1932

Abstract

An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-102313-045959
2016-08-04
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/phyto/54/1/annurev-phyto-102313-045959.html?itemId=/content/journals/10.1146/annurev-phyto-102313-045959&mimeType=html&fmt=ahah

Literature Cited

  1. Abouheif E. 1.  1999. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1:895–909 [Google Scholar]
  2. Ackerly D. 2.  2009. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. PNAS 106:19699–706 [Google Scholar]
  3. Ackerly DD, Reich PB. 3.  1999. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am. J. Bot. 86:1272–81 [Google Scholar]
  4. Agosta SJ. 4.  2006. On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–65 [Google Scholar]
  5. Agrawal AA, Fishbein M, Halitschke R, Hastings AP, Rabosky DL, Rasmann S. 5.  2009. Evidence for adaptive radiation from a phylogenetic study of plant defenses. PNAS 106:18067–72 [Google Scholar]
  6. Agrawal AA, Fishbein M, Jetter R, Salminen JP, Goldstein JB. 6.  et al. 2009. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior. New Phytol. 183:848–67 [Google Scholar]
  7. Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J. 7.  2005. Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86:2979–89 [Google Scholar]
  8. Alcantara S, Lohmann LG. 8.  2011. Contrasting phylogenetic signals and evolutionary rates in floral traits of Neotropical lianas. Biol. J. Linn. Soc. 102:378–90 [Google Scholar]
  9. Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY. 9.  2014. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett. 17:1613–21 [Google Scholar]
  10. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 10.  2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44 [Google Scholar]
  11. Augspurger CK. 11.  1983. Seed dispersal of the tropical tree, Platypodium elegans, and the escape of its seedlings from fungal pathogens. J. Ecol. 71:759–71 [Google Scholar]
  12. Bachelot B, Kobe RK. 12.  2013. Rare species advantage? Richness of damage types due to natural enemies increases with species abundance in a wet tropical forest. J. Ecol. 101:846–56 [Google Scholar]
  13. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L. 13.  et al. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88 [Google Scholar]
  14. Bagchi R, Press MC, Scholes JD. 14.  2010. Evolutionary history and distance dependence control survival of dipterocarp seedlings. Ecol. Lett. 13:51–59 [Google Scholar]
  15. Bascompte J, Jordano P. 15.  2013. Mutualistic Networks Princeton, NJ: Princeton Univ. Press
  16. Bassler C, Heilmann-Clausen J, Karasch P, Brandl R, Halbwachs H. 16.  2015. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17:205–12 [Google Scholar]
  17. Beckman NG, Dybzinski R, Tilman GD. 17.  2014. Neighborhoods have little effect on fungal attack or insect predation of developing seeds in a grassland biodiversity experiment. Oecologia 174:521–32 [Google Scholar]
  18. Beckstead J, Parker IM. 18.  2003. Invasiveness of Ammophila arenaria: release from soil-borne pathogens?. Ecology 84:2824–31 [Google Scholar]
  19. Bell CD, Soltis DE, Soltis PS. 19.  2010. The age and diversification of the Angiosperms re-revisited. Am. J. Bot. 97:1296–303 [Google Scholar]
  20. Benitez MS, Hersh MH, Vilgalys R, Clark JS. 20.  2013. Pathogen regulation of plant diversity via effective specialization. Trends Ecol. Evol. 28:705–11 [Google Scholar]
  21. Bever JD. 21.  1994. Feedback between plants and their soil communities in an old field community. Ecology 75:1965–77 [Google Scholar]
  22. Bever JD, Mangan SA, Alexander HM. 22.  2015. Maintenance of plant species diversity by pathogens. Annu. Rev. Ecol. Evol. Syst. 46:305–25 [Google Scholar]
