To confer resistance against pathogens and pests in plants, typically dominant resistance genes are deployed. However, because resistance is based on recognition of a single pathogen-derived molecular pattern, these narrow-spectrum genes are usually readily overcome. Disease arises from a compatible interaction between plant and pathogen. Hence, altering a plant gene that critically facilitates compatibility could provide a more broad-spectrum and durable type of resistance. Here, such susceptibility () genes are reviewed with a focus on the mechanisms underlying loss of compatibility. We distinguish three groups of genes acting during different stages of infection: early pathogen establishment, modulation of host defenses, and pathogen sustenance. The many examples reviewed here show that genes have the potential to be used in resistance breeding. However, because genes have a function other than being a compatibility factor for the pathogen, the side effects caused by their mutation demands a one-by-one assessment of their usefulness for application.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abdul-Razzak A, Guiraud T, Peypelut M, Walter J, Houvenaghel MC. 1.  et al. 2009. Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E-mediated resistance against Lettuce mosaic potyvirus. Mol. Plant Pathol. 10:109–13 [Google Scholar]
  2. Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R. 2.  2013. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol. Plant Pathol. 14:813–27 [Google Scholar]
  3. Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A. 3.  2006. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J. 47:417–26 [Google Scholar]
  4. Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q. 4.  et al. 2007. Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–95 [Google Scholar]
  5. Anderson JC, Bartels S, Gonzalez Besteiro MA, Shahollari B, Ulm R, Peck SC. 5.  2011. Arabidopsis MAP kinase phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J. 67:258–68 [Google Scholar]
  6. Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerstrom M. 6.  2006. Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J. 47:947–59 [Google Scholar]
  7. Antony G, Zhou J, Huang S, Li T, Liu B. 7.  et al. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–76 [Google Scholar]
  8. Asano M, Satoh R, Mochizuki A, Tsuda S, Yamanaka T. 8.  et al. 2005. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes. FEBS Lett. 579:4479–84 [Google Scholar]
  9. Avila CA, Arevalo-Soliz LM, Jia L, Navarre DA, Chen Z. 9.  et al. 2012. Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiol. 158:2028–41 [Google Scholar]
  10. Ayme V, Souche S, Caranta C, Jacquemond M, Chadoeuf J. 10.  et al. 2006. Different mutations in the genome-linked protein VPg of potato virus Y confer virulence on the pvr23 resistance in pepper. Mol. Plant-Microbe Interact. 19:557–63 [Google Scholar]
  11. Babaeizad V, Imani J, Kogel KH, Eichmann R, Huckelhoven R. 11.  2009. Over-expression of the cell death regulator BAX inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor. Appl. Genet. 118:455–63 [Google Scholar]
  12. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstadler A. 12.  et al. 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol. Plant-Microbe Interact. 21:30–39 [Google Scholar]
  13. Ballare CL. 13.  2011. Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci. 16:249–57 [Google Scholar]
  14. Barbary A, Palloix A, Fazari A, Marteu N, Castagnone-Sereno P, Djian-Caporalino C. 14.  2013. The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3. Theor. Appl. Genet. 127:499–507 [Google Scholar]
  15. Bartels S, Anderson JC, Gonzalez Besteiro MA, Carreri A, Hirt H. 15.  et al. 2009. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 21:2884–97 [Google Scholar]
  16. Berkey R, Bendigeri D, Xiao S. 16.  2012. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front. Plant Sci. 3:68 [Google Scholar]
  17. Bernard A, Joubes J. 17.  2013. Arabidopsis cuticular waxes: Advances in synthesis, export and regulation. Prog. Lipid Res. 52:110–29 [Google Scholar]
  18. Berriri S, Garcia AV, Dit Frey NF, Rozhon W, Pateyron S. 18.  et al. 2012. Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24:4281–93 [Google Scholar]
  19. Bjornstad A, Aastveit K. 19.  1990. Pleiotropic effects on the ml-o mildew resistance gene in barley in different genetic backgrounds. Euphytica 46:217–26 [Google Scholar]
  20. Boch J, Bonas U. 20.  2010. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48:419–36 [Google Scholar]
  21. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 21.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  22. Boisnard A, Albar L, Thiemele D, Rondeau M, Ghesquiere A. 22.  2007. Evaluation of genes from eIF4E and eIF4G multigenic families as potential candidates for partial resistance QTLs to Rice yellow mottle virus in rice. Theor. Appl. Genet. 116:53–62 [Google Scholar]
