The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ahmed S, de Labrouhe DT, Delmotte F. 1.  2012. Emerging virulence arising from hybridisation facilitated by multiple introductions of the sunflower downy mildew pathogen Plasmopara halstedii. Fungal Gen. Biol. 49:847–55 [Google Scholar]
  2. Alexander DH, Novembre J, Lange K. 2.  2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19:1655–64 [Google Scholar]
  3. Andrew RL, Bernatchez L, Bonin A, Buerkle CA, Carstens BC. 3.  et al. 2013. A road map for molecular ecology. Mol. Ecol. 22:2605–26 [Google Scholar]
  4. Arnold ML. 4.  1997. Natural Hybridization and Evolution Oxford: Oxford Univ. Press
  5. Avise JC, Wollenberg K. 5.  1997. Phylogenetics and the origin of species. Proc. Natl. Acad. Sci. USA 94:7748–55 [Google Scholar]
  6. Bahri B, Kaltz O, Leconte M, de Vallavieille-Pope C, Enjalbert J. 6.  2009. Tracking costs of virulence in natural populations of the wheat pathogen, Puccinia striiformis f. sp. tritici. BMC Evol. Biol. 9:26 [Google Scholar]
  7. Barraclough TG, Birky CW, Burt A. 7.  2003. Diversification in sexual and asexual organisms. Evolution 57:2166–72 [Google Scholar]
  8. Baum DA, Donoghue MJ. 8.  1995. Choosing among alternative “phylogenetic” species concepts. Syst. Bot. 20:560–73 [Google Scholar]
  9. Becquet C, Przeworski M. 9.  2007. A new approach to estimate parameters of speciation models with application to apes. Genome Res. 17:1505–19 [Google Scholar]
  10. Bierne N, Welch J, Loire E, Bonhomme F, David P. 10.  2011. The coupling hypothesis: why genome scans may fail to map local adaptation genes. Mol. Ecol. 20:2044–72 [Google Scholar]
  11. Birky CW Jr. 11.  2013. Species detection and identification in sexual organisms using population genetic theory and DNA sequences. PLoS ONE 8:e52544 [Google Scholar]
  12. Birky CW Jr, Barraclough TG. 12.  2009. Asexual Speciation. Lost Sex. The Evolutionary Biology of Parthenogenesis I Schön, K Martens, P Van Dijk 201–16 Dordrecht, Neth: Springer [Google Scholar]
  13. Biswas S, Akey JM. 13.  2006. Genomic insights into positive selection. Trends Genet. 22:437–46 [Google Scholar]
  14. Boccas BR. 14.  1981. Interspecific crosses between closely related heterothallic Phytophthora species. Phytopathology 71:60–65 [Google Scholar]
  15. Boccas BR, Zentmyer GA. 15.  1976. Genetical studies with interspecific crosses between Phytophthora cinnamomi and Phytophthora parasitica. Phytopathology 66:77–84 [Google Scholar]
  16. Bonants PJ, Hagenaar-de Weerdt M, Man In ‘t Veld WA, Baayen RP. 16.  2000. Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum. Phytopathology 90:867–74 [Google Scholar]
  17. Bowden RL, Leslie JF. 17.  1999. Sexual recombination in Gibberella zeae. Phytopathology 89:182–88 [Google Scholar]
  18. Brasier CM. 18.  2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57:792–808 [Google Scholar]
  19. Brasier CM, Cooke DE, Duncan JM. 19.  1999. Origin of a new Phytophthora pathogen through interspecific hybridization. Proc. Natl. Acad. Sci. USA 96:5878–83 [Google Scholar]
  20. Brasier CM, Kirk SA, Pipe N, Buck KW. 20.  1998. Rare hybrids in natural populations of the Dutch elm disease pathogens Ophiostoma ulmi and O. novo-ulmi. Mycol. Res. 102:45–57 [Google Scholar]
  21. Broders KD, Boraks A, Sanchez AM, Boland GJ. 21.  2012. Population structure of the butternut canker fungus, Ophiognomonia clavigignenti-juglandacearum, in North American forests. Ecol. Evol. 2:2114–27 [Google Scholar]
  22. Brown JK, Hovmoller MS. 22.  2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–41 [Google Scholar]
  23. Browning M, Rowley LV, Zeng P, Chandlee JM, Jackson N. 23.  1999. Morphological, pathogenic and genetic comparisons of Colletotrichum graminicola isolates from Poaceae. Plant Dis. 83:286–92 [Google Scholar]
  24. Buerkle CA, Gompert Z, Parchman TL. 24.  2011. The n = 1 constraint in population genomics. Mol. Ecol. 20:1575–81 [Google Scholar]
  25. Cai L, Giraud T, Zhang N, Begerow D, Cai G, Shivas RG. 25.  2011. The evolution of species concepts and species recognition criteria in plant pathogenic fungi. Fungal Divers. 50:121–33 [Google Scholar]
  26. Cárdenas M, Tabima J, Fry WE, Grünwald NJ, Bernal A, Restrepo S. 26.  2012. Defining species boundaries in the genus Phytophthora: the case of Phytophthora andina: a response to “Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands” (Oliva et al. 2010). Plant Pathol. 61:215–20 [Google Scholar]