  23. Boller T, Felix G. 23.  2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406 [Google Scholar]
  24. Blaney CS, Kotanen PM. 24.  2001. Effects of fungal pathogens on seeds of native and exotic plants: a test using congeneric pairs. J. Appl. Ecol. 38:1104–13 [Google Scholar]
  25. Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S. 25.  et al. 2013. Status and prospects of plant virus control through interference with vector transmission. Annu. Rev. Phytopathol. 51:177–201 [Google Scholar]
  26. Brown JKM, Tellier A. 26.  2011. Plant-parasite coevolution: bridging the gap between genetics and ecology. Annu. Rev. Phytopathol. 49:345–67 [Google Scholar]
  27. Burdon JJ, Chilvers GA. 27.  1982. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 20:143–66 [Google Scholar]
  28. Burdon JJ, Thrall PH, Ericson L. 28.  2013. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions. Curr. Opin. Plant Biol. 16:400–5 [Google Scholar]
  29. Cadotte MW, McMahon SM, Fukami T. 29.  2006. Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature Dordrecht, Neth: Springer
  30. Callaway RM, Thelen GC, Rodriguez A, Holben WE. 30.  2004. Soil biota and exotic plant invasion. Nature 427:731–33 [Google Scholar]
  31. Carrillo-Gavilan A, Moreira X, Zas R, Gonzalez-Voyer A, Vilà M, Sampedro L. 31.  2015. Phylogenetic and biogeographical patterns in defensive strategies and quantitative allocation to chemical defences in Palaearctic and Nearctic pine trees. J. Biogeogr. 42:684–93 [Google Scholar]
  32. Cavender-Bares J, Ackerly DD, Baum DA, Bazzaz FA. 32.  2004. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163:823–43 [Google Scholar]
  33. Cavender-Bares J, Keen A, Miles B. 33.  2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87:S109–22 [Google Scholar]
  34. Celio GJ, Padamsee M, Dentinger BTM, Bauer R, McLaughlin DJ. 34.  2006. Assembling the Fungal Tree of Life: constructing the structural and biochemical database. Mycologia 98:850–59 [Google Scholar]
  35. Chave J, Muller-Landau HC, Baker TR, Easdale TA, Ter Steege H, Webb CO. 35.  2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl. 16:2356–67 [Google Scholar]
  36. Chilvers GA, Brittain EG. 36.  1972. Plant competition mediated by host-specific parasites: a simple model. Aust. J. Biol. Sci. 25:749–56 [Google Scholar]
  37. Clay K. 37.  1995. Correlates of pathogen species richness in the grass family. Can. J. Bot. 73:S42–49 [Google Scholar]
  38. Comas LH, Callahan HS, Midford PE. 38.  2014. Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecol. Evol. 4:2979–90 [Google Scholar]
  39. Connell J. 39.  1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Population PJ de Voer, GR Gradwell 298–312 Wageningen, Neth: Cent. Agric. Publ. Doc. [Google Scholar]
  40. Darwin C. 40.  1859. On the Origin of Species by Means of Natural Selection London: John Murray
  41. Desdevises Y, Legendre P, Azouzi L, Morand S. 41.  2003. Quantifying phylogenetically structured environmental variation. Evolution 57:2647–52 [Google Scholar]
  42. DeWalt SJ, Denslow JS, Ickes K. 42.  2004. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85:471–83 [Google Scholar]
  43. DeYoung BJ, Innes RW. 43.  2006. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7:1243–49 [Google Scholar]
  44. Diniz JAF, De Sant’Ana CER, Bini LM. 44.  1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52:1247–62 [Google Scholar]
  45. Diniz JAF, Santos T, Rangel TF, Bini LM. 45.  2012. A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. Genet. Mol. Biol. 35:673–79 [Google Scholar]
  46. Dodds P, Thrall P. 46.  2009. Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust. Funct. Plant Biol. 36:395–408 [Google Scholar]
  47. Dwivedi UN, Singh P, Pandey VP, Kumar A. 47.  2011. Structure-function relationship among bacterial, fungal and plant laccases. J. Mol. Catal. B Enzym. 68:117–28 [Google Scholar]
