1932

Abstract

Rachel Carson's 1962 exposed both observed and potential environmental and health externalities of the increasing organochlorine and organophosphate insecticide use in the United States post–World War II. was a critical component in a popular movement that resulted in increased regulation and the development of safer pesticides. Most changes in pesticide use in the global north have involved pesticide substitutions, although riskier pesticides remain in use. Many ideas in are compatible with the theory of integrated pest management (IPM), and IPM has been broadly embraced in the United States and internationally as a strategy for achieving least-use and/or least-risk pesticide use in agriculture. IPM is a politically feasible policy that purports to reduce pesticide use and/or risk in agriculture but often does not, except in extreme cases of pesticide overuse that result in negative agricultural/economic consequences for growers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-045900
2014-08-04
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/52/1/annurev-phyto-102313-045900.html?itemId=/content/journals/10.1146/annurev-phyto-102313-045900&mimeType=html&fmt=ahah

Literature Cited

  1. 1. ABC News 2001. Food. PollingReport.com http://pollingreport.com/food.htm
  2. 2. AgroNews 2013. European crop protection sales up 10% in 2012. http://news.agropages.com/News/NewsDetail—11252.htm
  3. Ajwa H, Stanghellini MS, Gao S, Sullivan DA, Khan A, Ntow W, Qin R. 3.  2013. Fumigant emission reductions with TIF warrant regulatory changes. Calif. Agric. 67:147–52 [Google Scholar]
  4. Aspelin A. 4.  1997. Pesticide industry sales and usage: 1994 and 1995 market estimates. 733-K-97-002 US EPA, Washington, DC [Google Scholar]
  5. Babcock BA, Lichtenberg E, Zilberman D. 5.  1992. Impact of damage control and quality of output: estimating pest control effectiveness. Am. J. Agric. Econ. 74:165–72 [Google Scholar]
  6. Bahlai C, Xue Y, McCreary CM, Schaafsma AW, Hallett RH. 6.  2010. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans. PLoS ONE 5:e11250 [Google Scholar]
  7. Bailey HC, Deanovic L, Reyes E, Kimball T, Larson K. 7.  et al. 2000. Diazinon and chlorpyrifos in urban waterways in Northern California, USA. Environ. Toxicol. Chem. 19:82–87 [Google Scholar]
  8. Barry T, Oriel M, Verder-Carlos ML, Mehler L, Edmiston S, O'Malley M. 8.  2010. Community exposure following a drip-application of chloropicrin. J. Agromed. 15:24–37 [Google Scholar]
  9. Bebber DP, Ramotowski MAT, Gurr SJ. 9.  2013. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3:985–88 [Google Scholar]
  10. Beegle CC, Yamamoto T. 10.  1992. Invitation paper (CP Alexander Fund): history of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124:587–616 [Google Scholar]
  11. Beketov M, Kefford BJ, Schäfer RB, Liess M. 11.  2013. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA 110:11039–43 [Google Scholar]
  12. Belova A, Narayan T, Olkin I. 12.  2013. Methyl bromide alternatives for strawberry and tomato pre-plant uses: a meta-analysis. Crop Prot. 54:1–14 [Google Scholar]
  13. Benbrook CM. 13.  2012. Impacts of genetically engineered crops on pesticide use in the U. S.: the first sixteen years. Environ. Sci. Eur. 24:24 [Google Scholar]
  14. Birch ANE, Begg GS, Squire GR. 14.  2011. How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J. Exp. Bot. 62:3251–61 [Google Scholar]
  15. Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M. 15.  et al. 2011. Prenatal exposure to organophosphate pesticides and IQ in 7-year old children. Environ. Health Perspect. 119:1189–95 [Google Scholar]
  16. Boudreau M. 16.  2013. Diseases in intercropping systems. Annu. Rev. Phytopathol. 51:499–519 [Google Scholar]
  17. Brewer MJ, Goodell PB. 17.  2012. Approaches and incentives to implement integrated pest management that addresses regional and environmental issues. Annu. Rev. Entomol. 57:41–59 [Google Scholar]