  27. Chamary JV, Hurst LD. 27.  2005. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol. 6:R75 [Google Scholar]
  28. Charlesworth B, Nordborg M, Charlesworth D. 28.  1997. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70:155–74 [Google Scholar]
  29. Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N. 29.  et al. 2011. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7:e1002147 [Google Scholar]
  30. Clay K, Kover PX. 30.  1996. The Red Queen Hypothesis and plant/pathogen interactions. Annu. Rev. Phytopathol. 34:29–50 [Google Scholar]
  31. Condon BJ, Leng Y, Wu D, Bushley KE, Ohm RA. 31.  et al. 2013. Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS Genet. 9:e1003233 [Google Scholar]
  32. Correll JC. 32.  1991. The relationship between formae speciales, races, and vegetative compatibility groups in Fusarium oxysporum. Phytopathology 81:1061–64 [Google Scholar]
  33. Coyne JA, Orr HA. 33.  2004. Speciation Sunderland, MA: Sinauer Assoc.
  34. Cracraft J. 34.  1989. Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. Speciation and its Consequences D Otte, JA Endler 28–59 Sunderland, MA: Sinauer Assoc. [Google Scholar]
  35. Crandall ED, Sbrocco EJ, Deboer TS, Barber PH, Carpenter KE. 35.  2012. Expansion dating: calibrating molecular clocks in marine species from expansions onto the Sunda Shelf following the last glacial maximum. Mol. Biol. Evol. 29:707–19 [Google Scholar]
  36. Croll D, McDonald BA. 36.  2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 8:e1002608 [Google Scholar]
  37. Crous PW, Groenewald JZ, Pongpanich K, Himaman W, Arzanlou M, Wingfield MJ. 37.  2004. Cryptic speciation and host specificity among Mycosphaerella spp. occurring on Australian Acacia species grown as exotics in the tropics. Stud. Mycol. 50:457–69 [Google Scholar]
  38. Cui R, Schumer M, Kruesi K, Walter R, Andolfatto P, Rosenthal GG. 38.  2013. Phylogenomics reveals extensive reticulate evolution in Xiphophorus fishes. Evolution 67:2166–79 [Google Scholar]
  39. Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG. 39.  et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–2 [Google Scholar]
  40. de Cock AW, Ilieva E, Lévesque CA. 40.  2002. Gene flow analysis of Phytophthora porri reveals a new species: Phytophthora brassicae sp. nov. Eur. J. Plant Pathol. 108:51–62 [Google Scholar]
  41. Delcan J, Brasier CM. 41.  2001. Oospore viability and variation in zoospore and hyphal tip derivatives of the hybrid alder Phytophthoras. Forest Pathol. 31:65–83 [Google Scholar]
  42. Dettman JR, Jacobson DJ, Taylor JW. 42.  2003. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:2703–20 [Google Scholar]
  43. de Vienne DM, Giraud T, Martin OC. 43.  2007. A congruence index for testing topological similarity between trees. Bioinformatics 23:3119–24 [Google Scholar]
  44. de Vienne DM, Refregier G, Hood ME, Guigue A, Devier B. 44.  et al. 2009. Hybrid sterility and inviability in the parasitic fungal species complex Microbotryum. J. Evol. Biol. 22:683–98 [Google Scholar]
  45. Dobzhansky T. 45.  1950. Heredity, environment, and evolution. Science 111:161–66 [Google Scholar]
  46. Dobzhansky TG. 46.  1937. Genetics and the Origin of Species New York: Columbia Univ. Press
  47. Donahoo RS, Lamour KH. 47.  2008. Interspecific hybridization and apomixis between Phytophthora capsici and Phytophthora tropicalis. Mycologia 100:911–20 [Google Scholar]
  48. Edelaar P, Bjorklund M. 48.  2011. If FST does not measure neutral genetic differentiation, then comparing it with QST is misleading. Or is it?. Mol. Ecol. 20:1805–12 [Google Scholar]
  49. Ellwood SR, Syme RA, Moffat CS, Oliver RP. 49.  2012. Evolution of three Pyrenophora cereal pathogens: recent divergence, speciation and evolution of non-coding DNA. Fungal Gen. Biol. 49:825–29 [Google Scholar]
  50. Engelbrecht CJ, Harrington TC. 50.  2005. Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 97:57–69 [Google Scholar]
  51. Engelbrecht CJ, Harrington TC, Steimel J, Capretti P. 51.  2004. Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Mol. Ecol. 13:2995–3005 [Google Scholar]