  48. Eichenberg D, Ristok C, Krober W, Bruelheide H. 48.  2014. Plant polyphenols: implications of different sampling, storage and sample processing in biodiversity-ecosystem functioning experiments. Chem. Ecol. 30:676–92 [Google Scholar]
  49. Elton CS. 49.  1958. The Ecology of Invasions by Animals and Plants London: Methuen181
  50. 50. FAO (Food Agric. Organ. U.N.) 1997. International Plant Protection Convention 1997 (new revised text). Rome, Italy: FAO [Google Scholar]
  51. Farr DF, Rossman AY. 51.  2015. Fungal Databases, Systematic Botany & Mycology Laboratory. Washington, DC: USDA-ARS http://nt.ars-grin.gov/fungaldatabases/
  52. Felsenstein J. 52.  1985. Phylogenies and the comparative method. Am. Nat. 125:1–15 [Google Scholar]
  53. Fischer MJC, Rustenhloz C, Leh-Louis V, Perriere G. 53.  2015. Molecular and functional evolution of the fungal diterpene synthase genes. BMC Microbiol. 15:221 [Google Scholar]
  54. Fletcher J, Luster D, Bostock R, Burans J, Cardwell K. 54.  et al. 2010. Emerging infectious plant diseases. Emerging Infections 9 WM Scheld, ML Grayson, JM Hughes 337–66 Washington, DC: ASM Press [Google Scholar]
  55. Flory SL, Clay K. 55.  2013. Pathogen accumulation and long-term dynamics of plant invasions. J. Ecol. 101:607–13 [Google Scholar]
  56. Freckleton RP, Harvey PH, Pagel M. 56.  2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160:712–26 [Google Scholar]
  57. Friesen TL, Faris JD, Solomon PS, Oliver RP. 57.  2008. Host-specific toxins: effectors of necrotrophic pathogenicity. Cell. Microbiol. 10:1421–28 [Google Scholar]
  58. Fritz SA, Purvis A. 58.  2010. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24:1042–51 [Google Scholar]
  59. Gallagher RV, Leishman MR. 59.  2012. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39:1757–71 [Google Scholar]
  60. Garland T, Dickerman AW, Janis CM, Jones JA. 60.  1993. Phylogenetic analysis of covariance by computer-simulation. Syst. Biol. 42:265–92 [Google Scholar]
  61. Genton BJ, Kotanen PM, Cheptou PO, Adolphe C, Shykoff JA. 61.  2005. Enemy release but no evolutionary loss of defence in a plant invasion: an inter-continental reciprocal transplant experiment. Oecologia 146:404–14 [Google Scholar]
  62. Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. 62.  2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29:600–14 [Google Scholar]
  63. Gilbert GS. 63.  2005. The dimensions of plant disease in tropical forests. Biotic Interactions in the Tropics DRFP Burslem, MA Pinard, S Hartley 141–64 Cambridge: Cambridge Univ. Press [Google Scholar]
  64. Gilbert GS, Briggs HM, Magarey R. 64.  2015. The impact of plant enemies shows a phylogenetic signal. PLOS ONE 10:e0123758 [Google Scholar]
  65. Gilbert GS, Magarey R, Suiter K, Robertson S, Parker IM, Nickel B. 65.  2015. PhyloSuscept: Predicting plant host susceptibility to novel pests. Santa Cruz, CA: Cent. Integr. Spat. Res http://cisr-stats.cisr.ucsc.edu/aphis/
  66. Gilbert GS, Magarey R, Suiter K, Webb CO. 66.  2012. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5:869–78 [Google Scholar]
  67. Gilbert GS, Parker IM. 67.  2005. Invasions and the regulation of plant populations by pathogens. Conceptual Ecology and Invasions Biology: Reciprocal Approaches to Nature MW Cadotte, SM McMahon, T Fukami 299–315 New York: Kluwer Acad. [Google Scholar]
  68. Gilbert GS, Webb CO. 68.  2007. Phylogenetic signal in plant pathogen-host range. PNAS 104:4979–83 [Google Scholar]
  69. Gillett JB. 69.  1962. Pest pressure, an underestimated factor in evolution. Syst. Assoc. Publ. 4:37–46 [Google Scholar]
  70. Gittleman JL, Kot M. 70.  1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39:227–41 [Google Scholar]