  18. Brown JKM. 18.  2001. Fitness costs of plant disease resistance. Encyclopedia of Life Sciences Handbook of Plant Science K Roberts 815–22 Chichester, UK: John Wiley & Sons [Google Scholar]
  19. Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F. 19.  et al. 2002. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc. Natl. Acad. Sci. USA 99:9328–33 [Google Scholar]
  20. Brummer EC, Barber WT, Collier SM, Cox TS, Johnson R. 20.  2011. Plant breeding for harmony between agriculture and the environment. Front. Ecol. Environ. 9:561–68 [Google Scholar]
  21. 21. Calif. Dep. Pestic. Regul 2012. Pesticide use reports. Sacramento. http://www.cdpr.ca.gov/docs/pur/purmain.htm
  22. Carson RL. 22.  1962. Silent Spring Cambridge, MA: Houghton Mifflin Co. [Google Scholar]
  23. Casida JE. 23.  2012. The greening of pesticide-environment interactions: some personal observations. Environ. Health Perspect. 120:487–93 [Google Scholar]
  24. Cattaneo MG, Yafuso C, Schmidt C, Huang C-Y, Rahman M. 24.  2006. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc. Natl. Acad. Sci. USA 103:7571–76 [Google Scholar]
  25. Chen G-Q, He Y-H, Qiang S. 25.  2013. Increasing seriousness of plant invasions in croplands of Eastern China in relation to changing farming practices: a case study. PLoS ONE 8:e74136 [Google Scholar]
  26. Chen M, Shelton A, Ye G. 26.  2011. Insect-resistant genetically modified rice in China: from research to commercialization. Annu. Rev. Entomol. 56:81–101 [Google Scholar]
  27. Clune AL, Ryan PB, Barr DB. 27.  2012. Have regulatory efforts to reduce organophosphorus insecticide exposures been effective?. Environ. Health Perspect. 120:521–25 [Google Scholar]
  28. Cone M. 28.  2010. Insecticide to be banned: three decades after tainted melons sickened 2,000 people. Environ. Health News http://www.environmentalhealthnews.org/ehs/news/aldicarb-phaseout [Google Scholar]
  29. Coutts BA, Jones RAC. 29.  2005. Suppressing spread of Tomato spotted wilt virus by drenching infected source or healthy recipient plants with neonicotinoid insecticides to control thrips vectors. Ann. Appl. Biol. 146:95–103 [Google Scholar]
  30. Crowder DW, Northfield TD, Strand MR, Snyder WE. 30.  2010. Organic agriculture promotes evenness and natural pest control. Nature 466:109–12 [Google Scholar]
  31. Dasgupta S, Meisner C, Huq M. 31.  2007. A pinch or a pint? Evidence of pesticide overuse in Bangladesh. J. Agric. Econ. 58:91–114 [Google Scholar]
  32. Devine GJ, Furlong MJ. 32.  2007. Insecticide use: contexts and ecological consequences. Agric. Hum. Values 24:281–306 [Google Scholar]
  33. Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E. 33.  et al. 2013. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. USA 110:18466–71 [Google Scholar]
  34. Domínguez P, Miranda L, Soria C, de los Santos B, Chamorro M. 34.  et al. 2014. Soil biosolarization for sustainable strawberry production. Agron. Sustain. Devel. In press [Google Scholar]
  35. 35. Econ. Res. Serv 2013. Farm Income and Wealth Statistics. Washington, DC: US Dep. Agric [Google Scholar]
  36. Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL. 36.  et al. 2011. Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ. Health Perspect. 119:1182–88 [Google Scholar]
  37. Epstein L. 37.  2006. California's pesticide use reports and trends in pesticide use. Outlooks Pest Manag. 17:148–54 [Google Scholar]
  38. Epstein L, Bassein S. 38.  2001. Pesticide applications of copper on perennial crops in California, 1993 to 1998. J. Environ. Qual. 30:1844–47 [Google Scholar]
  39. Epstein L, Bassein S. 39.  2003. Patterns of pesticide use in California and the implications for strategies for reduction of pesticides. Annu. Rev. Phytopathol. 41:351–75 [Google Scholar]
  40. Epstein L, Bassein S, Zalom FG. 40.  2000. Almond and stone fruit growers reduce OP, increase pyrethroid use in dormant sprays. Calif. Agric. 54:14–19 [Google Scholar]
