, Hooykaas PJJ 1989. Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol. Microbiol. 3:969–77
    [Google Scholar]
  88. 88. 
    Melchers LS, Regensburg-Tuink TJ, Bourret RB, Sedee NJ, Schilperoort RA, Hooykaas PJ 1989. Membrane topology and functional analysis of the sensory protein VirA of Agrobacterium tumefaciens. EMBO J 8:1919–25
    [Google Scholar]
  89. 89. 
    Mestiri I, Norre F, Gallego ME, White CI 2014. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells. Plant J 77:511–20
    [Google Scholar]
  90. 90. 
    Mysore KS, Nam J, Gelvin SB 2000. An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. PNAS 97:948–53
    [Google Scholar]
  91. 91. 
    Nester EW, Gordon MP, Kerr A 2005. Agrobacterium tumefaciens: From Plant Pathology to Biotechnology St. Paul, MN: APS Press
    [Google Scholar]
  92. 92. 
    Newell CA. 2000. Plant transformation technology. Developments and applications. Mol. Biotechnol. 16:53–65
    [Google Scholar]
  93. 93. 
    Nishizawa-Yokoi A, Nonaka S, Saika H, Kwon YI, Osakabe K, Toki S 2012. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048–59
    [Google Scholar]
  94. 94. 
    Niu X, Zhou M, Henkel CV, van Heusden GP, Hooykaas PJJ 2015. The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F-box gene VBF. Plant J 84:914–24
    [Google Scholar]
  95. 95. 
    Nonaka S, Yuhashi K, Takada K, Sugaware M, Minamisawa K, Ezura H 2008. Ethylene production in plants during transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol 178:647–56
    [Google Scholar]
  96. 96. 
    Notti RQ, Stebbins CE. 2016. The structure and function of type III secretion systems. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0004-2015
    [Crossref] [Google Scholar]
  97. 97. 
    Otten L, De Ruffray P 1994. Agrobacterium vitis nopaline Ti plasmid pTiAB4: relationship to other Ti plasmids and T-DNA structure. Mol. Gen. Genet. 245:493–505
    [Google Scholar]
  98. 98. 
    Pansegrau W, Schoumacher F, Hohn B, Lanka E 1993. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. PNAS 90:11538–42
    [Google Scholar]
  99. 99. 
    Pappas KM, Winans SC. 2003. Plant transformation by coinoculation with a disarmed Agrobacterium tumefaciens strain and an Escherichia coli strain carrying mobilizable transgenes. Appl. Environ. Microbiol. 69:6731–39
    [Google Scholar]
  100. 100. 
    Park SY, Vaghchhipawala Z, Vasudevan B, Lee LY, Shen Y et al. 2015. Agrobacterium T-DNA integration into the plant genome can occur without the activity of key non-homologous end-joining proteins. Plant J 81:934–46
    [Google Scholar]
  101. 101. 
    Peng WT, Lee YW, Nester EW 1998. The phenolic recognition profiles of the Agrobacterium tumefaciens VirA protein are broadened by a high level of the sugar binding protein ChvE. J. Bacteriol. 180:5632–38
    [Google Scholar]
  102. 102. 
    Peralta EG, Ream LW. 1985. T-DNA border sequences required for crown gall tumorigenesis. PNAS 82:5112–16
    [Google Scholar]
  103. 103. 
    Platt TG, Bever JD, Fuqua C 2012. A cooperative virulence plasmid imposes a high fitness cost under conditions that induce pathogenesis. Proc. R. Soc. B 279:1691–99
    [Google Scholar]
  104. 104. 
    Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C 2014. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Front. Plant Sci. 5:635
    [Google Scholar]
  105. 105. 
    Quispe-Huamanquispe DG, Gheysen G, Kreuze JF 2017. Horizontal gene transfer contributes to plant evolution: the case of Agrobacterium T-DNAs. Front. Plant Sci. 8:2015
    [Google Scholar]
  106. 106. 
    Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE 2007. Attachment of bacteria to the roots of higher plants. FEMS Microbiol. Lett. 272:127–36
    [Google Scholar]
  107. 107. 
    Rossi L, Hohn B, Tinland B 1996. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. PNAS 93:126–30
    [Google Scholar]
  108. 108. 
    Sagulenko V, Sagulenko E, Jakubowski S, Spudich E, Christie PJ 2001. VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J. Bacteriol. 183:3642–51
    [Google Scholar]
  109. 109. 