  71. Goergen E, Daehler C. 71.  2001. Inflorescence damage by insects and fungi in native pili grass (Heteropogon contortus) versus alien fountain grass (Pennisetum setaceum) in Hawai’i. Pac. Sci. 55:129–36 [Google Scholar]
  72. Goodell K, Parker IM, Gilbert GS. 72.  2000. Biological impacts of species invasions: implications for policy makers. Incorporating Science, Economics, and Sociology in Developing Sanitary and Phytosanitary Standards in International Trade J Caswell 87–117 Washington, D.C.: Natl. Acad. Press [Google Scholar]
  73. Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW. 73.  2012. Plant disease resistance genes: current status and future directions. Physiol. Mol. Plant Pathol. 78:51–65 [Google Scholar]
  74. Halbwachs H, Brandl R, Bassler C. 74.  2015. Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecol. 17:197–204 [Google Scholar]
  75. Hatcher PE. 75.  1995. Three-way interactions between plant-pathogenic fungi, herbivorous insects and their host plants. Biol. Rev. 70:639–94 [Google Scholar]
  76. Hawkes CV, Douglas AE, Fitter AH. 76.  2010. Origin, local experience, and the impact of biotic interactions on native and introduced Senecio species. Biol. Invasions 12:113–24 [Google Scholar]
  77. Hayward J, Horton TR. 77.  2014. Phylogenetic trait conservation in the partner choice of a group of ectomycorrhizal trees. Mol. Ecol. 23:4886–98 [Google Scholar]
  78. Hersh MH, Vilgalys R, Clark JS. 78.  2012. Evaluating the impacts of multiple generalist fungal pathogens on temperate tree seedling survival. Ecology 93:511–20 [Google Scholar]
  79. Hill SB, Kotanen PM. 79.  2009. Evidence that phylogenetically novel non-indigenous plants experience less herbivory. Oecologia 161:581–90 [Google Scholar]
  80. Hill SB, Kotanen PM. 80.  2010. Phylogenetically structured damage to Asteraceae: susceptibility of native and exotic species to foliar herbivores. Biol. Invasions 12:3333–42 [Google Scholar]
  81. Hill SB, Kotanen PM. 81.  2011. Phylogenetic structure predicts capitular damage to Asteraceae better than origin or phylogenetic distance to natives. Oecologia 166:843–51 [Google Scholar]
  82. Hill SB, Kotanen PM. 82.  2012. Biotic interactions experienced by a new invader: effects of its close relatives at the community scale. Bot. Botanique 90:35–42 [Google Scholar]
  83. Holah JC, Wilson MV, Hansen EM. 83.  1993. Effects of a native forest pathogen, Phellinus weirii, on Douglas-fir forest composition in western Oregon. Can. J. For. Res. 23:2473–80 [Google Scholar]
  84. Holt RD. 84.  1977. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12:197–229 [Google Scholar]
  85. Horn K, Parker IM, Malek W, Rodriguez-Echeverria S, Parker MA. 85.  2014. Disparate origins of Bradyrhizobium symbionts for invasive populations of Cytisus scoparius (Leguminosae) in North America. FEMS Microbiol. Ecol. 89:89–98 [Google Scholar]
  86. Ishida TA, Nara K, Hogetsu T. 86.  2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 174:430–40 [Google Scholar]
  87. Janzen D. 87.  1970. Herbivores and the number of tree species in tropical forests. Am. Nat. 104:501–28 [Google Scholar]
  88. Jawallapersand P, Mashele SS, Kovacic L, Stojan J, Komel R. 88.  et al. 2014. Cytochrome P450 monooxygenase CYP53 family in Fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target. PLOS ONE 9:e107209 [Google Scholar]
  89. Johnson PT, Preston DL, Hoverman JT, Richgels KL. 89.  2013. Biodiversity decreases disease through predictable changes in host community competence. Nature 494:230–33 [Google Scholar]
  90. Jones JDG, Dangl JL. 90.  2006. The plant immune system. Nature 444:323–29 [Google Scholar]
  91. Jordano P. 91.  2010. Coevolution in multispecific interactions among free-living species. Evol. Educ. Outreach 3:40–46 [Google Scholar]