  41. Epstein L, Bassein S, Zalom FG, Wilhoit LR. 41.  2001. Changes in pest management practice in almond orchards during the rainy season in California USA. Agric. Ecosys. Environ. 83:111–20 [Google Scholar]
  42. Epstein L, Zhang M. 42.  2014. The impact of integrated pest management programs on pesticide use in California, USA. Integrated Pest Management: Experiences with Implementation R Peshin, D Pimentel 173–200 Dordrecht, Neth: Springer [Google Scholar]
  43. Fedoroff NV, Beachy R. 43.  2012. Facilitating market access for GE crops developed through public sector research. Regulation of Agricultural Biotechnology: The United States and Canada CA Wozniak, A McHughen 377–90 Dordrecht, Neth: Springer [Google Scholar]
  44. Fennimore SA, Serohijos R, Samtani JB, Ajwa HA, Subbarao KV. 44.  et al. 2013. TIF film, substrates and nonfumigant soil disinfestation maintain fruit yields. Calif. Agric. 67:139–46 [Google Scholar]
  45. Fernandez-Cornejo J, Hallahan C, Nehring R, Wechsler S. 45.  2012. Conservation tillage, herbicide use, and genetically engineered crops in the United States: the case of soybeans. AgBioForum 15:231–41 [Google Scholar]
  46. Fernandez-Cornejo J, Wechsler S. 46.  2012. Revisiting the impact of Bt corn adoption by U.S. farmers. Agric. Resour. Econ. Rev. 41:377–90 [Google Scholar]
  47. Flint ML, Dreistadt S. 47.  2000. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control Richmond, CA: Univ. Calif. [Google Scholar]
  48. Flores F, Collier CJ, Mercurio P, Negri AP. 48.  2013. Phytotoxicity of four photosystem II herbicides to tropical seagrasses. PLoS ONE 8:9e75798 [Google Scholar]
  49. Fok M, Xu N. 49.  2011. Variety market development: a Bt cotton cropping factor and constraint in China. AgBioForum 14:47–60 [Google Scholar]
  50. 50. Food Agric. Organ. U.N 2013. Prevention and Disposal of Obsolete Pesticides Rome: FAO http://www.fao.org/agriculture/crops/obsolete-pesticides/en/ [Google Scholar]
  51. 51. Food Agric. Organ. U.N 2013. Integrated Pest Management Rome: FAO http://www.fao.org/agriculture/crops/core-themes/theme/pests/ipm/en/ [Google Scholar]
  52. Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. 52.  2007. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc. Natl. Acad. Sci. USA 104:10282–87 [Google Scholar]
  53. Froines JR. 53.  2010. Report of the scientific review committee on methyl iodide to the Department of Pesticide Regulation. Sci. Rev. Comm. Calif. Dep. Pestic. Regul. Sacramento, CA. http://www.cdpr.ca.gov/docs/risk/mei/peer_review_report.pdf [Google Scholar]
  54. Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L. 54.  et al. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–60 [Google Scholar]
  55. 55. Fungic. Action Resist. Comm 2013. FRAC Code List. Brussels: Crop Life Int. http://www.frac.info/
  56. Gallai N, Salles J-M, Settele J, Vaissière BE. 56.  2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:810–21 [Google Scholar]
  57. Galt RE. 57.  2008. Beyond the circle of poison: significant shifts in the global pesticide complex, 1976–2008. Glob. Environ. Change 18:786–99 [Google Scholar]
  58. Gareau BJ, DuPuis EM. 58.  2009. From public to private global environmental governance: lessons from the Montreal Protocol's stalled methyl bromide phase-out. Environ. Plan. A 41:2305–23 [Google Scholar]
  59. Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM. 59.  et al. 2014. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc. Natl. Acad. Sci. USA 1115141–46 [Google Scholar]
  60. Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. 60.  2011. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6:e22629 [Google Scholar]
  61. Gent DH, Mahaffee WF, McRoberts N, Pfender WF. 61.  2013. The use and role of predictive systems in disease management. Annu. Rev. Phytopathol. 51:267–89 [Google Scholar]