  23. Boller T, Felix G. 23.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  24. Bozkurt TO, Schornack S, Banfield MJ, Kamoun S. 24.  2012. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15:483–92 [Google Scholar]
  25. Brodersen P, Petersen M, Pike HM, Olszak B, Skov S. 25.  et al. 2002. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev. 16:490–502 [Google Scholar]
  26. Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL. 26.  et al. 2010. Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol. 185:285–99 [Google Scholar]
  27. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M. 27.  et al. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705 [Google Scholar]
  28. Castello MJ, Carrasco JL, Vera P. 28.  2010. DNA-binding protein phosphatase AtDBP1 mediates susceptibility to two potyviruses in Arabidopsis. Plant Physiol. 153:1521–25 [Google Scholar]
  29. Cavatorta J, Perez KW, Gray SM, Van Eck J, Yeam I, Jahn M. 29.  2011. Engineering virus resistance using a modified potato gene. Plant Biotechnol. J. 9:1014–21 [Google Scholar]
  30. Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC. 30.  2010. Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc. Natl. Acad. Sci. USA 107:460–65 [Google Scholar]
  31. Chandran D, Rickert J, Cherk C, Dotson BR, Wildermuth MC. 31.  2013. Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol. Plant-Microbe Interact. 26:537–45 [Google Scholar]
  32. Chandran D, Tai YC, Hather G, Dewdney J, Denoux C. 32.  et al. 2009. Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. Plant Physiol. 149:1435–51 [Google Scholar]
  33. Charron C, Nicolai M, Gallois JL, Robaglia C, Moury B. 33.  et al. 2008. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J. 54:56–68 [Google Scholar]
  34. Chassot C, Nawrath C, Metraux J-P. 34.  2008. The cuticle: not only a barrier for plant defence: a novel defence syndrome in plants with cuticular defects. Plant Signal. Behav. 3:142–44 [Google Scholar]
  35. Chen B, Jiang JH, Zhou XP. 35.  2007. A TOM1 homologue is required for multiplication of Tobacco mosaic virus in Nicotiana benthamiana. J. Zhejiang Univ. Sci. B 8:256–59 [Google Scholar]
  36. Chen K, Gao C. 36.  2014. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep. 33575–83
  37. Chen L-Q, Hou B-H, Lalonde S, Takanaga H, Hartung ML. 37.  et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–32 [Google Scholar]
  38. Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S. 38.  et al. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–11 [Google Scholar]
  39. Chen L, Shiotani K, Togashi T, Miki D, Aoyama M. 39.  et al. 2010. Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance. Plant Cell Physiol. 51:585–95 [Google Scholar]
  40. Chen L, Zhang L, Li D, Wang F, Yu D. 40.  2013. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 110:E1963–71 [Google Scholar]
  41. Chen L, Zhang L, Yu D. 41.  2010. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol. Plant-Microbe Interact. 23:558–65 [Google Scholar]
  42. Christiansen KM, Gu Y, Rodibaugh N, Innes RW. 42.  2011. Negative regulation of defence signalling pathways by the EDR1 protein kinase. Mol. Plant Pathol. 12:746–58 [Google Scholar]
  43. Chu ZH, Yuan M, Yao LL, Ge XJ, Yuan B. 43.  et al. 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 20:1250–55 [Google Scholar]
  44. Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y. 44.  et al. 2013. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol. Biol. 82:23–37 [Google Scholar]
  45. Clough SJ, Fengler KA, Yu IC, Lippok B, Smith RK, Bent AF. 45.  2000. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 97:9323–28 [Google Scholar]
  46. Combe JP, Petracek ME, van Eldik G, Meulewaeter F, Twell D. 46.  2005. Translation initiation factors eIF4E and eIFiso4E are required for polysome formation and regulate plant growth in tobacco. Plant Mol. Biol. 57:749–60 [Google Scholar]
  47. Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J. 47.  et al. 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet. 38:716–20 [Google Scholar]
  48. Cook AA. 48.  1961. A mutation for resistance to potato virus Y in pepper. Phytopathology 51:550–52 [Google Scholar]
  49. Cui H, Wang Y, Xue L, Chu J, Yan C. 49.  et al. 2010. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe 7:164–75 [Google Scholar]
  50. de Almeida Engler J, Kyndt T, Vieira P, Van Cappelle E, Boudolf V. 50.  et al. 2012. CCS52 and DEL1 genes are key components of the endocycle in nematode-induced feeding sites. Plant J. 72:185–98 [Google Scholar]
  51. Dean JV, Delaney SP. 51.  2008. Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiol. Plant. 132:417–25 [Google Scholar]
  52. Desclos-Theveniau M, Arnaud D, Huang TY, Lin GJ, Chen WY. 52.  et al. 2012. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000. PLoS Pathog. 8:e1002513 [Google Scholar]
  53. Deslandes L, Rivas S. 53.  2012. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644–55 [Google Scholar]