  52. Érsek T, English JT, Schoelz JE. 52.  1995. Creation of species hybrids of Phytophthora with modified host ranges by zoospore fusion. Phytopathology 85:1343–47 [Google Scholar]
  53. Érsek T, Man in ‘t Veld WA. 53.  2013. Phytophthora species hybrids: a novel threat to crops and natural ecosystems. Phytophthora: A Global Perspective K Lamour 37–47 Wallingford, UK: CABI [Google Scholar]
  54. Érsek T, Ribeiro OK. 54.  2010. Mini review article: an annotated list of new Phytophthora species described post 1996. Acta Phytopathol. Entomol. Hung. 45:251–66 [Google Scholar]
  55. Erselius LJ, Shaw DS. 55.  1982. Protein and enzyme differences between Phytophthora palmivora and P. megakarya. Evidence for self-fertilization in pairings of the two species. Trans. Br. Mycol. Soc. 78:227–38 [Google Scholar]
  56. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC. 56.  et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94 [Google Scholar]
  57. Flier WG, Grünwald NJ, Kroon LP, Sturbaum AK, van den Bosch TB. 57.  et al. 2003. The population structure of Phytophthora infestans from the Toluca Valley of central Mexico suggests genetic differentiation between populations from cultivated potato and wild Solanum spp. Phytopathology 93:382–90 [Google Scholar]
  58. Flier WG, Grünwald NJ, Kroon LPNM, van den Bosch TBM, Garay-Serrano E. 58.  et al. 2002. Phytophthora ipomoeae, a new homothallic species causing late blight on Ipomoeae longipedunculata in the Toluca Valley of central Mexico. Mycol. Res. 106:848–56 [Google Scholar]
  59. Flor HH. 59.  1964. Genetics of somatic variation for pathogenicity in Melampsora lini. Phytopathology 54:823–26 [Google Scholar]
  60. Fournier E, Giraud T. 60.  2007. Sympatric genetic differentiation of a generalist pathogenic fungus, Botrytis cinerea, on two different host plants, grapevine and bramble. J. Evol. Biol. 21:122–32 [Google Scholar]
  61. Frankham R, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB. 61.  et al. 2012. Implications of different species concepts for conserving biodiversity. Biol. Conserv. 153:25–31 [Google Scholar]
  62. Frenkel O, Peever TL, Chilvers MI, Ozkilinc H, Can C. 62.  et al. 2010. Ecological genetic divergence of the fungal pathogen Didymella rabiei on sympatric wild and domesticated Cicer spp. (chickpea). Appl. Environ. Microbiol. 76:30–39 [Google Scholar]
  63. Friesen TL, Faris JD. 63.  2012. Characterization of plant-fungal interactions involving necrotrophic effector-producing plant pathogens. Methods Mol. Biol. 835:191–207 [Google Scholar]
  64. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H. 64.  et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat. Genet. 38:953–56 [Google Scholar]
  65. Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B. 65.  2005. Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res. 15:1620–31 [Google Scholar]
  66. Gale LR, Bryant JD, Calvo S, Giese H, Katan T. 66.  et al. 2005. Chromosome complement of the fungal plant pathogen Fusarium graminearum based on genetic and physical mapping and cytological observations. Genetics 171:985–1001 [Google Scholar]
  67. Garrigan D, Hedrick PW. 67.  2003. Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–22 [Google Scholar]
  68. Gayral P, Melo-Ferreira J, Glémin S, Bierne N, Carneiro M. 68.  et al. 2013. Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet. 9:e1003457 [Google Scholar]
  69. Giraud T. 69.  2006. Speciation: selection against migrant pathogens: the immigrant inviability barrier in pathogens. Heredity 97:316–18 [Google Scholar]
  70. Giraud T, Gladieux P, Gavrilets S. 70.  2010. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol. Evol. 25:387–95 [Google Scholar]
  71. Gladieux P, Devier B, Aguileta G, Cruaud C, Giraud T. 71.  2013. Purifying selection after episodes of recurrent adaptive diversification in fungal pathogens. Infect. Genet. Evol. 17:123–31 [Google Scholar]
  72. Gladieux P, Vercken E, Fontaine MC, Hood ME, Jonot O. 72.  et al. 2011. Maintenance of fungal pathogen species that are specialized to different hosts: allopatric divergence and introgression through secondary contact. Mol. Biol. Evol. 28:459–71 [Google Scholar]
  73. Gladieux P, Zhang XG, Roldan-Ruiz I, Caffier V, Leroy T. 73.  et al. 2010. Evolution of the population structure of Venturia inaequalis, the apple scab fungus, associated with the domestication of its host. Mol. Ecol. 19:658–74 [Google Scholar]