    Sahi SV, Chilton MD, Chilton WS 1990. Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. PNAS 87:3879–83
    [Google Scholar]
  110. 110. 
    Salomon S, Puchta H. 1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–95
    [Google Scholar]
  111. 111. 
    Schrammeijer B, Risseeuw E, Pansegrau W, Regensburg-Tuïnk TJG, Crosby WL, Hooykaas PJJ 2001. Interaction of the virulence protein VirF of Agrobacterium tumefaciens with plant homologs of the yeast Skp1 protein. Curr. Biol. 11:258–62
    [Google Scholar]
  112. 112. 
    Schröder G, Schuelein R, Quebatte M, Dehio C 2011. Conjugative DNA transfer into human cells by the VirB/VirD4 type IV secretion system of the bacterial pathogen Bartonella henselae. PNAS 108:14643–48
    [Google Scholar]
  113. 113. 
    Shi Y, Lee LY, Gelvin SB 2014. Is VIP1 important for Agrobacterium-mediated transformation?. Plant J 79:848–60
    [Google Scholar]
  114. 114. 
    Shilo S, Tripathi P, Melamed-Bessudo C, Tzfadia O, Muth TR, Levy AA 2017. T-DNA-genome junctions form early after infection and are influenced by the chromatin state of the host genome. PLOS Genet 13:e1006875
    [Google Scholar]
  115. 115. 
    Shimoda N, Toyoda-Yamamoto A, Aoki S, Machida Y 1993. Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. J. Biol. Chem 268:26552–58
    [Google Scholar]
  116. 116. 
    Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M et al. 1990. Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. PNAS 87:6684–88
    [Google Scholar]
  117. 117. 
    Singer K, Shiboleth YM, Li J, Tzfira T 2012. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens–infected plants. Plant Physiol 160:511–22
    [Google Scholar]
  118. 118. 
    Stachel SE, Messens E, Van Montagu M, Zambryski PC 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–29
    [Google Scholar]
  119. 119. 
    Stachel SE, Timmerman B, Zambryski PC 1986. Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer for Agrobacterium tumefaciens to plant cells. Nature 322:706–12
    [Google Scholar]
  120. 120. 
    Stachel SE, Zambryski PC. 1986. virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46:325–33
    [Google Scholar]
  121. 121. 
    Steck TR, Morel P, Kado CI 1988. Vir box sequences in Agrobacterium tumefaciens pTiC58 and A6. Nucleic Acids Res 16:8736
    [Google Scholar]
  122. 122. 
    Tenea GN, Spantzel J, Lee LY, Zhu Y, Lin K et al. 2009. Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21:3350–67
    [Google Scholar]
  123. 123. 
    Tinland B, Schoumacher F, Gloeckler V, Bravo-Angel AM, Hohn B 1995. The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14:3585–95
    [Google Scholar]
  124. 124. 
    Trokter M, Waksman G. 2018. Translocation through the conjugative type 4 secretion system requires unfolding of its protein substrate. J. Bacteriol. 200:e00615–17
    [Google Scholar]
  125. 125. 
    Tzfira T, Frankmen L, Vaidya M, Citovsky V 2003. Site-specific integration of Agrobacterium T-DNA via double-stranded intermediates. Plant Physiol 133:1011–23
    [Google Scholar]
  126. 126. 
    Tzfira T, Vaidya M, Citovsky V 2001. VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–607
    [Google Scholar]
  127. 127. 
    Tzfira T, Vaidya M, Citovsky V 2002. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis VIP1 gene. PNAS 99:10435–40
    [Google Scholar]
  128. 128. 
    Tzfira T, Vaidya M, Citovsky V 2004. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92
    [Google Scholar]
  129. 129. 
    Vaghchhipawala ZE, Vasudevan B, Lee S, Morsy MR, Mysore KS 2012. Agrobacterium may delay plant nonhomologous end-joining DNA repair via XRCC4 to favor T-DNA integration. Plant Cell 24:4110–23
    [Google Scholar]
  130. 130. 
    van Attikum H, Bundock P, Hooykaas PJJ 2001. Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J 20:6550–58
    [Google Scholar]
  131. 131. 
    van Attikum H, Hooykaas PJJ 2003. Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae. Nucleic Acids Res 31:826–32
    [Google Scholar]
  132. 132. 
    van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJJ, Tijsterman M 2016. T-DNA integration in plants results from polymerase-theta-mediated DNA repair. Nat. Plants 2:16164
    [Google Scholar]
  133. 133. 