  62. Ghimire N, Woodward RT. 62.  2013. Under- and over-use of pesticides: an international analysis. Ecol. Econ. 89:73–81 [Google Scholar]
  63. Gianessi LP. 63.  2013. The increasing importance of herbicides in worldwide crop production. Pest Manag. Sci. 69:1099–105 [Google Scholar]
  64. Gianessi L, Williams A. 64.  2011. Europe's Wheat Yields are the World's Highest Due to Fungicide Use. International Pesticide Benefits Case Study No. 43. Washington, DC: CropLife Found. Crop Prot. Res. Inst. [Google Scholar]
  65. Gonsalves D. 65.  2014. Hawaii's transgenic papaya story 1978–2012: a personal account. Genetics and Genomics of Papaya, Plant Genetics and Genomics: Crops and Models 10 R Ming, PH Moore 115–42 New York: Springer [Google Scholar]
  66. Goodhue RE, Fennimore S, Ajwa H. 66.  2005. The economic importance of methyl bromide: Does the California strawberry industry qualify for a critical use exemption from the methyl bromide ban?. Rev. Agric. Econ. 27:198–211 [Google Scholar]
  67. Goulson D. 67.  2013. Review: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50:977–87 [Google Scholar]
  68. Graebner L, Moreno DS, Baritelle JL. 68.  1984. The Fillmore Citrus Protective District: a success story in integrated pest management. Bull. Entomol. Soc. Am. 30:27–33 [Google Scholar]
  69. Grovermann C, Schreinemachers P, Berger T. 69.  2013. Quantifying pesticide overuse from farmer and societal points of view: an application to Thailand. Crop Prot. 53:161–68 [Google Scholar]
  70. Grube A, Donaldson D, Kiely T, Wu L. 70.  2011. Pesticide Industry Sales and Usage: 2006 and 2007 Market Estimates Washington, DC: US EPA [Google Scholar]
  71. Gubler WD, Rademacher MR, Vasquez SJ, Thomas CS. 71.  1999. Control of powdery mildew using the UC Davis powdery mildew risk index. APSnet. http://www.apsnet.org/publications/apsnetfeatures/Pages/UCDavisRisk.aspx [Google Scholar]
  72. Hall DC, Norgaard RB, True PK. 72.  1975. The performance of independent pest management consultants in San Joaquin cotton and citrus. Calif. Agric. 29:12–14 [Google Scholar]
  73. Hammond BG, Campbell KW, Pilcher CD, Degooyer TA, Robinson AE. 73.  et al. 2004. Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002. J. Agric. Food Chem. 52:1390–97 [Google Scholar]
  74. Henry M, Béguin M, Requier F, Rollin O, Odoux J-F. 74.  et al. 2012. A common pesticide decreases foraging success and survival in honey bees. Science 336:348–50 [Google Scholar]
  75. Hillocks RJ. 75.  2012. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 31:85–93 [Google Scholar]
  76. Hillocks RJ, Cooper JE. 76.  2012. Integrated pest management: Can it contribute to sustainable food production in Europe with less reliance on conventional pesticides?. Outlook Agric. 41:237–42 [Google Scholar]
  77. Hillocks R. 77.  2013. Impact of EU pesticide reduction strategy and implications for crop protection in the UK and the rest of Europe. Outlooks Pest Manag. 24:206–9 [Google Scholar]
  78. Hinckley E-LS, Matson P. 78.  2011. Transformations, transport, and potential unintended consequences of high sulfur inputs to Napa Valley vineyards. Proc. Natl. Acad. Sci. USA 108:14005–10 [Google Scholar]
  79. Horowitz JK, Lichtenberg E. 79.  1993. Insurance, moral hazard and chemical use in agriculture. Am. J. Agr. Econ. 75:926–37 [Google Scholar]
  80. Huffaker CB, Smith RF. 80.  1980. Rationale, organization, and development of a national integrated pest management project. New Technology of Pest Control CB Huffaker 2–24 New York: Wiley [Google Scholar]
  81. Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW. 81.  et al. 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–25 [Google Scholar]
  82. 82. INRA 2010. Ecophyto R&D: Which Options to Reduce Pesticide Use? Paris: INRA 8 http://institut.inra.fr/en/Missions/Inform-public-decision-making/Advanced-Studies/All-the-news/Ecophyto-R-D [Google Scholar]
