1932

Abstract

Fusarium head blight (FHB) of small grain cereals caused by and other species is an economically important plant disease worldwide. infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of , tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management
Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100318
2019-08-25
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100318.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100318&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Alexander NJ, Hohn TM, McCormick SP 1998. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl. Environ. Microbiol. 64:221–25
    [Google Scholar]
  2. 2. 
    Alexander NJ, McCormick SP, Hohn TM 1999. TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol. Gen. Genet. 261:977–84
    [Google Scholar]
  3. 3. 
    Alexander NJ, Proctor RH, McCormick SP 2009. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev 28:198–215
    [Google Scholar]
  4. 4. 
    Arst HN, Penalva MA. 2003. pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–31
    [Google Scholar]
  5. 5. 
    Badeaux AI, Shi Y. 2013. Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14:4211–24
    [Google Scholar]
  6. 6. 
    Bai GH, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42:135–61
    [Google Scholar]
  7. 7. 
    Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–6
    [Google Scholar]
  8. 8. 
    Bennett JW, Klich M. 2003. Mycotoxins. Clin. Microbiol. Rev. 16:497–516
    [Google Scholar]
  9. 9. 
    Bianchini A, Horsley R, Jack MM, Kobielush B, Ryu D et al. 2015. DON occurrence in grains: a North American perspective. Cereal Food World 60:32–56
    [Google Scholar]
  10. 10. 
    Blandino M, Haidukowski M, Pascale M, Plizzari L, Scudellari D, Reyneri A 2012. Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Res 133:139–49
    [Google Scholar]
  11. 11. 
    Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD 2007. RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact 20:627–36
    [Google Scholar]
  12. 12. 
    Boenisch MJ, Broz KL, Purvine SO, Chrisler WB, Nicora CD et al. 2017. Structural reorganization of the fungal endoplasmic reticulum upon induction of mycotoxin biosynthesis. Sci. Rep. 7:44296
    [Google Scholar]
  13. 13. 
    Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3:527–35
    [Google Scholar]
  14. 14. 
    Bollina V, Kushalappa AC, Choo TM, Dion Y, Rioux S 2011. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol. Biol. 77:355–70
    [Google Scholar]
  15. 15. 
    Bormann J, Boenisch MJ, Bruckner E, Firat D, Schafer W 2014. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. PLOS ONE 9:3e91135
    [Google Scholar]
  16. 16. 
    Brown DW, Proctor RH, Dyer RB, Plattner RD 2003. Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J. Agric. Food Chem. 51:7936–44
    [Google Scholar]
  17. 17. 
    Chang LF, Karin M. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37–40
    [Google Scholar]
  18. 18. 
    Chen Y, Wang J, Yang N, Wen ZY, Sun XP et al. 2018. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat. Commun. 9:3429
    [Google Scholar]
  19. 19. 
    Cheng W, Song XS, Li HP, Cao LH, Sun K et al. 2015. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat. Plant Biotechnol. J. 13:1335–45
    [Google Scholar]
  20. 20. 
    Coleman JJ, Mylonakis E. 2009. Efflux in fungi: la piece de resistance. PLOS Pathog 5:6e1000486
    [Google Scholar]
  21. 21. 
    Connolly LR, Smith KM, Freitag M 2013. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLOS Genet 9:10e1003916
    [Google Scholar]
  22. 22. 
    Cowger C, Patton-Ozkurt J, Brown-Guedira G, Perugini L 2009. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology 99:320–27
    [Google Scholar]
  23. 23. 
    Cuomo CA, Gueldener U, Xu JR, Trail F, Turgeon BG et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–2
    [Google Scholar]
  24. 24. 
    D'Angelo DL, Bradley CA, Ames KA, Willyerd KT, Madden LV, Paul PA 2014. Efficacy of fungicide applications during and after anthesis against Fusarium head blight and deoxynivalenol in soft red winter wheat. Plant Dis 98:1387–97
    [Google Scholar]
  25. 25. 
    Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A et al. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414–30
    [Google Scholar]
  26. 26. 