  54. Desveaux D, Singer AU, Wu AJ, McNulty BC, Musselwhite L. 54.  et al. 2007. Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. PLoS Pathog. 3:e48 [Google Scholar]
  55. Dodds PN, Rathjen JP. 55.  2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539–48 [Google Scholar]
  56. Donofrio NM, Raman V. 56.  2012. Roles and delivery mechanisms of fungal effectors during infection development: common threads and new directions. Curr. Opin. Microbiol. 15:692–98 [Google Scholar]
  57. Dou D, Zhou JM. 57.  2012. Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12:484–95 [Google Scholar]
  58. Du L, Ali GS, Simons KA, Hou J, Yang T. 58.  et al. 2009. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–58 [Google Scholar]
  59. Eckardt NA. 59.  2002. Plant disease susceptibility genes?. Plant Cell 14:1983–86 [Google Scholar]
  60. Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C. 60.  et al. 2010. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol. Plant-Microbe Interact. 23:1217–27 [Google Scholar]
  61. Eichmann R, Schultheiss H, Kogel KH, Huckelhoven R. 61.  2004. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp tritici. Mol. Plant-Microbe Interact. 17:484–90 [Google Scholar]
  62. Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T. 62.  et al. 2013. Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol. 161:1433–44 [Google Scholar]
  63. Ellis C, Karafyllidis I, Wasternack C, Turner JG. 63.  2002. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–66 [Google Scholar]
  64. Ellis C, Turner JG. 64.  2001. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–33 [Google Scholar]
  65. Ewan R, Pangestuti R, Thornber S, Craig A, Carr C. 65.  et al. 2011. Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity. New Phytol. 191:92–106 [Google Scholar]
  66. Fitzgerald TL, Kazan K, Li Z, Morell MK, Manners JM. 66.  2010. A high-throughput method for the detection of homologous gene deletions in hexaploid wheat. BMC Plant Biol. 10:264 [Google Scholar]
  67. Freisleben R, Lein A. 67.  1942. Über die Auffindung einer Mehltauresistenten Mutante nach Röntgenbestrahlung einer Anfälligen Reinen Linie von Sommergerste. Naturwissenschaften 30:608 [Google Scholar]
  68. Frye CA, Tang D, Innes RW. 68.  2001. Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc. Natl. Acad. Sci. USA 98:373–78 [Google Scholar]
  69. Gallois JL, Charron C, Sanchez F, Pagny G, Houvenaghel MC. 69.  et al. 2010. Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J. Gen. Virol. 91:288–93 [Google Scholar]
  70. Gao M, Liu J, Bi D, Zhang Z, Cheng F. 70.  et al. 2008. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 18:1190–98 [Google Scholar]
  71. Gao X, Brodhagen M, Isakeit T, Brown SH, Gobel C. 71.  et al. 2009. Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol. Plant-Microbe Interact. 22:222–31 [Google Scholar]
  72. Gao X, Shim WB, Gobel C, Kunze S, Feussner I. 72.  et al. 2007. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol. Plant-Microbe Interact. 20:922–33 [Google Scholar]
  73. Gaspar YM, Nam J, Schultz CJ, Lee LY, Gilson PR. 73.  et al. 2004. Characterization of the Arabidopsis lysine-rich arabinogalactan-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol. 135:2162–71 [Google Scholar]
  74. Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E. 74.  et al. 2008. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol. 148:358–68 [Google Scholar]
  75. Hansjakob A, Riederer M, Hildebrandt U. 75.  2011. Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol. 60:1151–61 [Google Scholar]
  76. Hartung F, Schiemann J. 76.  2014. Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J. 78742–52
  77. Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L. 77.  et al. 2007. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903 [Google Scholar]
  78. Hewezi T, Baum TJ. 78.  2013. Manipulation of plant cells by cyst and root-knot nematode effectors. Mol. Plant-Microbe Interact. 26:9–16 [Google Scholar]
  79. Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG. 79.  et al. 2008. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–93 [Google Scholar]
  80. Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG. 80.  et al. 2010. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol. 152:968–84 [Google Scholar]
  81. Hu L, Smith TF, Goldberger G. 81.  2009. LFG: a candidate apoptosis regulatory gene family. Apoptosis 14:1255–65 [Google Scholar]
  82. Huang TS, Wei T, Laliberte JF, Wang A. 82.  2010. A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiol. 152:255–66 [Google Scholar]
  83. Huckelhoven R, Dechert C, Kogel KH. 83.  2003. Overexpression of barley BAX inhibitor 1 induces breakdown of Mlo-mediated penetration resistance to Blumeria graminis. Proc. Natl. Acad. Sci. USA 100:5555–60 [Google Scholar]