  83. 83. Intl. Assess. Agric. Knowl. Sci. Technol. Dev 2009. Agriculture at a Crossroads. U.N. Environ. Programme. http://www.unep.org/dewa/assessments/ecosystems/iaastd/tabid/105853/default.aspx [Google Scholar]
  84. 84. Intl. Serv. Acquis. Agri-Biotech Appl 2014. GM Approval Database. Ithaca, NY: ISAAA http://www.isaaa.org/gmapprovaldatabase [Google Scholar]
  85. Jacquet F, Butault J-P, Guichard L. 85.  2011. An economic analysis of the possibility of reducing pesticides in French field crops. Ecol. Econ. 70:1638–48 [Google Scholar]
  86. Jaggard KW, Qi A, Ober ES. 86.  2010. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc. B 365:2835–51 [Google Scholar]
  87. James C. 87.  2012. Global Status of Commercialized Biotech/GM Crops: 2012. ISAAA Brief No. 44. Ithaca, NY: ISAAA [Google Scholar]
  88. Jeschke P, Nauen R, Schindler M, Elbert A. 88.  2011. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59:2897–908 [Google Scholar]
  89. Johnson H Jr, Holland AH, Paulu AO, Wilhelm S. 89.  1962. Soil fumigation found essential for maximum strawberry yields in Southern California. Calif. Agric. 16:5–6 [Google Scholar]
  90. Kamel F. 90.  2013. Paths from pesticides to Parkinson's. Science 341:722–23 [Google Scholar]
  91. Kathage J, Qaim M. 91.  2012. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc. Natl. Acad. Sci. USA 109:11652–56 [Google Scholar]
  92. Kaye D. 92.  2013. Stealth multilateralism: U.S. foreign policy without treaties—or the senate. Foreign affairs stealth multilateralism. Foreign Aff. http://www.foreignaffairs.com/articles/139649/david-kaye/stealth-multilateralism [Google Scholar]
  93. Kinkela D. 93.  2011. DDT and the American Century: Global Health, Environmental Politics, and the Pesticide that Changed the World. Chapel Hill, NC: Univ. N.C. Press [Google Scholar]
  94. Kogan M. 94.  1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43:243–70 [Google Scholar]
  95. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J. 95.  et al. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–63 [Google Scholar]
  96. Krupke CH, Hunt GJ, Eitzer BD, Andino G, Given K. 96.  2012. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7:e29268 [Google Scholar]
  97. Landis DA, Wratten SD, Gurr GM. 97.  2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45:175–201 [Google Scholar]
  98. Leach JE, Vera Cruz CM, Bai JF, Leung H. 98.  2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39:187–224 [Google Scholar]
  99. Lichtenberg E. 99.  2002. Agriculture and the environment. Handbook of Agricultural Economics 2 B Gardner, G. Rausser 1249–1313 Amsterdam: Elsevier Sci. [Google Scholar]
  100. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N. 100.  2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–67 [Google Scholar]
  101. Lu Y, Wu K, Jiang Y, Xia B, Li P. 101.  et al. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–54 [Google Scholar]
  102. Marshall E. 102.  1983. The murky world of toxicity testing. Science 220:1130–32 [Google Scholar]
  103. Martenies SE, Perry MJ. 103.  2013. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology 307:66–73 [Google Scholar]
  104. Mascarelli A. 104.  2013. Growing up with pesticides. Science 341:740–41 [Google Scholar]
  105. Mayfield EN, Norman CS. 105.  2012. Moving away from methyl bromide: political economy of pesticide transition for California strawberries since 2004. J. Environ. Manag. 106:93–101 [Google Scholar]
  106. Mayrose M, Kane NC, Mayrose I, Dlugosch KM, Rieseberg LH. 106.  2011. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress. Mol. Ecol. 20:4683–94 [Google Scholar]
  107. Meissle M, Mouron P, Musa T, Bigler F, Pons X. 107.  2010. Pests, pesticide use and alternative options in European maize production: current status and future prospects. J. Appl. Entomol. 134:357–375 [Google Scholar]