  74. Göker M, Voglmayr H, Riethmüller A, Weiβ M, Oberwinkler F. 74.  2003. Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can. J. Bot. 81:672–83 [Google Scholar]
  75. Gonthier P, Garbelotto M. 75.  2011. Amplified fragment length polymorphism and sequence analyses reveal massive gene introgression from the European fungal pathogen Heterobasidion annosum into its introduced congener H. irregulare. Mol. Ecol. 20:2756–70 [Google Scholar]
  76. Gonthier P, Nicolotti G, Linzer R, Guglielmo F, Garbelotto M. 76.  2007. Invasion of European pine stands by a North American forest pathogen and its hybridization with a native interfertile taxon. Mol. Ecol. 16:1389–400 [Google Scholar]
  77. Gonzalez-Vera AD, Bernardes-de-Assis J, Zala M, McDonald BA, Correa-Victoria F. 77.  et al. 2010. Divergence between sympatric rice- and maize-infecting populations of Rhizoctonia solani AG-1 IA from Latin America. Phytopathology 100:172–82 [Google Scholar]
  78. Goodwin SB, Fry WE. 78.  1994. Genetic analyses of interspecific hybrids between Phytophthora infestans and Phytophthora mirabilis. Exp. Mycol. 18:20–32 [Google Scholar]
  79. Goodwin SB, Legard DE, Smart CD, Levy M, Fry WE. 79.  1999. Gene flow analysis of molecular markers confirms that Phytophthora mirabilis and P. infestans are separate species. Mycologia 91:796–810 [Google Scholar]
  80. Goss EM, Carbone I, Grünwald NJ. 80.  2009. Ancient isolation and independent evolution of the three clonal lineages of the exotic sudden oak death pathogen Phytophthora ramorum. Mol. Ecol. 18:1161–74 [Google Scholar]
  81. Grünwald NJ, Flier WG. 81.  2005. The biology of Phytophthora infestans at its center of origin. Annu. Rev. Phytopathol. 43:171–90 [Google Scholar]
  82. Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S. 82.  2012. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 20:131–38 [Google Scholar]
  83. Grünwald NJ, Goss EM. 83.  2011. Evolution and population genetics of exotic and re-emerging pathogens: novel tools and approaches. Annu. Rev. Phytopathol. 49:249–67 [Google Scholar]
  84. Grünwald NJ, Werres S, Goss EM, Taylor CR, Fieland VJ. 84.  2012. Phytophthora obscura sp. nov., a new species of the novel Phytophthora subclade 8D. Plant Pathol. 61:610–22 [Google Scholar]
  85. Guerin F, Gladieux P, Le Cam B. 85.  2007. Origin and colonization history of newly virulent strains of the phytopathogenic fungus Venturia inaequalis. Fungal Gen. Biol. 44:284–92 [Google Scholar]
  86. Halkett F, Coste D, Platero GG, Zapater MF, Abadie C, Carlier J. 86.  2010. Genetic discontinuities and disequilibria in recently established populations of the plant pathogenic fungus Mycosphaerella fijiensis. Mol. Ecol. 19:3909–23 [Google Scholar]
  87. Hansen EM, Maxwell DP. 87.  1991. Species of the Phytophthora megasperma complex. Mycologia 83:376–81 [Google Scholar]
  88. Harrington TC, McNew DL. 88.  1998. Partial interfertility among the Ceratocystis species on conifers. Fungal Genet. Biol. 25:44–53 [Google Scholar]
  89. Harrington TC, Steimel JP, Wingfield MJ, Kile GA. 89.  1996. Isozyme variation and species delimitation in the Ceratocystis coerulescens complex. Mycologia 88:104–13 [Google Scholar]
  90. Hawksworth DL. 90.  1997. Fungi and biodiversity: international incentives. Microbiologia 13:221–26 [Google Scholar]
  91. Hedrick PW. 91.  2005. A standardized genetic differentiation measure. Evolution 59:1633–38 [Google Scholar]
  92. Heller R, Siegismund HR. 92.  2009. Relationship between three measures of genetic differentiation GST, DEST and G′ST: How wrong have we been?. Mol. Ecol. 18:2080–83; discuss. 8–91 [Google Scholar]
  93. Hernandez-Bello MA, Chilvers MI, Akamatsu H, Peever TL. 93.  2006. Host specificity of Ascochyta spp. infecting legumes of the Viciae and Cicerae tribes and pathogenicity of an interspecific hybrid. Phytopathology 96:1148–56 [Google Scholar]
  94. Hey J, Nielsen R. 94.  2004. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–60 [Google Scholar]
  95. Hey J, Nielsen R. 95.  2007. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc. Natl. Acad. Sci. USA 104:2785–90 [Google Scholar]
  96. Hibbett DS, Taylor JW. 96.  2013. Fungal systematics: Is a new age of enlightenment at hand?. Nat. Rev. Microbiol. 11:129–33 [Google Scholar]