    Dill-Macky R, Jones RK. 2000. The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84:71–76
    [Google Scholar]
  27. 27. 
    Divon HH, Ziv C, Davydov O, Yarden O, Fluhr R 2006. The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. Mol. Plant Pathol. 7:485–97
    [Google Scholar]
  28. 28. 
    D'Souza CA, Heitman J. 2001. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol. Rev. 25:349–64
    [Google Scholar]
  29. 29. 
    Ellner FM. 2005. Results of long-term field studies into the effect of strobilurin containing fungicides on the production of mycotoxins in several winter wheat varieties. Mycotoxin Res 21:112–15
    [Google Scholar]
  30. 30. 
    Ferrari S, Sella L, Janni M, De Lorenzo G, Favaron F, D'Ovidio R 2012. Transgenic expression of polygalacturonase-inhibiting proteins in Arabidopsis and wheat increases resistance to the flower pathogen Fusarium graminearum. Plant Biol 14:31–38
    [Google Scholar]
  31. 31. 
    Ferrigo D, Raiola A, Causin R 2016. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management. Molecules 21:5e627
    [Google Scholar]
  32. 32. 
    Figueroa M, Hammond-Kosack KE, Solomon PS 2018. A review of wheat diseases: a field perspective. Mol. Plant Pathol. 19:1523–36
    [Google Scholar]
  33. 33. 
    Gacek A, Strauss J. 2012. The chromatin code of fungal secondary metabolite gene clusters. Appl. Microbiol. Biotechnol. 95:1389–404
    [Google Scholar]
  34. 34. 
    Gale LR, Bryant JD, Calvo S, Giese H, Katan T et al. 2005. Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171:985–1001
    [Google Scholar]
  35. 35. 
    Gardiner DM, Osborne S, Kazan K, Manners JM 2009. Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology 155:3149–56
    [Google Scholar]
  36. 36. 
    Gonzalez A, Hall MN. 2017. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 36:397–408
    [Google Scholar]
  37. 37. 
    Gu Q, Chen Y, Liu Y, Zhang CQ, Ma ZH 2015. The transmembrane protein FgSho1 regulates fungal development and pathogenicity via the MAPK module Ste50-Ste11-Ste7 in Fusarium graminearum. New Phytol 206:315–28
    [Google Scholar]
  38. 38. 
    Gu Q, Zhang CQ, Liu X, Ma ZH 2015. A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum. Mol. Plant Pathol 16:1–13
    [Google Scholar]
  39. 39. 
    Gu Q, Zhang CQ, Yu FW, Yin YN, Shim WB, Ma ZH 2015. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum. Environ. Microbiol. 17:2661–76
    [Google Scholar]
  40. 40. 
    Guo L, Breakspear A, Zhao GY, Gao LX, Kistler HC et al. 2016. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides. Mol. Plant Pathol. 17:196–209
    [Google Scholar]
  41. 41. 
    Guo L, Zhao GY, Xu JR, Kistler HC, Gao LX, Ma LJ 2016. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum. New Phytol 211:527–41
    [Google Scholar]
  42. 42. 
    Hartman MA, Spudich JA. 2012. The myosin superfamily at a glance. J. Cell Sci. 125:1627–32
    [Google Scholar]
  43. 43. 
    Heissler SM, Sellers JR. 2016. Kinetic adaptations of myosins for their diverse cellular functions. Traffic 17:839–59
    [Google Scholar]
  44. 44. 
    Hohn TM, Beremand PD. 1989. Isolation and nucleotide-sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79:131–38
    [Google Scholar]
  45. 45. 
    Hou R, Jiang C, Zheng Q, Wang CF, Xu JR 2015. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Mol. Plant Pathol. 16:987–99
    [Google Scholar]
  46. 46. 
    Hou ZM, Xue CY, Peng YL, Katan T, Kistler HC, Xu JR 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe Interact. 15:1119–27
    [Google Scholar]
  47. 47. 
    Hu S, Zhou XY, Gu XY, Cao SL, Wang CF, Xu JR 2014. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact 27:557–66
    [Google Scholar]
  48. 48. 