  108. Merrill R. 108.  1997. Food safety regulation: reforming the Delaney Clause. Annu. Rev. Public Health 18:313–40 [Google Scholar]
  109. Michelbacher AE, Hitchcock SW. 109.  1957. Soft scales on walnut in 1956: Increase in soft scale populations on walnuts in northern California effected by several factors in complex problem. Calif. Agric. 11:7–14 [Google Scholar]
  110. Morton V, Staub T. 110.  2008. A short history of fungicides. APSnet. doi: 10.1094/APSnetFeature-2008-0308 [Google Scholar]
  111. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R. 111.  et al. 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE 5:e9754 [Google Scholar]
  112. Munkvold GP, Hellmich RL, Showers WB. 112.  1997. Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance. Phytopathology 87:1071–77 [Google Scholar]
  113. 113. Natl. Acad. Sci 1989. Alternative Agriculture. Washington, DC: Natl. Acad. Press448 [Google Scholar]
  114. 114. Natl. Res. Counc. 1993. Pesticides in the Diets of Infants & Children. Washington, DC: Natl. Acad. Press [Google Scholar]
  115. Oerke E-C. 115.  2006. Crop losses to pests. J. Agric. Sci. 144:31–43 [Google Scholar]
  116. Oerke E-C, Dehne H-W. 116.  2004. Safeguarding production: losses in major crops and the role of crop protection. Crop Prot. 23:275–85 [Google Scholar]
  117. 117. Organ. Econ. Coop. Dev 2013. Methyl bromide: ozone depletion. OECD Compendium of Agri-environmental Indicators151–55 Paris: OECD Publ http://dx.doi.org/10.1787/9789264186217-14-en [Google Scholar]
  118. Oreskes N. 118.  2004. Science and public policy: What's proof got to do with it?. Environ. Sci. Policy 7:369–83 [Google Scholar]
  119. Osteen CD, Fernandez-Cornejo J. 119.  2013. Economic and policy issues of U.S. agricultural pesticide use trends. Pest Manag. Sci. 69:1001–25 [Google Scholar]
  120. Osteen C, Gottlieb J, Vasavada U. 120.  2012. Agricultural Resources and Environmental Indicators, 2012. Economic Research Service Economic Information Bulletin No. 98. Washington, DC: US Dep. Agric. [Google Scholar]
  121. Palacio Z. 121.  Silent Spring turns fifty. Voice Am. http://www.voanews.com/content/silent-spring-turns-fifty-years-old/1501317.html [Google Scholar]
  122. Parris K. 122.  2011. Impact of agriculture on water pollution in OECD countries: recent trends and future prospects. Int. J. Water. Resour. Dev. 27:33–52 [Google Scholar]
  123. Pepper B. 123.  1948. Insecticides for protection of growing crops. Ind. Engin. Chem. 40:708–9 [Google Scholar]
  124. Peshin R, Bandral RS, Zhang WJ, Wilson L, Dhawan AK. 124.  2009. Integrated pest management: a global overview of history, programs and adoption. Integrated Pest Management: Innovation-Development Process R Peshin, AK Dhawan 1–49 Dordrecht, Neth: Springer [Google Scholar]
  125. Phalan B, Rodrigues ASL, Balmford A, Green RE, Ewers R. 125.  2007. Comment on “resource-conserving agriculture increases yields in developing countries.”. Environ. Sci. Technol. 41:1054–55 [Google Scholar]
  126. Phung DT, Connell D, Miller G, Rutherford S, Chu C. 126.  2012. Pesticide regulations and farm worker safety: the need to improve pesticide regulations in Viet Nam. Bull. World Health Organ. 90:468–73 [Google Scholar]
  127. Pimentel D. 127.  2005. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 7:229–52 [Google Scholar]
  128. Popp J, Pető K, Nagy J. 128.  2013. Pesticide productivity and food security: a review. Agron. Sustain. Dev. 33:243–55 [Google Scholar]
  129. Praneetvatakul S, Schreinemachers P, Pananurak P, Tipraqsa P. 129.  2013. Pesticides, external costs and policy options for Thai agriculture. Environ. Sci. Pol. 27:103–13 [Google Scholar]
  130. Pretty JN, Noble AD, Bossio D, Dixon J, Hine RE, Penning de Vries FWT, Morison JIL. 130.  2006. Resource-conserving agriculture increases yields in developing countries. Environ. Sci. Technol. 40:1114–19 [Google Scholar]