  97. Holsinger KE, Weir BS. 97.  2009. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat. Rev. Genet. 10:639–50 [Google Scholar]
  98. Huai W-X, Tian G, Hansen EM, Zhao W-X, Goheen EM. 98.  et al. 2013. Identification of Phytophthora species baited and isolated from forest soil and streams in northwestern Yunnan Province, China. Forest Pathol. 43:87–103 [Google Scholar]
  99. Hudson RR. 99.  1990. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology DJ Futuyma, J Antonovics 1–44 Oxford: Oxford Univ. Press [Google Scholar]
  100. Hughes AL. 100.  2007. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99:364–73 [Google Scholar]
  101. Ioos R, Andrieux A, Marcais B, Frey P. 101.  2006. Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Gen. Biol. 43:511–29 [Google Scholar]
  102. Jost L. 102.  2008. GST and its relatives do not measure differentiation. Mol. Ecol. 17:4015–26 [Google Scholar]
  103. Jost L. 103.  2009. Reply: D versus G′ST: response to Heller and Siegismund 2009 and Ryman and Leimar 2009. Mol. Ecol. 18:2088–91 [Google Scholar]
  104. Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NJ, Plattner RD. 104.  2002. A genetic map of Gibberella zeae (Fusarium graminearum). Genetics 160:1451–60 [Google Scholar]
  105. Kaiser WJ, Wang B-C, Rogers JD. 105.  1997. Ascochyta fabae and A. lentis: Host specificity, teleomorphs (Didymella), hybrid analysis, and taxonomic status. Plant Dis. 81:809–16 [Google Scholar]
  106. Kang JC, Crous PW, Schoch CL. 106.  2001. Species concepts in the Cylindrocladium floridanum and Cy. spathiphylli complexes (Hypocreaceae) based on multi-allelic sequence data, sexual compatibility and morphology. Syst. Appl. Microbiol. 24:206–17 [Google Scholar]
  107. Kaplan N, Hudson RR, Iizuka M. 107.  1991. The coalescent process in models with selection, recombination and geographic subdivision. Genet. Res. 57:83–91 [Google Scholar]
  108. Karl SA, Toonen RJ, Grant WS, Bowen BW. 108.  2012. Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol. Ecol. 21:4171–89 [Google Scholar]
  109. Kofler R, Pandey RV, Schlotterer C. 109.  2011. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics 27:3435–36 [Google Scholar]
  110. Koufopanou V, Burt A, Szaro T, Taylor JW. 110.  2001. Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol. Biol. Evol. 18:1246–58 [Google Scholar]
  111. Kryazhimskiy S, Plotkin JB. 111.  2008. The population genetics of dN/dS. PLoS Genet. 4:e1000304 [Google Scholar]
  112. Leach JE, Vera Cruz CM, Bai J, Leung H. 112.  2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annu. Rev. Phytopathol. 39:187–224 [Google Scholar]
  113. Le Gac M, Hood ME, Giraud T. 113.  2007. Evolution of reproductive isolation within a parasitic fungal species complex. Evolution 61:1781–87 [Google Scholar]
  114. Lemey P, Lott M, Martin DP, Moulton V. 114.  2009. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning. BMC Bioinform. 10:126 [Google Scholar]
  115. Lemey P, Minin VN, Bielejec F, Kosakovsky Pond SL, Suchard MA. 115.  2012. A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. Bioinformatics 28:3248–56 [Google Scholar]
  116. Lemey P, Rambaut A, Welch JJ, Suchard MA. 116.  2010. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27:1877–85 [Google Scholar]
  117. Little R, Manners JG. 117.  1969. Somatic recombination in yellow rust of wheat (Puccinia striiformis). 2. Germ tube fusions, nuclear number and nuclear size. Trans. Br. Mycol. Soc. 53:259–67 [Google Scholar]
  118. Malik M, Vilgalys R. 118.  1999. Somatic incompatibility in fungi. Structure and Dynamics of Fungal Populations JJ Worrall 123–38 Dordrecht, Neth: Kluwer Acad. Publ. [Google Scholar]
  119. Mallet J. 119.  2007. Hybrid speciation. Nature 446:279–83 [Google Scholar]
  120. Man in ‘t Veld WA. 120.  2007. Gene flow analysis demonstrates that Phytophthora fragariae var. rubi constitutes a distinct species, Phytophthora rubi comb. nov. Mycologia 99:222–26 [Google Scholar]
  121. May KJ, Drent A, Irwin JAG. 121.  2003. Interspecific hybrids between the homothallic Phytophthora sojae and Phytophthora vignae. Australas. Plant Pathol. 32:353–59 [Google Scholar]
  122. McCoy KD. 122.  2003. Sympatric speciation in parasites: What is sympatry?. Trends Parasitol. 19:400–4 [Google Scholar]