  92. Kamiya T, O’Dwyer K, Nakagawa S, Poulin R. 92.  2014. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol. Rev. 89:123–34 [Google Scholar]
  93. Keane RM, Crawley MJ. 93.  2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17:164–70 [Google Scholar]
  94. Kembel SW. 94.  2009. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12:949–60 [Google Scholar]
  95. Kembel SW, Cahill JF. 95.  2005. Plant phenotypic plasticity belowground: a phylogenetic perspective on root foraging trade-offs. Am. Nat. 166:216–30 [Google Scholar]
  96. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H. 96.  et al. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–64 [Google Scholar]
  97. Kenis M, Bacher S, Baker RHA, Branquart E, Brunel S. 97.  et al. 2012. New protocols to assess the environmental impact of pests in the EPPO decision-support scheme for pest risk analysis. EPPO Bull. 42:21–27 [Google Scholar]
  98. Klironomos JN. 98.  2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70 [Google Scholar]
  99. Kong DL, Ma CG, Zhang Q, Li L, Chen XY. 99.  et al. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol. 203:863–72 [Google Scholar]
  100. Kosentka P, Sprague SL, Ryberg M, Gartz J, May AL. 100.  et al. 2013. Evolution of the toxins muscarine and psilocybin in a family of mushroom-forming Fungi. PLOS ONE 8:e64646 [Google Scholar]
  101. Kottke I, Haug I, Setaro S, Suarez JP, Weiss M. 101.  et al. 2008. Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl. Ecol. 9:13–23 [Google Scholar]
  102. Lara-Márquez A, Zavala-Páramo MG, López-Romero E, Calderón-Cortós N, López-Gómez R. 102.  et al. 2011. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. 11:260 [Google Scholar]
  103. Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR. 103.  2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93:1867–79 [Google Scholar]
  104. Lingner U, Munch S, Deising HB, Sauer N. 104.  2011. Hexose transporters of a hemibiotrophic plant pathogen. J. Biol. Chem. 286:20913–22 [Google Scholar]
  105. Liu H, Xu QY, He PC, Santiago LS, Yang KM, Ye Q. 105.  2015. Strong phylogenetic signals and phylogenetic niche conservatism in ecophysiological traits across divergent lineages of Magnoliaceae. Sci. Rep. 5:12246 [Google Scholar]
  106. Liu XB, Liang MX, Etienne RS, Wang YF, Staehelin C, Yu SX. 106.  2012. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest. Ecol. Lett. 15:111–18 [Google Scholar]
  107. Losos JB. 107.  2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11:995–1003 [Google Scholar]
  108. Lugo MA, Reinhart KO, Menoyo E, Crespo EM, Urcelay C. 108.  2015. Plant functional traits and phylogenetic relatedness explain variation in associations with root fungal endophytes in an extreme arid environment. Mycorrhiza 25:85–95 [Google Scholar]
  109. Mack RN. 109.  1996. Biotic barriers to plant naturalization. Proceedings of the Ninth International Symposium on Biological Control of Weeds VC Moran, JH Hoffman 39–46 Cape Town, S. Afr: Univ. Cape Town
  110. Maeda K, Spor A, Edel-Hermann V, Heraud C, Breuil MC. 110.  et al. 2015. N2O production, a widespread trait in fungi. Sci. Rep. 5:9697 [Google Scholar]
  111. Magarey RD, Colunga-Garcia M, Fieselmann DA. 111.  2009. Plant biosecurity in the United States: roles, responsibilities, and information needs. BioScience 59:875–84 [Google Scholar]
  112. Maherali H, Klironomos JN. 112.  2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–48 [Google Scholar]
  113. Mangan SA, Herre EA, Bever JD. 113.  2010. Specificity between neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback. Ecology 91:2594–603 [Google Scholar]