  131. Rauh V, Arunajadai S, Horton M. 131.  et al. 2011. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ. Health Perspect. 119:1196–201 [Google Scholar]
  132. Rauh V, Perera FP, Horton MK. 132.  et al. 2012. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc. Natl. Acad. Sci. USA 109:7871–76 [Google Scholar]
  133. Rodrigues ET, Lopes I, Pardal MA. 133.  2013. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review. Environ. Int. 53:18–28 [Google Scholar]
  134. Roig B, Mnif W, Hassine AIH, Zidi I, Bayle S. 134.  et al. 2013. Endocrine disrupting chemicals and human health risk assessment: a critical review. Crit. Rev. Environ. Sci. Technol. 43:2297–351 [Google Scholar]
  135. Rojas L. 135.  2013. International pesticide market and regulatory profile Washington, DC: Worldw. Crop Chem http://wcropchemicals.com/pesticide_regulatory_profile/ [Google Scholar]
  136. Rotteveel T, Jorgensen LN, Heimbach U. 136.  2011. Resistance management in Europe: a preliminary proposal for the determination of a minimum number of active substances necessary to manage resistance. EPPO Bull. 41:432–38 [Google Scholar]
  137. Sachs C, Blair D, Richter C. 137.  1987. Consumer pesticide concerns: a 1965 and 1984 comparison. J. Consum. Aff. 21:96–107 [Google Scholar]
  138. Samtani JB, Gilbert C, Weber JB, Subbarao KV, Goodhue RE, Fennimore SA. 138.  2012. Effect of steam and solarization treatments on pest control, strawberry yield, and economic returns relative to methyl bromide fumigation. HortScience 47:64–70 [Google Scholar]
  139. Schneider CW, Tautz J, Grünewald B, Fuchs S. 139.  2012. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7:e30023 [Google Scholar]
  140. Schreinemachers P, Tipraqsa P. 140.  2012. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37:616–26 [Google Scholar]
  141. Shtienberg D. 141.  2013. Will decision-support systems be widely used for the management of plant diseases?. Annu. Rev. Phytopathol. 51:1–16 [Google Scholar]
  142. Skevas T, Oude Lansink AGJM, Stefanou SE. 142.  2013. Designing the emerging EU pesticide policy: a literature review. NJAS-Wageningen J. Life Sci. 64–65:95–103 [Google Scholar]
  143. Skevas T, Stefanou SE, Oude Lansink A. 143.  2012. Can economic incentives encourage actual reductions in pesticide use and environmental spillovers?. Agric. Econ. 43:267–76 [Google Scholar]
  144. Smale M, Zambrano P, Falck-Zepeda J, Gruère G. 144.  2006. Parables: applied economics literature about the impact of genetically engineered crop varieties in developing economies. Environment and Production Technology Paper No. 158. Washington, DC: Int. Food Policy Res. Inst. [Google Scholar]
  145. Smith CM, Clement SL. 145.  2012. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57:309–28 [Google Scholar]
  146. Snelders E, Camps SMT, Karawajczyk A, Schaftenaar G, Kema GHJ. 146.  et al. 2012. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE 7:e31801 [Google Scholar]
  147. Stern VM, Smith RF, van den Bosch R, Hagen KS. 147.  1959. The integrated control concept. Hilgardia 29:81–101 [Google Scholar]
  148. Stokstad E. 148.  2013. The war against weeds down under. Science 341:734–36 [Google Scholar]
  149. Stone GD. 149.  2010. The anthropology of genetically modified crops. Annu. Rev. Anthropol. 39:381–400 [Google Scholar]
  150. Storck T, Böhme T, Schultheiss H. 150.  2012. Fortuna et al.: status and perspectives of GM approaches to fight late blight. PPO Spec. Rep. 15:45–48 [Google Scholar]
  151. Strauss SY, Rudgers JA, Lau JA, Irwin RE. 151.  2002. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17:278–85 [Google Scholar]
  152. Tait J. 152.  2001. Pesticide regulation, product innovation and public attitudes. J. Environ. Monit. 3:64N–69 [Google Scholar]
  153. Tietjen K, Schreier PH. 153.  2012. New targets for fungicides. Modern Methods in Crop Protection P Jeschke, W Krämer, U Schirmer, M Witschel 197–216 Berline: Wiley-VCH Verlag GmbH & Co, 1st ed.. [Google Scholar]
