
Full text loading...
Phytopathogenic fungi have evolved an amazing diversity of infection modes and nutritional strategies, yet the signaling pathways that govern pathogenicity are remarkably conserved. Protein kinases (PKs) catalyze the reversible phosphorylation of proteins, regulating a variety of cellular processes. Here, we present an overview of our current understanding of the different classes of PKs that contribute to fungal pathogenicity on plants and of the mechanisms that regulate and coordinate PK activity during infection-related development. In addition to the well-studied PK modules, such as MAPK (mitogen-activated protein kinase) and cAMP (cyclic adenosine monophosphate)-PKA (protein kinase A) cascades, we also discuss new PK pathways that have emerged in recent years as key players of pathogenic development and disease. Understanding how conserved PK signaling networks have been recruited during the evolution of fungal pathogenicity not only advances our knowledge of the highly elaborate infection process but may also lead to the development of novel strategies for the control of plant disease.
Article metrics loading...
Full text loading...
Data & Media loading...