  123. Meirmans PG, Hedrick PW. 123.  2011. Assessing population structure: F(ST) and related measures. Mol. Ecol. Resour. 11:5–18 [Google Scholar]
  124. Mendelson TC, Shaw KL. 124.  2012. The (mis)concept of species recognition. Trends Ecol. Evol. 27:421–27 [Google Scholar]
  125. Michelmore R. 125.  2000. Genomic approaches to plant disease resistance. Curr. Opin. Plant Biol. 3:125–31 [Google Scholar]
  126. Mitchell MN, Ocamb CM, Grünwald NJ, Mancino LE, Gent DH. 126.  2011. Genetic and pathogenic relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology 101:805–18 [Google Scholar]
  127. Montarry J, Hamelin FM, Glais I, Corbi R, Andrivon D. 127.  2010. Fitness costs associated with unnecessary virulence factors and life history traits: evolutionary insights from the potato late blight pathogen Phytophthora infestans. BMC Evol. Biol. 10:283 [Google Scholar]
  128. Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL. 128.  2004. Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol. Ecol. 13:1455–67 [Google Scholar]
  129. Nagel JH, Gryzenhout M, Slippers B, Wingfield MJ, Hardy GE. 129.  et al. 2013. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biol. 117:329–47 [Google Scholar]
  130. Nei M. 130.  1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70:3321–23 [Google Scholar]
  131. Nelson RR. 131.  1959. Genetics of Cochliobolus heterostrophus. II. Genetic factors inhibiting ascospore formation. Mycologia 51:24–30 [Google Scholar]
  132. Nelson RR. 132.  1964. Bridging interspecific incompatibility in the ascomycetous genus Cochliobolus. Evolution 18:700–4 [Google Scholar]
  133. Nixon KC, Wheeler QD. 133.  1990. An amplification of the phylogenetic species concept. Cladistics 6:211–23 [Google Scholar]
  134. Noor MA, Bennett SM. 134.  2009. Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity 103:439–44 [Google Scholar]
  135. O'Donnell K, Ward TJ, Aberra D, Kistler HC, Aoki T. 135.  et al. 2008. Multilocus genotyping and molecular phylogenetics resolve a novel head blight pathogen within the Fusarium graminearum species complex from Ethiopia. Fungal Gen. Biol. 45:1514–22 [Google Scholar]
  136. Ordoñez ME, Hohl HR, Velasco JA, Ramon MP, Oyarzun PJ. 136.  et al. 2000. A novel population of Phytophthora, similar to P. infestans, attacks wild Solanum species in Ecuador. Phytopathology 90:197–202 [Google Scholar]
  137. Orr HA, Presgraves DC. 137.  2000. Speciation by postzygotic isolation: forces, genes and molecules. BioEssays 22:1085–94 [Google Scholar]
  138. Ozkilinc H, Frenkel O, Abbo S, Eshed R, Sherman A. 138.  et al. 2010. A comparative study of Turkish and Israeli populations of Didymella rabiei, the ascochyta blight pathogen of chickpea. Plant Pathol. 59:492–503 [Google Scholar]
  139. Park RF, Wellings CR. 139.  2012. Somatic hybridization in the Uredinales. Annu. Rev. Phytopathol. 50:219–39 [Google Scholar]
  140. Parker IM, Gilbert GS. 140.  2004. The evolutionary ecology of novel plant pathogen interactions. Annu. Rev. Ecol. Syst. 35:675–700 [Google Scholar]
  141. Petit RJ, Excoffier L. 141.  2009. Gene flow and species delimitation. Trends Ecol. Evol. 24:386–93 [Google Scholar]
  142. Pipe ND, Buck KW, Brasier CM. 142.  1995. Genomic fingerprinting supports the separation of Ophiostoma piceae into two species. Mycol. Res. 99:1182–86 [Google Scholar]
  143. Ploch S, Choi YJ, Rost C, Shin HD, Schilling E, Thines M. 143.  2010. Evolution of diversity in Albugo is driven by high host specificity and multiple speciation events on closely related Brassicaceae. Mol. Phylogenet. Evol. 57:812–20 [Google Scholar]
  144. Plotkin JB, Kudla G. 144.  2011. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12:32–42 [Google Scholar]
  145. Pons JD, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP. 145.  et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55:1–15 [Google Scholar]
  146. Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N. 146.  et al. 2009. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet. 5:e1000519 [Google Scholar]
  147. Price PW. 147.  2007. Parasite patterns. Evolution 61:2450–51 [Google Scholar]
  148. Price TD, Bouvier MM. 148.  2002. The evolution of F1 postzygotic incompatibilities in birds. Evolution 56:2083–89 [Google Scholar]