  154. Toevs EA, Guenthner JF, Johnson AJ, McIntosh CS, Thornton MK. 154.  2011. An industry perspective of all-native and transgenic potatoes. AgBioForum 14:14–19 [Google Scholar]
  155. Toleubayev K, Jansen K, Van Huis A. 155.  2011. From integrated pest management to indiscriminate pesticide use in Kazakhstan. J. Sustain. Agric. 35:350–75 [Google Scholar]
  156. Tomlin CDS. 156.  2009. The Pesticide Manual: A World Compendium, 15th. Alton, UK: Br. Crop Prod. Counc. [Google Scholar]
  157. Trumble JT, Carson WG, Kund GS. 157.  1997. Economics and environmental impact of a sustainable integrated pest management program in celery. J. Econ. Entomol. 90:139–46 [Google Scholar]
  158. 158. U.S. Gen. Account. Off 2001. Agricultural pesticides management: improvements needed to further promote integrated pest management. GAO-01–815. GAO, Washington, DC. http://www.gao.gov/new.items/d01815.pdf [Google Scholar]
  159. 159. Univ. Calif. Statew. Integr. Pest Manag. Program 2013. What is integrated pest management (IPM)?. Davis, CA: Univ. Calif http://ucipm.ucdavis.edu/GENERAL/whatisipm.html [Google Scholar]
  160. Van Steenwyk RA, Zalom FG. 160.  2005. Food Quality Protection Act launches search for pest management alternatives. Calif. Agric. 59:7–10 [Google Scholar]
  161. Verweij PE, Kema GHJ, Zwaan B, Melchers WJG. 161.  2013. Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould Aspergillus fumigatus. Pest Manag. Sci. 69:165–70 [Google Scholar]
  162. Waterfield G, Zilberman D. 162.  2012. Pest management in food systems: an economic perspective. Annu. Rev. Environ. Resour. 37:223–45 [Google Scholar]
  163. Weddle PW, Welter SC, Thomson D. 163.  2009. History of IPM in California pears: 50 years of pesticide use and the transition to biologically intensive IPM. Pest Manag. Sci. 65:1287–92 [Google Scholar]
  164. Whitehorn PR, O'Connor S, Wackers FL, Goulson D. 164.  2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–52 [Google Scholar]
  165. Wilhelm S, Paulus AO. 165.  1980. How soil fumigation benefits the California strawberry industry. Plant Dis. 64:264–70 [Google Scholar]
  166. Williamson S, Ball A, Pretty J. 166.  2008. Trends in pesticide use and drivers for safer pest management in four African countries. Crop Prot. 27:1327–34 [Google Scholar]
  167. Wilson C, Tisdell C. 167.  2001. Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol. Econ. 39:449–62 [Google Scholar]
  168. Wilson L, Downes S, Khan M, Whitehouse M, Baker G. 168.  et al. 2012. IPM in the transgenic era: a review of the challenges from emerging pests in Australian cotton systems. Crop Pasture Sci. 64:737–49 [Google Scholar]
  169. Wise K, Mueller D. 169.  2011. Are fungicides no longer just for fungi? An analysis of foliar fungicide use in corn. APSnet Featur doi:10.1094/APSnetFeature-2011-0531 [Google Scholar]
  170. Zalucki MP, Adamson D, Furlong MJ. 170.  2009. The future of IPM: whither or wither?. Austral. J. Entomol. 48:85–96 [Google Scholar]
  171. Zeller SL, Kalinina O, Schmid B. 171.  2012. Costs of resistance to fungal pathogens in genetically modified wheat. J. Plant Ecol. 6:92–100 [Google Scholar]
  172. Zhang Y-J, Zhang X, Chen C-J, Zhou M-G, Wang H-C. 172.  2010. Effects of fungicides JS399-19, azoxy-strobin, tebuconazloe, and carbendazim on the physiological and biochemical indices and grain yield of winter wheat. Pestic. Biochem. Physiol. 98:151–57 [Google Scholar]
  173. Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J. 173.  et al. 2000. Genetic diversity and disease control in rice. Nature 406:718–22 [Google Scholar]
  174. Zhu W, Schmehl DR, Mullin CA, Frazier JL. 174.  2014. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9:e77547 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-045900
Loading
/content/journals/10.1146/annurev-phyto-102313-045900
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error