    Jenczmionka NJ, Maier FJ, Losch AP, Schafer W 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87–95
    [Google Scholar]
  49. 49. 
    Ji F, Xu JH, Liu X, Yin XC, Shi JR 2014. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chem 157:393–97
    [Google Scholar]
  50. 50. 
    Jia HY, Zhou JY, Xue SL, Li GQ, Yan HS et al. 2018. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J 6:48–59
    [Google Scholar]
  51. 51. 
    Jiang C, Zhang CK, Wu CL, Sun PP, Hou R et al. 2016. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ. Microbiol. 18:3689–701
    [Google Scholar]
  52. 52. 
    Jiang C, Zhang X, Liu HQ, Xu JR 2018. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLOS Pathog 14:3e1006875
    [Google Scholar]
  53. 53. 
    Jiang JH, Liu X, Yin YN, Ma ZH 2011. Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLOS ONE 6:11e28291
    [Google Scholar]
  54. 54. 
    Jiang JH, Yun YZ, Fu J, Shim WB, Ma ZH 2011. Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Mol. Plant Pathol. 12:425–36
    [Google Scholar]
  55. 55. 
    Jiang JH, Yun YZ, Liu Y, Ma ZH 2012. FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet. Biol. 49:653–62
    [Google Scholar]
  56. 56. 
    Jiang JH, Yun YZ, Yang QQ, Shim WB, Wang ZY, Ma ZH 2011. A Type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. PLOS ONE 6:9e25311
    [Google Scholar]
  57. 57. 
    Jiao F, Kawakami A, Nakajima T 2008. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol. Lett. 285:212–19
    [Google Scholar]
  58. 58. 
    Jonkers W, Dong YH, Broz K, Kistler HC 2012. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLOS Pathog 8:5e1002724
    [Google Scholar]
  59. 59. 
    Keller NP, Turner G, Bennett JW 2005. Fungal secondary metabolism: from biochemistry to genomics. Nat. Rev. Microbiol. 3:937–47
    [Google Scholar]
  60. 60. 
    Kelly A, Proctor RH, Belzile F, Chulze SN, Clear RM et al. 2016. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum. Fungal Genet. Biol. 95:39–48
    [Google Scholar]
  61. 61. 
    Kim H, Woloshuk CP. 2008. Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet. Biol. 45:947–53
    [Google Scholar]
  62. 62. 
    Kim HK, Lee S, Jo SM, McCormick SP, Butchko RAE et al. 2013. Functional roles of FgLaeA in controlling secondary metabolism, sexual development, and virulence in Fusarium graminearum. PLOS ONE 8:7e68441
    [Google Scholar]
  63. 63. 
    Kistler HC, Broz K. 2015. Cellular compartmentalization of secondary metabolism. Front. Microbiol. 6:68
    [Google Scholar]
  64. 64. 
    Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel KH 2013. Host-induced gene silencing of cytochrome P450 lanosterol C14 α-demethylase-encoding genes confers strong resistance to Fusarium species. PNAS 110:19324–29
    [Google Scholar]
  65. 65. 
    Kong XJ, van Diepeningen AD, van der Lee TAJ, Waalwijk C, Xu JS et al. 2018. The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity. Front. Microbiol. 9:654
    [Google Scholar]
  66. 66. 
    Koning AJ, Roberts CJ, Wright RL 1996. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. Mol. Biol. Cell 7:769–89
    [Google Scholar]
  67. 67. 
    Lee HJ, Ryu D. 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurrence. J. Agric. Food Chem. 65:7034–51
    [Google Scholar]
  68. 68. 
    Lee N, D'Souza CA, Kronstad JW 2003. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu. Rev. Phytopathol. 41:399–427
    [Google Scholar]
  69. 69. 
    Lee Y, Min K, Son H, Park AR, Kim JC et al. 2014. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Mol. Plant-Microbe Interact 27:1344–55
    [Google Scholar]
  70. 70. 