  149. Puhalla JE, Spieth PT. 149.  1985. A comparison of heterokaryosis and vegetative incompatibility among varities of Gibberella fujikuroi (Fusarium moniliforme). Exp. Mycol. 9:39–47 [Google Scholar]
  150. Pujol B, Wilson AJ, Ross RI, Pannell JR. 150.  2008. Are QST-FST comparisons for natural populations meaningful?. Mol. Ecol. 17:4782–85 [Google Scholar]
  151. Rabosky DL, Matute DR. 151.  2013. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl. Acad. Sci. USA 110:15354–59 [Google Scholar]
  152. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D. 152.  et al. 2010. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330:1540–43 [Google Scholar]
  153. Ree RH. 153.  2005. Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution 59:257–65 [Google Scholar]
  154. Rintoul TL, Eggertson QA, Lévesque CA. 154.  2011. Multigene phylogenetic analyses to delimit new species in fungal plant pathogens. Methods Mol. Biol. 835:549–69 [Google Scholar]
  155. Rivas GG, Zapater MF, Abadie C, Carlier J. 155.  2004. Founder effects and stochastic dispersal at the continental scale of the fungal pathogen of bananas Mycosphaerella fijiensis. Mol. Ecol. 13:471–82 [Google Scholar]
  156. Rosenberg NA. 156.  2003. The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model. Evolution 57:1465–77 [Google Scholar]
  157. Rosenberg NA, Nordborg M. 157.  2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet. 3:380–90 [Google Scholar]
  158. Rouxel M, Mestre P, Comont G, Lehman BL, Schilder A, Delmotte F. 158.  2013. Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete. New Phytol. 197:251–63 [Google Scholar]
  159. Roy BA. 159.  2001. Patterns of association between crucifers and their flower-mimic pathogens: Host jumps are more common than coevolution or cospeciation. Evolution 55:41–53 [Google Scholar]
  160. Runge F, Thines M. 160.  2012. Reevaluation of host specificity of the closely related species Pseudoperonospora humuli and P. cubensis. Plant Dis. 96:55–61 [Google Scholar]
  161. Ryman N, Leimar O. 161.  2009. G(ST) is still a useful measure of genetic differentiation: a comment on Jost's D. Mol. Ecol. 18:2084–87 [Google Scholar]
  162. Salichos L, Rokas A. 162.  2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497:327–31 [Google Scholar]
  163. Sansome ER, Brasier CM, Griffin MJ. 163.  1975. Chromosome size differences in “Phytophthora palmivora” on cocoa in West Africa. Nature 255:704–5 [Google Scholar]
  164. Sarver BA, Ward TJ, Gale LR, Broz K, Kistler HC. 164.  et al. 2011. Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Gen. Biol. 48:1096–107 [Google Scholar]
  165. Schardl CL, Craven KD. 165.  2003. Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol. Ecol. 12:2861–73 [Google Scholar]
  166. Schluter D. 166.  2009. Evidence for ecological speciation and its alternative. Science 323:737–41 [Google Scholar]
  167. Schmidt SM, Panstruga R. 167.  2011. Pathogenomics of fungal plant parasites: What have we learnt about pathogenesis?. Curr. Opin. Plant Biol. 14:392–99 [Google Scholar]
  168. Schröder S, Telle S, Nick P, Thines M. 168.  2011. Cryptic diversity of Plasmopara viticola (Oomycota, Peronosporaceae) in North America. Org. Divers. Evol. 11:13–7 [Google Scholar]
  169. Schulze-Lefert P, Panstruga R. 169.  2011. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 16:117–25 [Google Scholar]
  170. Shepherd CJ. 170.  1978. Mating behaviour of Australian isolates of Phytophthora species. I. Inter- and intraspecific mating. Aust. J. Bot. 26:123–38 [Google Scholar]
  171. Shepherd CJ, Cunningham RB. 171.  1978. Mating behaviour of Australian isolates of Phytophthora species. II. Phytophthora cinnamoni. Aust. J. Bot. 26:139–51 [Google Scholar]
  172. Shepherd CJ, Pratt BH, Taylor PA. 172.  1974. Comparative morphology and behaviour of A1 and A2 isolates of Phytophthora cinnamomi. Aust. J. Bot. 22:461–70 [Google Scholar]
  173. Silva DN, Talhinhas P, Cai L, Manuel L, Gichuru EK. 173.  et al. 2012. Host-jump drives rapid and recent ecological speciation of the emergent fungal pathogen Colletotrichum kahawae. Mol. Ecol. 21:2655–70 [Google Scholar]
  174. Sousa V, Hey J. 174.  2013. Understanding the origin of species with genome-scale data: modelling gene flow. Nat. Rev. Genet. 14:404–14 [Google Scholar]