  84. Huibers RP, Loonen AE, Gao D, Van den Ackerveken G, Visser RG, Bai Y. 84.  2013. Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS ONE 8:e67467 [Google Scholar]
  85. Humphry M, Consonni C, Panstruga R. 85.  2006. Mlo-based powdery mildew immunity: silver bullet or simply non-host resistance?. Mol. Plant Pathol. 7:605–10 [Google Scholar]
  86. Humphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R. 86.  2011. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol. Plant Pathol. 12:866–78 [Google Scholar]
  87. Imani J, Baltruschat H, Stein E, Jia G, Vogelsberg J. 87.  et al. 2006. Expression of barley BAX inhibitor-1 in carrots confers resistance to Botrytis cinerea. Mol. Plant Pathol. 7:279–84 [Google Scholar]
  88. Iyer-Pascuzzi AS, McCouch SR. 88.  2007. Recessive resistance genes and the Oryza sativa–Xanthomonas oryzae pv. oryzae pathosystem. Mol. Plant-Microbe Interact. 20:731–39 [Google Scholar]
  89. Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N. 89.  et al. 2003. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–13 [Google Scholar]
  90. Jansen M, Jarosch B, Schaffrath U. 90.  2007. The barley mutant emr1 exhibits restored resistance against Magnaporthe oryzae in the hypersusceptible Mlo-genetic background. Planta 225:1381–91 [Google Scholar]
  91. Jarosch B, Kogel KH, Schaffrath U. 91.  1999. The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp, hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 12:508–14 [Google Scholar]
  92. Jenner CE, Nellist CF, Barker GC, Walsh JA. 92.  2010. Turnip mosaic virus (TuMV) is able to use alleles of both eIF4E and eIF(iso)4E from multiple loci of the diploid Brassica rapa. Mol. Plant-Microbe Interact. 23:1498–505 [Google Scholar]
  93. Jiang CJ, Shimono M, Maeda S, Inoue H, Mori M. 93.  et al. 2009. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol. Plant-Microbe Interact. 22:820–29 [Google Scholar]
  94. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. 94.  2013. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41:e188 [Google Scholar]
  95. Jiwan D, Roalson EH, Main D, Dhingra A. 95.  2013. Antisense expression of peach mildew resistance locus O (PpMlo1) gene confers cross-species resistance to powdery mildew in Fragaria × ananassa. Transgenic Res. 22:1119–31 [Google Scholar]
  96. Jones JDG, Dangl JL. 96.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  97. Jorgensen JH. 97.  1992. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63:141–52 [Google Scholar]
  98. Jung YH, Agrawal GK, Rakwal R, Kim JA, Lee MO. 98.  et al. 2006. Functional characterization of OsRacB GTPase: a potentially negative regulator of basal disease resistance in rice. Plant Physiol. Biochem. 44:68–77 [Google Scholar]
  99. Kachroo A, Fu DQ, Havens W, Navarre D, Kachroo P, Ghabrial SA. 99.  2008. An oleic acid–mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol. Plant-Microbe Interact. 21:564–75 [Google Scholar]
  100. Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF. 100.  2001. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc. Natl. Acad. Sci. USA 98:9448–53 [Google Scholar]
  101. Kang BC, Yeam I, Li H, Perez KW, Jahn MM. 101.  2007. Ectopic expression of a recessive resistance gene generates dominant potyvirus resistance in plants. Plant Biotechnol. J. 5:526–36 [Google Scholar]
  102. Kawaguchi R, Bailey-Serres J. 102.  2002. Regulation of translational initiation in plants. Curr. Opin. Plant Biol. 5:460–65 [Google Scholar]
  103. Kay S, Hahn S, Marois E, Hause G, Bonas U. 103.  2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–51 [Google Scholar]
  104. Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G. 104.  et al. 2010. Conserved molecular components for pollen tube reception and fungal invasion. Science 330:968–71 [Google Scholar]
  105. Kim DS, Hwang BK. 105.  2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J. 72:843–55 [Google Scholar]
  106. Kim HJ, Lee HR, Jo KR, Mortazavian SM, Huigen DJ. 106.  et al. 2012. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor. Appl. Genet. 124:923–35 [Google Scholar]
  107. Konig S, Feussner K, Schwarz M, Kaever A, Iven T. 107.  et al. 2012. Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol. 196:1086–97 [Google Scholar]
  108. Kost B. 108.  2008. Spatial control of Rho (Rac-Rop) signaling in tip-growing plant cells. Trends Cell Biol. 18:119–27 [Google Scholar]
  109. Kumar J, Huckelhoven R, Beckhove U, Nagarajan S, Kogel KH. 109.  2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–33 [Google Scholar]
  110. Kumar S, Dubey AK, Karmakar R, Kini KR, Mathew MK, Prakash HS. 110.  2012. Inhibition of TMV multiplication by siRNA constructs against TOM1 and TOM3 genes of Capsicum annuum. J. Virol. Methods 186:78–85 [Google Scholar]
  111. Kusaba M. 111.  2004. RNA interference in crop plants. Curr. Opin. Biotechnol. 15:139–43 [Google Scholar]
  112. L'Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E. 112.  et al. 2011. A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog. 7:e1002148 [Google Scholar]