  114. Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC. 114.  et al. 2010. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–55 [Google Scholar]
  115. Maron JL, Vilà M. 115.  2001. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–73 [Google Scholar]
  116. Martiny AC, Treseder K, Pusch G. 116.  2013. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7:830–38 [Google Scholar]
  117. Massoni J, Couvreru T, Sauquet H. 117.  2015. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms). BMC Evol. Biol. 15:49 [Google Scholar]
  118. Mayfield MM, Levine JM. 118.  2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13:1085–93 [Google Scholar]
  119. McCook S. 119.  2006. Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. J. Glob. Hist. 1:177–95 [Google Scholar]
  120. McGuigan K, Rowe L, Blows MW. 120.  2011. Pleiotropy, apparent stabilizing selection and uncovering fitness optima. Trends Ecol. Evol. 26:22–29 [Google Scholar]
  121. McHale L, Tan XP, Koehl P, Michelmore RW. 121.  2006. Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7:212 [Google Scholar]
  122. Meentemeyer RK, Haas SE, Vaclavik T. 122.  2012. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50:379–402 [Google Scholar]
  123. Mengiste T. 123.  2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50:267–94 [Google Scholar]
  124. Metz MR, Sousa WP, Valencia R. 124.  2010. Widespread density-dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology 91:3675–85 [Google Scholar]
  125. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA. 125.  et al. 2006. Biotic interactions and plant invasions. Ecol. Lett. 9:726–40 [Google Scholar]
  126. Mitchell CE, Blumenthal D, Jarosik V, Puckett EE, Pysek P. 126.  2010. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol. Lett. 13:1525–35 [Google Scholar]
  127. Mitchell CE, Power AG. 127.  2003. Release of invasive plants from fungal and viral pathogens. Nature 421:625–27 [Google Scholar]
  128. Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M. 128.  2015. Evidence for phylogenetic correlation of plant-AMF assemblages?. Ann. Bot. 115:171–77 [Google Scholar]
  129. Morrien E, van der Putten WH. 129.  2013. Soil microbial community structure of range-expanding plant species differs from co-occurring natives. J. Ecol. 101:1093–102 [Google Scholar]
  130. Morris WF, Hufbauer RA, Agrawal AA, Bever JD, Borowicz VA. 130.  et al. 2007. Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88:1021–29 [Google Scholar]
  131. Mousa WK, Raizada MN. 131.  2015. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. Front. Plant Sci. 6:231 [Google Scholar]
  132. Munkemuller T, Lavergne S, Bzeznik B, Dray S, Jombart T. 132.  et al. 2012. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3:743–56 [Google Scholar]
  133. Nakadai R, Murakami M, Hirao T. 133.  2014. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 175:1237–45 [Google Scholar]
  134. Ollier S, Couteron P, Chessel D. 134.  2006. Orthonormal transform to decompose the variance of a life-history trait across a phylogenetic tree. Biometrics 62:471–77 [Google Scholar]
  135. Ornelas JF, Ordano M, De-Nova AJ, Quintero ME, Garland T. 135.  2007. Phylogenetic analysis of interspecific variation in nectar of hummingbird-visited plants. J. Evol. Biol. 20:1904–17 [Google Scholar]
  136. Packer A, Clay K. 136.  2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–81 [Google Scholar]
  137. Paine CET, Norden N, Chave J, Forget PM, Fortunel C. 137.  et al. 2012. Phylogenetic density dependence and environmental filtering predict seedling mortality in a tropical forest. Ecol. Lett. 15:34–41 [Google Scholar]
  138. Pan QL, Wendel J, Fluhr R. 138.  2000. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50:203–13 [Google Scholar]