    Lee Y, Son H, Shin JY, Choi GJ, Lee YW 2018. Genome-wide functional characterization of putative peroxidases in the head blight fungus Fusarium graminearum. Mol. Plant Pathol 19:715–30
    [Google Scholar]
  71. 71. 
    Legrand F, Picot A, Cobo-Diaz JF, Chen W, Le Floch G 2017. Challenges facing the biological control strategies for the management of Fusarium head blight of cereals caused by F. graminearum. Biol. Control 113:26–38
    [Google Scholar]
  72. 72. 
    Levin DE. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69:262–91
    [Google Scholar]
  73. 73. 
    Li CQ, Zhang YH, Wang H, Chen LF, Zhang J et al. 2018. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. Mol. Plant Pathol. 19:909–21
    [Google Scholar]
  74. 74. 
    Li YM, Wang CF, Liu WD, Wang GH, Kang ZS et al. 2011. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol. Plant-Microbe Interact 24:487–96
    [Google Scholar]
  75. 74a. 
    Liu N, Yun Y, Yin Y, Hahn M, Ma Z, Chen Y 2019. Lipid droplet biogenesis regulated by the FgNem1/Spo7-FgPah1 phosphatase cascade plays critical roles in fungal development and virulence in Fusarium graminearum. New Phytol. 223:412–29
    [Google Scholar]
  76. 75. 
    Liu Y, Chen X, Jiang JH, Hamada MS, Yin YN, Ma ZH 2014. Detection and dynamics of different carbendazim-resistance conferring β-tubulin variants of Gibberella zeae collected from infected wheat heads and rice stubble in China. Pest Manag. Sci. 70:1228–36
    [Google Scholar]
  77. 76. 
    Liu Y, Liu N, Yin YN, Chen Y, Jiang JH, Ma ZH 2015. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in Fusarium graminearum. Environ. Microbiol 17:4615–30
    [Google Scholar]
  78. 77. 
    Liu Z, Liu N, Jiang H, Yan L, Ma Z, Yin Y 2018. The activators of type 2A phosphatases (PP2A) regulate multiple cellular processes via PP2A dependent and independent mechanisms in Fusarium graminearum. Mol. Plant-Microbe Interact 31:111121–33
    [Google Scholar]
  79. 78. 
    Lofgren L, Riddle J, Dong YH, Kuhnem PR, Cummings JA et al. 2018. A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State. Eur. J. Plant Pathol. 150:791–96
    [Google Scholar]
  80. 79. 
    Lv WY, Wang CY, Yang N, Que YW, Talbot NJ, Wang ZY 2017. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Sci. Rep. 7:11062
    [Google Scholar]
  81. 80. 
    Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J et al. 2016. Regulation and role of fungal secondary metabolites. Annu. Rev. Genet. 50:371–92
    [Google Scholar]
  82. 81. 
    Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J 2006. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant-Microbe Interact. 19:123–29
    [Google Scholar]
  83. 82. 
    McCormick SP, Alexander NJ. 2002. Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl. Environ. Microbiol. 68:2959–64
    [Google Scholar]
  84. 83. 
    McCormick SP, Alexander NJ, Proctor RH 2006. Fusarium Tri4 encodes a multifunctional oxygenase required for trichothecene biosynthesis. Can. J. Microbiol. 52:636–42
    [Google Scholar]
  85. 84. 
    McCormick SP, Alexander NJ, Proctor RH 2006. Heterologous expression of two trichothecene P450 genes in Fusarium verticillioides. Can. J. Microbiol 52:220–26
    [Google Scholar]
  86. 85. 
    McCormick SP, Alexander NJ, Trapp SE, Hohn TM 1999. Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl. Environ. Microbiol 65:5252–56
    [Google Scholar]
  87. 86. 
    McCormick SP, Hohn TM, Desjardins AE 1996. Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Appl. Environ. Microbiol 62:353–59
    [Google Scholar]
  88. 87. 
    McCormick SP, Stanley AM, Stover NA, Alexander NJ 2011. Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–14
    [Google Scholar]
  89. 88. 