  113. Lange M, Yellina AL, Orashakova S, Becker A. 113.  2013. Virus-induced gene silencing (VIGS) in plants: an overview of target species and the virus-derived vector systems. Methods Mol. Biol. 975:1–14 [Google Scholar]
  114. Leach JE, Vera Cruz CM, Bai J, Leung H. 114.  2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39:187–224 [Google Scholar]
  115. Lee JH, Muhsin M, Atienza GA, Kwak DY, Kim SM. 115.  et al. 2010. Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Mol. Plant-Microbe Interact. 23:29–38 [Google Scholar]
  116. Lellis AD, Allen ML, Aertker AW, Tran JK, Hillis DM. 116.  et al. 2010. Deletion of the eIFiso4G subunit of the Arabidopsis eIFiso4F translation initiation complex impairs health and viability. Plant Mol. Biol. 74:249–63 [Google Scholar]
  117. Lewis JD, Wan J, Ford R, Gong Y, Fung P. 117.  et al. 2012. Quantitative interactor screening with next-generation sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genomics 13:8 [Google Scholar]
  118. Li C, Wei J, Lin Y, Chen H. 118.  2012. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Rep. 31:851–62 [Google Scholar]
  119. Liu J, Elmore JM, Coaker G. 119.  2009. Investigating the functions of the RIN4 protein complex during plant innate immune responses. Plant Signal. Behav. 4:1107–10 [Google Scholar]
  120. Liu JZ, Horstman HD, Braun E, Graham MA, Zhang C. 120.  et al. 2011. Soybean homologs of MPK4 negatively regulate defense responses and positively regulate growth and development. Plant Physiol. 157:1363–78 [Google Scholar]
  121. Liu W, Yuan JS, Stewart CN Jr. 121.  2013. Advanced genetic tools for plant biotechnology. Nat. Rev. Genet. 14:781–93 [Google Scholar]
  122. Lorang J, Kidarsa T, Bradford CS, Gilbert B, Curtis M. 122.  et al. 2012. Tricking the guard: exploiting plant defense for disease susceptibility. Science 338:659–62 [Google Scholar]
  123. Lorrain S, Vailleau F, Balague C, Roby D. 123.  2003. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends Plant Sci. 8:263–71 [Google Scholar]
  124. Lumbreras V, Vilela B, Irar S, Sole M, Capellades M. 124.  et al. 2010. MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J. 63:1017–30 [Google Scholar]
  125. Ma W. 125.  2011. Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci. 181:342–46 [Google Scholar]
  126. Masuta C, Nishimura M, Morishita H, Hataya T. 126.  1999. A single amino acid change in viral genome-associated protein of potato virus y correlates with resistance breaking in “virgin a mutant” tobacco. Phytopathology 89:118–23 [Google Scholar]
  127. Mazier M, Flamain F, Nicolai M, Sarnette V, Caranta C. 127.  2011. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS ONE 6:e29595 [Google Scholar]
  128. McDonald BA, Linde C. 128.  2002. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40:349–79 [Google Scholar]
  129. Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R. 129.  2007. Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 144:1132–43 [Google Scholar]
  130. Moeder W, Yoshioka K. 130.  2008. Lesion mimic mutants: a classical, yet still fundamental approach to study programmed cell death. Plant Signal. Behav. 3:764–67 [Google Scholar]
  131. Moury B, Charron C, Janzac B, Simon V, Gallois JL. 131.  et al. 2014. Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked viral protein (VPg): a game of mirrors impacting resistance spectrum and durability. Infect. Genet. Evol. In press
  132. Moury B, Morel C, Johansen E, Guilbaud L, Souche S. 132.  et al. 2004. Mutations in potato virus Y genome-linked protein determine virulence toward recessive resistances in Capsicum annuum and Lycopersicon hirsutum. Mol. Plant-Microbe Interact. 17:322–29 [Google Scholar]
  133. Moury B, Verdin E. 133.  2012. Viruses of pepper crops in the Mediterranean basin: a remarkable stasis. Adv. Virus Res. 84:127–62 [Google Scholar]
  134. Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A. 134.  2011. Rho proteins of plants: functional cycle and regulation of cytoskeletal dynamics. Eur. J. Cell Biol. 90:934–43 [Google Scholar]
  135. Nakahara KS, Shimada R, Choi SH, Yamamoto H, Shao J, Uyeda I. 135.  2010. Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in pea. Mol. Plant-Microbe Interact. 23:1460–69 [Google Scholar]
  136. Nicaise V, Gallois JL, Chafiai F, Allen LM, Schurdi-Levraud V. 136.  et al. 2007. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett. 581:1041–46 [Google Scholar]
  137. Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D. 137.  2012. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol. 158:1847–59 [Google Scholar]
  138. Nieto C, Morales M, Orjeda G, Clepet C, Monfort A. 138.  et al. 2006. An eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. Plant J. 48:452–62 [Google Scholar]
  139. Nieto C, Piron F, Dalmais M, Marco CF, Moriones E. 139.  et al. 2007. EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol. 7:34 [Google Scholar]