  175. Staats M, van Baarlen P, van Kan JAL. 175.  2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol. 22:333–46 [Google Scholar]
  176. Strasburg JL, Rieseberg LH. 176.  2010. How robust are “isolation with migration” analyses to violations of the IM model? A simulation study. Mol. Biol. Evol. 27:297–310 [Google Scholar]
  177. Stukenbrock EH. 177.  2013. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytol. 199:895–907 [Google Scholar]
  178. Stukenbrock EH, Banke S, McDonald BA. 178.  2006. Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Mol. Ecol. 15:2895–904 [Google Scholar]
  179. Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH. 179.  2012. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc. Natl. Acad. Sci. USA 109:10954–59 [Google Scholar]
  180. Stukenbrock EH, Jorgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH. 180.  2010. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet. 6:e1001189 [Google Scholar]
  181. Stukenbrock EH, McDonald BA. 181.  2008. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. 46:75–100 [Google Scholar]
  182. Tang H, Peng J, Wang P, Risch NJ. 182.  2005. Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol. 28:289–301 [Google Scholar]
  183. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM. 183.  et al. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Gen. Biol. 31:21–32 [Google Scholar]
  184. Taylor JW, Turner E, Townsend JP, Dettman JR, Jacobson D. 184.  2006. Eukaryotic microbes, species recognition and the geographic limits of species: examples from the kingdom Fungi. Philos. Trans. R. Soc. B 361:1947–63 [Google Scholar]
  185. Turner E, Jacobson DJ, Taylor JW. 185.  2010. Reinforced postmating reproductive isolation barriers in Neurospora, an ascomycete microfungus. J. Evol. Biol. 23:1642–56 [Google Scholar]
  186. Vaillancourt LJ, Hanau RM. 186.  1992. Genetic and morphological comparisons of Glomerella (Colletotrichum) isolates from maize and from sorghum. Exp. Mycol. 16:219–29 [Google Scholar]
  187. van de Wouw AP, Howlett BJ. 187.  2011. Fungal pathogenicity genes in the age of “omics.”. Mol. Plant Pathol. 12:507–14 [Google Scholar]
  188. Vialle A, Feau N, Frey P, Bernier L, Hamelin RC. 188.  2013. Phylogenetic species recognition reveals host-specific lineages among poplar rust fungi. Mol. Phylogenet. Evol. 66:628–44 [Google Scholar]
  189. Walker AS, Gautier AL, Confais J, Martinho D, Viaud M. 189.  et al. 2011. Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101:1433–45 [Google Scholar]
  190. Waples RS, Gaggiotti O. 190.  2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15:1419–39 [Google Scholar]
  191. Whitlock MC, Guillaume F. 191.  2009. Testing for spatially divergent selection: comparing QST to FST. Genetics 183:1055–63 [Google Scholar]
  192. Widmer A, Lexer C, Cozzolino S. 192.  2009. Evolution of reproductive isolation in plants. Heredity 102:31–38 [Google Scholar]
  193. Wilson DJ, Hernandez RD, Andolfatto P, Przeworski M. 193.  2011. A population genetics–phylogenetics approach to inferring natural selection in coding sequences. PLoS Genet. 7:e1002395 [Google Scholar]
  194. Worrall JJ. 194.  1997. Somatic incompatibility in basidiomycetes. Mycologia 89:24–36 [Google Scholar]
  195. Wright S. 195.  1969. Evolution and the Genetics of Populations 2 The Theory of Gene Frequencies Chicago: Univ. Chicago Press
  196. Xhaard C, Fabre B, Andrieux A, Gladieux P, Barres B. 196.  et al. 2011. The genetic structure of the plant pathogenic fungus Melampsora larici-populina on its wild host is extensively impacted by host domestication. Mol. Ecol. 20:2739–55 [Google Scholar]
  197. Yang Z, Bielawski JP. 197.  2000. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 15:496–503 [Google Scholar]
  198. Zaffarano PL, McDonald BA, Linde CC. 198.  2008. Rapid speciation following recent host shifts in the plant pathogenic fungus Rhynchosporium. Evolution 62:1418–36 [Google Scholar]
  199. Zaffarano PL, McDonald BA, Linde CC. 199.  2011. Two new species of Rhynchosporium. Mycologia 103:195–202 [Google Scholar]
  200. Zhong S, Steffenson BJ, Martinez JP, Ciuffetti LM. 200.  2002. A molecular genetic map and electrophoretic karyotype of the plant pathogenic fungus Cochliobolus sativus. Mol. Plant-Microbe Interact. 15:481–92 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error