    Menke J, Dong YH, Kistler HC 2012. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Mol. Plant-Microbe Interact. 25:1408–18
    [Google Scholar]
  90. 89. 
    Menke J, Weber J, Broz K, Kistler HC 2013. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLOS ONE 8:e63077
    [Google Scholar]
  91. 90. 
    Mentges M, Bormann J. 2015. Real-time imaging of hydrogen peroxide dynamics in vegetative and pathogenic hyphae of Fusarium graminearum. Sci. Rep 5:14980
    [Google Scholar]
  92. 91. 
    Merhej J, Boutigny AL, Pinson-Gadais L, Richard-Forget F, Barreau C 2010. Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit. Contam. A 27:710–17
    [Google Scholar]
  93. 92. 
    Merhej J, Richard-Forget F, Barreau C 2011. The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet. Biol. 48:275–84
    [Google Scholar]
  94. 93. 
    Merhej J, Richard-Forget F, Barreau C 2011. Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl. Microbiol. Biotechnol. 91:519–28
    [Google Scholar]
  95. 94. 
    Merhej J, Urban M, Dufresne M, Hammond-Kosack KE, Richard-Forget F, Barreau C 2012. The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Mol. Plant Pathol. 13:363–74
    [Google Scholar]
  96. 95. 
    Mesterhazy A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–86
    [Google Scholar]
  97. 96. 
    Mihlan M, Homann V, Liu TWD, Tudzynski B 2003. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 47:975–91
    [Google Scholar]
  98. 97. 
    Montibus M, Ducos C, Bonnin-Verdal MN, Bormann J, Ponts N et al. 2013. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLOS ONE 8:12e83377
    [Google Scholar]
  99. 98. 
    Nasmith CG, Walkowiak S, Wang L, Leung WWY, Gong YC et al. 2011. Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLOS Pathog 7:9e1002266
    [Google Scholar]
  100. 99. 
    Nguyen TV, Schafer W, Bormann J 2012. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact 25:1142–56
    [Google Scholar]
  101. 100. 
    Niehaus EM, Rindermann L, Janevska S, Munsterkotter M, Guldener U, Tudzynski B 2018. Analysis of the global regulator Lae1 uncovers a connection between Lae1 and the histone acetyltransferase HAT1 in Fusarium fujikuroi. Appl. Microbiol. Biotechnol 102:279–95
    [Google Scholar]
  102. 101. 
    Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M 2007. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem. Biophys. Res. Commun. 363:639–44
    [Google Scholar]
  103. 102. 
    Oide S, Liu JY, Yun SH, Wu DL, Michev A et al. 2010. Histidine kinase two-component response regulator proteins regulate reproductive development, virulence, and stress responses of the fungal cereal pathogens Cochliobolus heterostrophus and Gibberella zeae. Eukaryot. Cell 9:1867–80
    [Google Scholar]
  104. 103. 
    Palazzini J, Fumero V, Yerkovich N, Barros G, Cuniberti M, Chulze S 2015. Correlation between Fusarium graminearum and deoxynivalenol during the 2012/13 wheat Fusarium head blight outbreak in Argentina. Cereal Res. Commun. 43:627–37
    [Google Scholar]
  105. 104. 
    Paul PA, Lipps PE, Hershman DE, McMullen MP, Draper MA, Madden LV 2008. Efficacy of triazole-based fungicides for Fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. Phytopathology 98:999–1011
    [Google Scholar]
  106. 105. 
    Peigné J, Messmer M, Aveline A, Berner A, Mäder P et al. 2014. Wheat yield and quality as influenced by reduced tillage in organic farming. Org. Agric. 4:11–13
    [Google Scholar]
  107. 106. 
    Peplow AW, Tag AG, Garifullina GF, Beremand MN 2003. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Appl. Environ. Microbiol. 69:2731–36
    [Google Scholar]
  108. 107. 
    Pestka JJ. 2010. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 84:663–79
    [Google Scholar]
  109. 108. 
    Pfannmuller A, Leufken J, Studt L, Michielse CB, Sieber CMK et al. 2017. Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLOS ONE 12:4e0176194
    [Google Scholar]
  110. 109. 
    Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T 2007. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett 581:443–47
    [Google Scholar]
  111. 110. 
    Proctor RH, McCormick SP, Kim HS, Cardoza RE, Stanley AM et al. 2018. Evolution of structural diversity of trichothecenes, a family of toxins produced by plant pathogenic and entomopathogenic fungi. PLOS Pathog 14:4e1006946
    [Google Scholar]
  112. 111. 
    Rawat N, Pumphrey MO, Liu SX, Zhang XF, Tiwari VK et al. 2016. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet. 48:1576–80
    [Google Scholar]
  113. 112. 
    Reis EM, Carmona MA. 2013. Integrated disease management of Fusarium head blight, in Fusarium head blight in Latin America. Fusarium Head Blight in Latin America T Alconada Magliano, S Chulze 159–73 Dordrecht, Neth.: Springer
    [Google Scholar]
  114. 113. 
    Reyes-Dominguez Y, Boedi S, Sulyok M, Wiesenberger G, Stoppacher N et al. 2012. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genet. Biol. 49:39–47
    [Google Scholar]
  115. 114. 
    Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A et al. 2010. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol. Microbiol. 76:1376–86
    [Google Scholar]
  116. 115. 
    Rispail N, Soanes DM, Ant C, Czajkowski R, Grunler A et al. 2009. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet. Biol. 46:287–98
    [Google Scholar]
  117. 116. 
    Ronne H. 1995. Glucose repression in fungi. Trends Genet 11:12–17
    [Google Scholar]
  118. 117. 
    Rui H, Chenfang W. 2018. The function of the carbon metabolism regulator FgCreA in Fusarium graminearum. Sci. Agric. Sin. 51:257–67
    [Google Scholar]
  119. 118. 
    Schumann GL, D'Arcy CJ. 2006. Essential Plant Pathology St. Paul, MN: APS Press
    [Google Scholar]
  120. 119. 
    Seong KY, Pasquali M, Zhou XY, Song J, Hilburn K et al. 2009. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol. Microbiol. 72:354–67
    [Google Scholar]
  121. 120. 
    Shin JY, Bui DC, Lee Y, Nam H, Jung S et al. 2017. Functional characterization of cytochrome P450 monooxygenases in the cereal head blight fungus Fusarium graminearum. Environ. Microbiol. 19:2053–67
    [Google Scholar]
  122. 121. 
    Son H, Seo YS, Min K, Park AR, Lee J et al. 2011. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLOS Pathog. 7:10e1002310
    [Google Scholar]
  123. 122. 
    Spolti P, Del Ponte EM, Dong YH, Cummings JA, Bergstrom GC 2014. Sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Dis 98:607–13
    [Google Scholar]
  124. 123. 
    Streit E, Naehrer K, Rodrigues I, Schatzmayr G 2013. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 93:2892–99
    [Google Scholar]
  125. 124. 
    Tag AG, Garifullina GF, Peplow AW, Ake C, Phillips TD et al. 2001. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl. Environ. Microbiol. 67:5294–302
    [Google Scholar]
  126. 125. 
    Tang GF, Chen Y, Xu JR, Kistler HC, Ma ZH 2018. The fungal myosin I is essential for Fusarium toxisome formation. PLOS Pathog 14:1e1006827
    [Google Scholar]
  127. 126. 
    Teichert S, Wottawa M, Schonig B, Tudzynski B 2006. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot. Cell 5:1807–19
    [Google Scholar]
  128. 127. 
    Tokai T, Koshino H, Takahashi-Ando N, Sato M, Fujimura M, Kimura M 2007. Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis. Biochem. Biophys. Res. Commun. 353:412–17
    [Google Scholar]
  129. 128. 
    Tudzynski B. 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 5:656
    [Google Scholar]
  130. 129. 
    Tudzynski B, Homann V, Feng B, Marzluf GA 1999. Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol. Gen. Genet. 261:106–14
    [Google Scholar]
  131. 130. 