  140. Nishikiori M, Mori M, Dohi K, Okamura H, Katoh E. 140.  et al. 2011. A host small GTP-binding protein ARL8 plays crucial roles in tobamovirus RNA replication. PLoS Pathog. 7:e1002409 [Google Scholar]
  141. Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC. 141.  2003. Loss of a callose synthase results in salicylic acid–dependent disease resistance. Science 301:969–72 [Google Scholar]
  142. Noel LD, Denance N, Szurek B. 142.  2013. Predicting promoters targeted by TAL effectors in plant genomes: from dream to reality. Front. Plant Sci. 4:333 [Google Scholar]
  143. Oh TJ, May GD. 143.  2001. Oligonucleotide-directed plant gene targeting. Curr. Opin. Biotechnol. 12:169–72 [Google Scholar]
  144. Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R. 144.  2005. The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J. 41:291–303 [Google Scholar]
  145. Palloix A, Ayme V, Moury B. 145.  2009. Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol. 183:190–99 [Google Scholar]
  146. Pandey SP, Somssich IE. 146.  2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150:1648–55 [Google Scholar]
  147. Pathuri IP, Reitberger IE, Hueckelhoven R, Proels RK. 147.  2011. Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f.sp hordei. J. Exp. Bot. 62:3449–57 [Google Scholar]
  148. Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J. 148.  et al. 2008. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. Plant Cell Rep. 27:1877–87 [Google Scholar]
  149. Pavan S, Schiavulli A, Appiano M, Marcotrigiano AR, Cillo F. 149.  et al. 2011. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theor. Appl. Genet. 123:1425–31 [Google Scholar]
  150. Pavan S, Zheng Z, Borisova M, van den Berg P, Lotti C. 150.  et al. 2008. Map- versus homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew. Euphytica 162:91–98 [Google Scholar]
  151. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U. 151.  et al. 2000. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–20 [Google Scholar]
  152. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. 152.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  153. Piron F, Nicolai M, Minoia S, Piednoir E, Moretti A. 153.  et al. 2010. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE 5:e11313 [Google Scholar]
  154. Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O. 154.  et al. 2013. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol. 161:1172–88 [Google Scholar]
  155. Qi Y, Tsuda K, Glazebrook J, Katagiri F. 155.  2011. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis. Mol. Plant Pathol. 12:702–8 [Google Scholar]
  156. Ravensdale M, Nemri A, Thrall PH, Ellis JG, Dodds PN. 156.  2011. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol. Plant Pathol. 12:93–102 [Google Scholar]
  157. Reinstadler A, Muller J, Czembor JH, Piffanelli P, Panstruga R. 157.  2010. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biol. 10:31 [Google Scholar]
  158. Rep M, Kistler HC. 158.  2010. The genomic organization of plant pathogenicity in Fusarium species. Curr. Opin. Plant Biol. 13:420–26 [Google Scholar]
  159. Rigola D, van Oeveren J, Janssen A, Bonne A, Schneiders H. 159.  et al. 2009. High-throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS ONE 4:e4761 [Google Scholar]
  160. Robert-Seilaniantz A, Grant M, Jones JD. 160.  2011. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49:317–43 [Google Scholar]
  161. Rodriguez-Hernandez AM, Gosalvez B, Sempere RN, Burgos L, Aranda MA, Truniger V. 161.  2012. Melon RNA interference (RNAi) lines silenced for Cm-eIF4E show broad virus resistance. Mol. Plant Pathol. 13:755–63 [Google Scholar]
  162. Romer P, Recht S, Strauss T, Elsaesser J, Schornack S. 162.  et al. 2010. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytol. 187:1048–57 [Google Scholar]
  163. Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A. 163.  et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32:1067–75 [Google Scholar]
  164. Ruiz-Lozano JM, Gianinazzi S, Gianinazzi-Pearson V. 164.  1999. Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza 9:237–40 [Google Scholar]
  165. Sawinski K, Mersmann S, Robatzek S, Bohmer M. 165.  2013. Guarding the green: pathways to stomatal immunity. Mol. Plant-Microbe Interact. 26:626–32 [Google Scholar]
  166. Schmidt SM, Kuhn H, Micali C, Liller C, Kwaaitaal M, Panstruga R. 166.  2014. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests host vesicle trafficking is a fungal pathogenicity target. Mol. Plant Pathol. doi: 10.1111/mpp.12110
  167. Schultheiss H, Dechert C, Kogel KH, Huckelhoven R. 167.  2002. A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol. 128:1447–54 [Google Scholar]
  168. Schultheiss H, Dechert C, Kogel KH, Huckelhoven R. 168.  2003. Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J. 36:589–601 [Google Scholar]