    Vergunst AC, Schrammeijer B, den Dulk-Ras A, de Vlaam CMT, Regensburg-Tuink TJ, Hooykaas PJJ 2000. VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–82
    [Google Scholar]
  134. 134. 
    Vergunst AC, van Lier MCM, den Dulk-Ras A, Stüve TA, Ouwehand A, Hooykaas PJJ 2005. Positive charge is an important feature of the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. PNAS 102:832–37
    [Google Scholar]
  135. 135. 
    Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel BS 1997. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201:160–72
    [Google Scholar]
  136. 136. 
    Wang L, Lacroix B, Guo J, Citovsky V 2017. Transcriptional activation of virulence genes of Rhizobium etli. J. Bacteriol 199:e00841–16
    [Google Scholar]
  137. 137. 
    Wang L, Lacroix B, Guo J, Citovsky V 2018. The Agrobacterium VirE2 effector interacts with multiple members of the Arabidopsis VIP1 protein family. Mol. Plant Pathol. 19:51172–83
    [Google Scholar]
  138. 138. 
    Wang Y, Haitjema CH, Fuqua C 2014. The Ctp type IVb pilus locus of Agrobacterium tumefaciens directs formation of the common pili and contributes to reversible surface attachment. J. Bacteriol. 196:2979–88
    [Google Scholar]
  139. 139. 
    Wendt T, Doohan F, Mullins E 2012. Production of Phytophthora infestans–resistant potato (Solanum tuberosum) utilising Ensifer adhaerens OV14. Transgenic Res 21:567–78
    [Google Scholar]
  140. 140. 
    Wendt T, Doohan F, Winckelmann D, Mullins E 2011. Gene transfer into Solanum tuberosum via Rhizobium spp. Transgenic Res 20:377–86
    [Google Scholar]
  141. 141. 
    Winans SC, Kerstetter RA, Nester EW 1988. Transcriptional regulation of the virA and virG genes of Agrobacterium tumefaciens. J. Bacteriol 170:4047–54
    [Google Scholar]
  142. 142. 
    Wolterink-van Loo S, Escamilla Ayala AA, Hooykaas PJJ, van Heusden GP 2015. Interaction of the Agrobacterium tumefaciens virulence protein VirD2 with histones. Microbiology 161:401–10
    [Google Scholar]
  143. 143. 
    Xu J, Kim J, Danhorn T, Merritt PM, Fuqua C 2012. Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Res. Microbiol. 163:674–84
    [Google Scholar]
  144. 144. 
    Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton MD 1982. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. PNAS 79:6322–26
    [Google Scholar]
  145. 145. 
    Yang Q, Li X, Tu H, Pan SQ 2017. Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K-powered ER/actin network. PNAS 114:2982–87
    [Google Scholar]
  146. 146. 
    Yang Y, Li R, Qi M 2000. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–51
    [Google Scholar]
  147. 147. 
    Yanofsky MF, Porter SG, Young C, Albright LM, Gordon MP, Nester EW 1986. The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–77
    [Google Scholar]
  148. 148. 
    Young C, Nester EW. 1988. Association of the VirD2 protein with the 5' end of T-strands in Agrobacterium tumefaciens. J. Bacteriol 170:3367–74
    [Google Scholar]
  149. 149. 
    Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM et al. 2007. The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. PNAS 104:11790–95
    [Google Scholar]
  150. 150. 
    Zaltsman A, Lacroix B, Gafni Y, Citovsky V 2013. Disassembly of synthetic Agrobacterium T-DNA-protein complexes via the host SCFVBF ubiquitin-ligase complex pathway. PNAS 110:169–74
    [Google Scholar]
  151. 151. 
    Ziemienowicz A, Görlich D, Lanka E, Hohn B, Rossi L 1999. Import of DNA into mammalian nuclei by proteins originating from a plant pathogenic bacterium. PNAS 96:3729–33
    [Google Scholar]
  152. 152. 
    Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L 2001. Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13:369–84
    [Google Scholar]
  153. 153. 
    Ziemienowicz A, Tinland B, Bryant J, Gloeckler V, Hohn B 2000. Plant enzymes but not Agrobacterium VirD2 mediate T-DNA ligation in vitro. Mol. Cell. Biol. 20:6317–22
    [Google Scholar]
  154. 154. 
    Zuniga-Soto E, Mullins E, Dedicova B 2015. Ensifer-mediated transformation: an efficient non-Agrobacterium protocol for the genetic modification of rice. SpringerPlus 4:600
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100101
Loading
/content/journals/10.1146/annurev-phyto-082718-100101
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error