    Van Nguyen T, Kroger C, Bonnighause J, Schafer W, Bormann J 2013. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact 26:1378–94
    [Google Scholar]
  132. 131. 
    Varga E, Wiesenberger G, Hametner C, Ward TJ, Dong YH et al. 2015. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin. Environ. Microbiol. 17:2588–600
    [Google Scholar]
  133. 132. 
    Varga E, Wiesenberger G, Woelflingseder L, Twaruschek K, Hametner C et al. 2018. Less-toxic rearrangement products of NX-toxins are formed during storage and food processing. Toxicol. Lett. 284:205–12
    [Google Scholar]
  134. 133. 
    Wang CF, Zhang SJ, Hou R, Zhao ZT, Zheng Q et al. 2011. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLOS Pathog 7:12e1002460
    [Google Scholar]
  135. 134. 
    Wang HM, Wang XD, Jiang Y 2003. Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases. Mol. Biol. Cell 14:4342–51
    [Google Scholar]
  136. 135. 
    Wang QH, Chen DP, Wu MC, Zhu JD, Jiang C et al. 2018. MFS transporters and GABA metabolism are involved in the self-defense against DON in Fusarium graminearum. Front. Plant Sci 9:438
    [Google Scholar]
  137. 136. 
    Wedaman KP, Reinke A, Anderson S, Yates J, McCaffery JM, Powers T 2003. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14:1204–20
    [Google Scholar]
  138. 137. 
    Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP et al. 2010. FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol. Microbiol. 77:972–94
    [Google Scholar]
  139. 138. 
    Xing LP, Gao L, Chen QG, Pei HY, Di ZC et al. 2018. Over-expressing a UDP-glucosyltransferase gene (Ta-UGT 3) enhances Fusarium head blight resistance of wheat. Plant. Growth Regul. 84:561–71
    [Google Scholar]
  140. 139. 
    Xu XM, Nicholson P. 2009. Community ecology of fungal pathogens causing wheat head blight. Annu. Rev. Phytopathol. 47:83–103
    [Google Scholar]
  141. 140. 
    Yin T, Zhang Q, Wang JH, Liu HQ, Wang CF et al. 2018. The cyclase-associated protein FgCap1 has both protein kinase A–dependent and –independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Mol. Plant Pathol 19:552–63
    [Google Scholar]
  142. 141. 
    Yu FW, Gu Q, Yun YZ, Yin YN, Xu JR et al. 2014. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–32
    [Google Scholar]
  143. 142. 
    Yu HY, Seo JA, Kim JE, Han KH, Shim WB et al. 2008. Functional analyses of heterotrimeric G protein Gα and Gβ subunits in Gibberella zeae. Microbiology 154:392–401
    [Google Scholar]
  144. 143. 
    Yun YZ, Liu ZY, Yin YN, Jiang JH, Chen Y et al. 2015. Functional analysis of the Fusarium graminearum phosphatome. New Phytol 207:119–34
    [Google Scholar]
  145. 144. 
    Yun YZ, Liu ZY, Zhang JZ, Shim WB, Chen Y, Ma ZH 2014. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Environ. Microbiol. 16:2023–37
    [Google Scholar]
  146. 145. 
    Zhang CQ, Chen Y, Yin YN, Ji HH, Shim WB et al. 2015. A small molecule species specifically inhibits Fusarium myosin I. Environ. Microbiol. 17:2735–46
    [Google Scholar]
  147. 146. 
    Zhang HM, Wolf-Hall C. 2010. The effect of different carbon sources on phenotypic expression by Fusarium graminearum strains. Eur. J. Plant Pathol. 127:137–48
    [Google Scholar]
  148. 147. 
    Zhang YJ, Yu JJ, Zhang YN, Zhang X, Cheng CJ et al. 2009. Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum. Mol. Plant-Microbe Interact 22:1143–50
    [Google Scholar]
  149. 148. 
    Zheng DW, Zhang SJ, Zhou XY, Wang CF, Xiang P et al. 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLOS ONE 7:11e49495
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100318
Loading
/content/journals/10.1146/annurev-phyto-082718-100318
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error