  169. Shen X, Liu H, Yuan B, Li X, Xu C, Wang S. 169.  2011. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 34:179–91 [Google Scholar]
  170. Song JT, Koo YJ, Park JB, Seo YJ, Cho YJ. 170.  et al. 2009. The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses. Mol. Cells 28:105–9 [Google Scholar]
  171. Song JT, Koo YJ, Seo HS, Kim MC, Choi YD, Kim JH. 171.  2008. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. Phytochemistry 69:1128–34 [Google Scholar]
  172. Song S, Qi T, Fan M, Zhang X, Gao H. 172.  et al. 2013. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9:e1003653 [Google Scholar]
  173. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM. 173.  et al. 2010. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–46 [Google Scholar]
  174. St. Clair DA. 174.  2010. Quantitative disease resistance and quantitative resistance loci in breeding. Annu. Rev. Phytopathol. 48:247–68 [Google Scholar]
  175. Stegmann M, Anderson RG, Ichimura K, Pecenkova T, Reuter P. 175.  et al. 2012. The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell 24:4703–16 [Google Scholar]
  176. Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 176.  2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 200:808–19 [Google Scholar]
  177. Stuttmann J, Hubberten H-M, Rietz S, Kaur J, Muskett P. 177.  et al. 2011. Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. Plant Cell 23:2788–803 [Google Scholar]
  178. Sugio A, Yang B, Zhu T, White FF. 178.  2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proc. Natl. Acad. Sci. USA 104:10720–25 [Google Scholar]
  179. Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK. 179.  2011. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Mol. Plant Pathol. 12:855–65 [Google Scholar]
  180. Takken FL, Tameling WI. 180.  2009. To nibble at plant resistance proteins. Science 324:744–46 [Google Scholar]
  181. Talame V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S. 181.  2008. TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6:477–85 [Google Scholar]
  182. Tang D, Simonich MT, Innes RW. 182.  2007. Mutations in LACS2, a long-chain acyl-coenzyme a synthetase, enhance susceptibility to avirulent Pseudomonas syringae but confer resistance to Botrytis cinerea in Arabidopsis. Plant Physiol. 144:1093–103 [Google Scholar]
  183. Tao Z, Liu H, Qiu D, Zhou Y, Li X. 183.  et al. 2009. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol. 151:936–48 [Google Scholar]
  184. Thomma BP, Nurnberger T, Joosten MH. 184.  2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15 [Google Scholar]
  185. Thuleau P, Aldon D, Cotelle V, Briere C, Ranty B. 185.  et al. 2013. Relationships between calcium and sphingolipid-dependent signalling pathways during the early steps of plant-pathogen interactions. Biochim. Biophys. Acta 1833:1590–94 [Google Scholar]
  186. Trujillo M, Ichimura K, Casais C, Shirasu K. 186.  2008. Negative regulation of PAMP-triggered immunity by an E3 ubiquitin ligase triplet in Arabidopsis. Curr. Biol. 18:1396–401 [Google Scholar]
  187. Trujillo M, Shirasu K. 187.  2010. Ubiquitination in plant immunity. Curr. Opin. Plant Biol. 13:402–8 [Google Scholar]
  188. Truniger V, Aranda MA. 188.  2009. Recessive resistance to plant viruses. Adv. Virus Res. 75:119–59 [Google Scholar]
  189. Tsuda K, Katagiri F. 189.  2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459–65 [Google Scholar]
  190. Tsujimoto Y, Numaga T, Ohshima K, Yano M, Ohsawa R. 190.  et al. 2003. Arabidopsis TOBAMOVIRUS MULTIPLICATION(TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J. 22:335–43 [Google Scholar]
  191. Uppalapati SR, Ishiga Y, Doraiswamy V, Bedair M, Mittal S. 191.  et al. 2012. Loss of abaxial leaf epicuticular wax in Medicago truncatula irg1/palm1 mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens. Plant Cell 24:353–70 [Google Scholar]
  192. Urquhart W, Gunawardena AH, Moeder W, Ali R, Berkowitz GA, Yoshioka K. 192.  2007. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol. Biol. 65:747–61 [Google Scholar]
  193. van Damme M, Zeilmaker T, Elberse J, Andel A, de Sain-van der Velden M, van den Ackerveken G. 193.  2009. Downy mildew resistance in Arabidopsis by mutation of HOMOSERINE KINASE. Plant Cell 21:2179–89 [Google Scholar]
  194. Varallyay E, Giczey G, Burgyan J. 194.  2012. Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Arch. Virol. 157:1345–50 [Google Scholar]
  195. Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G. 195.  et al. 2003. Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. Plant Cell 15:2093–105 [Google Scholar]
  196. Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R. 196.  et al. 2011. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49:507–31 [Google Scholar]
  197. Vlot AC, Dempsey DA, Klessig DF. 197.  2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177–206 [Google Scholar]
  198. Vogel JP, Raab TK, Schiff C, Somerville SC. 198.  2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–106 [Google Scholar]