  139. Pan X, Cornelissen JHC, Zhao WW, Liu GF, Hu YK. 139.  et al. 2014. Experimental evidence that the Ornstein-Uhlenbeck model best describes the evolution of leaf litter decomposability. Ecol. Evol. 4:3339–49 [Google Scholar]
  140. Parker I, Gilbert G. 140.  2004. The evolutionary ecology of novel plant-pathogen interactions. Annu. Rev. Ecol. Evol. Syst. 35:675–700 [Google Scholar]
  141. Parker IM, Gilbert GS. 141.  2007. When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88:1210–24 [Google Scholar]
  142. Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R. 142.  et al. 2015. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–44 [Google Scholar]
  143. Patron NJ, Waller RF, Cozijnsen AJ, Straney DC, Gardiner DM. 143.  et al. 2007. Origin and distribution of epipolythiodioxopiperazine (ETP) gene clusters in filamentous ascomycetes. BMC Evol. Biol. 7:174 [Google Scholar]
  144. Pausas JG, Verdú M. 144.  2010. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. BioScience 60:614–25 [Google Scholar]
  145. Pavoine S, Ollier S, Pontier D, Chessel D. 145.  2008. Testing for phylogenetic signal in phenotypic traits: mew matrices of phylogenetic proximities. Theor. Popul. Biol. 73:79–91 [Google Scholar]
  146. Pearse IS, Altermatt F. 146.  2013. Predicting novel trophic interactions in a non-native world. Ecol. Lett. 16:1088–94 [Google Scholar]
  147. Pearse IS, Hipp AL. 147.  2009. Phylogenetic and trait similarity to a native species predict herbivory on non-native oaks. PNAS 106:18097–102 [Google Scholar]
  148. Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD. 148.  2010. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol. 185:529–42 [Google Scholar]
  149. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP. 149.  et al. 2010. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8:523–29 [Google Scholar]
  150. Postma JA, Lynch JP. 150.  2012. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann. Bot. 110:521–34 [Google Scholar]
  151. Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. 151.  2009. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. B 276:4237–45 [Google Scholar]
  152. Power AG, Mitchell CE. 152.  2004. Pathogen spillover in disease epidemics. Am. Nat. 164:S79–89 [Google Scholar]
  153. Randolph SE, Dobson AD. 153.  2013. Commentary on “A Candide response to Panglossian accusations by Randolph and Dobson: biodiversity buffers disease” by Dr R. Ostfeld (Parasitology 2013, in press). Parasitology 140:1199–200 [Google Scholar]
  154. Reinhart KO, Packer A, van der Putten WH, Clay K. 154.  2003. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol. Lett. 6:1046–50 [Google Scholar]
  155. Reinhart KO, Wilson GWT, Rinella MJ. 155.  2012. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecol. Lett. 15:689–95 [Google Scholar]
  156. Ren LX, Su SM, Yang XM, Xu YC, Huang QW, Shen QR. 156.  2008. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol. Biochem. 40:834–44 [Google Scholar]
  157. Revell LJ, Harmon LJ, Collar DC. 157.  2008. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57:591–601 [Google Scholar]
  158. Roy BA, Alexander HM, Davidson J, Campbell FT, Burdon JJ. 158.  et al. 2014. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12:457–65 [Google Scholar]
  159. Ryberg M, Larsson E, Jacobsson S. 159.  2010. An evolutionary perspective on morphological and ecological characters in the mushroom family Inocybaceae (Agaricomycotina, Fungi). Mol. Phylogenet. Evol. 55:431–42 [Google Scholar]
  160. Savory F, Leonard G, Richards TA. 160.  2015. The role of horizontal gene transfer in the evolution of the oomycetes. PLOS Pathog. 11:e1004805 [Google Scholar]
  161. Sax DF, Stachowicz JJ, Gaines SD. 161.  2005. Species Invasions: Insights into Ecology, Evolution, and Biogeography Sunderland, MA: Sinauer Assoc.