  199. Vogel JP, Raab TK, Somerville CR, Somerville SC. 199.  2004. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J. 40:968–78 [Google Scholar]
  200. von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Kessler T. 200.  et al. 2011. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. Plant Cell 23:4124–45 [Google Scholar]
  201. Wang A, Krishnaswamy S. 201.  2012. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol. Plant Pathol. 13:795–803 [Google Scholar]
  202. Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B. 202.  et al. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22:2242–46 [Google Scholar]
  203. Wang TL, Uauy C, Robson F, Till B. 203.  2012. TILLING in extremis. Plant Biotechnol. J. 10:761–72 [Google Scholar]
  204. Wang X, Kohalmi SE, Svircev A, Wang A, Sanfacon H, Tian L. 204.  2013. Silencing of the host factor eIF(iso)4E gene confers plum pox virus resistance in plum. PLoS ONE 8:e50627 [Google Scholar]
  205. Wang X, Tang C, Huang X, Li F, Chen X. 205.  et al. 2012. Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. J. Exp. Bot. 63:4571–84 [Google Scholar]
  206. Wang Y, Dang F, Liu Z, Wang X, Eulgem T. 206.  et al. 2013. CaWRKY58, encoding a group I WRKY transcription factor of Capsicum annuum, negatively regulates resistance to Ralstonia solanacearum infection. Mol. Plant Pathol. 14:131–44 [Google Scholar]
  207. Wang Z-Y, Xiong L, Li W, Zhu J-K, Zhu J. 207.  2011. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell 23:1971–84 [Google Scholar]
  208. Weis C, Hueckelhoven R, Eichmann R. 208.  2013. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J. Exp. Bot. 64:3855–67 [Google Scholar]
  209. Wittmann S, Chatel H, Fortin MG, Laliberte JF. 209.  1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92 [Google Scholar]
  210. Wulff BB, Chakrabarti A, Jones DA. 210.  2009. Recognitional specificity and evolution in the tomato–Cladosporium fulvum pathosystem. Mol. Plant-Microbe Interact. 22:1191–202 [Google Scholar]
  211. Xin XF, He SY. 211.  2013. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. Annu. Rev. Phytopathol. 51:473–98 [Google Scholar]
  212. Xiong L, Yang Y. 212.  2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–59 [Google Scholar]
  213. Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M. 213.  et al. 2002. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J. Virol. 76:2491–97 [Google Scholar]
  214. Yamanaka T, Ohta T, Takahashi M, Meshi T, Schmidt R. 214.  et al. 2000. TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc. Natl. Acad. Sci. USA 97:10107–12 [Google Scholar]
  215. Yang H, Li Y, Hua J. 215.  2006. The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J. 48:238–48 [Google Scholar]
  216. Yang H, Yang S, Li Y, Hua J. 216.  2007. The Arabidopsis BAP1 and BAP2 genes are general inhibitors of programmed cell death. Plant Physiol. 145:135–46 [Google Scholar]
  217. Yi M, Valent B. 217.  2013. Communication between filamentous pathogens and plants at the biotrophic interface. Annu. Rev. Phytopathol. 51:587–611 [Google Scholar]
  218. Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T. 218.  et al. 2013. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J. Exp. Bot. 64:5085–97 [Google Scholar]
  219. Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R. 219.  et al. 2004. The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J. Virol. 78:6102–11 [Google Scholar]
  220. Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A. 220.  et al. 2009. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J. 57:615–25 [Google Scholar]
  221. Yuan M, Chu Z, Li X, Xu C, Wang S. 221.  2010. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–76 [Google Scholar]
  222. Yuksel B, Memon AR. 222.  2009. Legume small GTPases and their role in the establishment of symbiotic associations with Rhizobium spp. Plant Signal. Behav. 4:257–60 [Google Scholar]
  223. Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M. 223.  et al. 2004. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–808 [Google Scholar]
  224. Zhang K, Halitschke R, Yin C, Liu CJ, Gan SS. 224.  2013. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. USA 110:14807–12 [Google Scholar]
  225. Zheng Z, Nonomura T, Appiano M, Pavan S, Matsuda Y. 225.  et al. 2013. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica. PLoS ONE 8:e70723 [Google Scholar]
  226. Zhu S, Li Y, Vossen JH, Visser RG, Jacobsen E. 226.  2012. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 21:89–99 [Google Scholar]
  227. Zhu Y, Nam J, Carpita NC, Matthysse AG, Gelvin SB. 227.  2003. Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. Plant Physiol. 133:1000–10 [Google Scholar]
  228. Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY. 228.  et al. 2003. Identification of Arabidopsis rat mutants. Plant Physiol. 132:494–505 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error