  162. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW. 162.  2006. A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–52 [Google Scholar]
  163. Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J. 163.  et al. 2009. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58:224–39 [Google Scholar]
  164. Schweizer D, Gilbert GS, Holl KD. 164.  2013. Phylogenetic ecology applied to enrichment planting of tropical native tree species. For. Ecol. Manag. 297:57–66 [Google Scholar]
  165. Sedio BE, Ostling AM. 165.  2013. How specialised must natural enemies be to facilitate coexistence among plants?. Ecol. Lett. 16:995–1003 [Google Scholar]
  166. Shafikova TN, Omelichkina YV. 166.  2015. Molecular-genetic aspects of plant immunity to phytopathogenic bacteria and fungi. Russ. J. Plant Physiol. 62:571–85 [Google Scholar]
  167. Soanes D, Richards TA. 167.  2014. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52:583–614 [Google Scholar]
  168. Strauss SY, Webb CO, Salamin N. 168.  2006. Exotic taxa less related to native species are more invasive. PNAS 103:5841–45 [Google Scholar]
  169. Swenson NG, Enquist BJ. 169.  2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94:451–59 [Google Scholar]
  170. Tedersoo L, Mett M, Ishida TA, Bahram M. 170.  2013. Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. New Phytol. 199:822–31 [Google Scholar]
  171. Thaler JS, Humphrey PT, Whiteman NK. 171.  2012. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17:260–70 [Google Scholar]
  172. Thomma BP, Nürnberger T, Joosten MH. 172.  2011. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15 [Google Scholar]
  173. Trenbath BR. 173.  1993. Intercropping for the management of pests and diseases. Field Crops Res. 34:381–405 [Google Scholar]
  174. Valido A, Schaefer HM, Jordano P. 174.  2011. Colour, design and reward: phenotypic integration of fleshy fruit displays. J. Evol. Biol. 24:751–60 [Google Scholar]
  175. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB. 175.  et al. 2013. Plant-soil feedbacks: the past, the present and future challenges. J. Ecol. 101:265–76 [Google Scholar]
  176. van der Putten WH, Klironomos JN, Wardle DA. 176.  2007. Microbial ecology of biological invasions. ISME J. 1:28–37 [Google Scholar]
  177. van der Putten WH, Kowalchuk GA, Brinkman EP, Doodeman GTA, van der Kaaij RM. 177.  et al. 2007. Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology 88:978–88 [Google Scholar]
  178. van der Putten WH, Van Dijk C, Peters BAM. 178.  1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56 [Google Scholar]
  179. van der Putten WH, Yeates GW, Duyts H, Reis CS, Karssen G. 179.  2005. Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges. Biol. Invasions 7:733–46 [Google Scholar]
  180. van Kleunen M, Fischer M. 180.  2009. Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. J. Ecol. 97:385–92 [Google Scholar]
  181. Viketoft M, van der Putten WH. 181.  2015. Top-down control of root-feeding nematodes in range-expanding and congeneric native plant species. Basic Appl. Ecol. 16:260–68 [Google Scholar]
  182. Vilà M, Maron JL, Marco L. 182.  2005. Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia 142:47–49 [Google Scholar]
  183. Walton JD. 183.  1996. Host-selective toxins: agents of compatibility. Plant Cell 8:1723–33 [Google Scholar]
  184. Wang CY, Liu Y, Li SS, Han GZ. 184.  2015. Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol. 167:872–86 [Google Scholar]
  185. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 185.  2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33:475–505 [Google Scholar]
  186. Webb CO, Gilbert GS, Donoghue MJ. 186.  2006. Phylodiversity-dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology 87:S123–31 [Google Scholar]
  187. Willey RW. 187.  1990. Resource use in intercropping systems. Agric. Water Manag. 17:215–31 [Google Scholar]
  188. Willis CG, Halina M, Lehman C, Reich PB, Keen A. 188.  et al. 2010. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33:565–77 [Google Scholar]
  189. Wittstock U, Gershenzon J. 189.  2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5:300–7 [Google Scholar]
  190. Wolfe LM. 190.  2002. Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am. Nat. 160:705–11 [Google Scholar]
  191. Wu SH, Hsieh CF, Chaw SM, Rejmanek M. 191.  2004. Plant invasions in Taiwan: insights from the flora of casual and naturalized alien species. Divers. Distrib. 10:349–62 [Google Scholar]
  192. Yue JX, Meyers BC, Chen JQ, Tian DC, Yang SH. 192.  2012. Tracing the origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes. New Phytol. 193:1049–63 [Google Scholar]
  193. Zhu HY, Cannon SB, Young ND, Cook DR. 193.  2002. Phylogeny and genomic organization of the TIR and non-TIR NBS-LRR resistance gene family in Medicago truncatula. Mol. Plant-Microbe Interact. 15:529–39 [Google Scholar]
  194. Zhu Y, Comita LS, Hubbell SP, Ma KP. 194.  2015. Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. J. Ecol. 103:957–66 [Google Scholar]
/content/journals/10.1146/annurev-phyto-102313-045959
Loading
/content/journals/10.1146/annurev-phyto-102313-045959
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error