Mycoviruses are viruses that infect fungi. A growing number of novel mycoviruses have expanded our knowledge of virology, particularly in taxonomy, ecology, and evolution. Recent progress in the study of mycoviruses has comprehensively improved our understanding of the properties of mycoviruses and has strengthened our confidence to explore hypovirulence-associated mycoviruses that control crop diseases. In this review, the advantages of using hypovirulence-associated mycoviruses to control crop diseases are discussed, and, as an example, the potential for Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) to control the stem rot of rapeseed () is also introduced. Fungal vegetative incompatibility is likely to be the key factor that limits the wide utilization of mycoviruses to control crop diseases; however, there are suggested strategies for resolving this problem.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anagnostakis SL. 1.  1982. Anagnostakis biological control of chestnut blight. Science 215:466–71 [Google Scholar]
  2. Bidard F, Clavé C, Saupe SJ. 2.  2013. The transcriptional response to nonself in the fungus Podospora anserina. G3 Bethesda 3:61015–30 [Google Scholar]
  3. Biella S, Smith ML, Aist JR, Cortesi P, Milgroom MG. 3.  2002. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc. Biol. Sci. 269:2269–76 [Google Scholar]
  4. Biraghi A. 4.  1953. Possible active resistance to Endothia parasitica in Castanea sativa. Rep. Congr. Int. Union For. Res. Org., 11th, Rome
  5. Boine B, Kingston RL, Pearson MN. 5.  2012. Recombinant expression of the coat protein of Botrytis virus X and development of an immunofluorescence detection method to study its intracellular distribution in Botrytis cinerea. J. Gen. Virol. 93:2502–11 [Google Scholar]
  6. Boland GJ. 6.  1992. Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can. J. Plant Pathol. 14:10–17 [Google Scholar]
  7. Bolton M, Thomma BPHJ, Nelson B. 7.  2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant. Pathol. 7:1–16 [Google Scholar]
  8. Brusini J, Robin C. 8.  2013. Mycovirus transmission revisited by in situ pairings of vegetatively incompatible isolates of Cryphonectria parasitica. J. Virol. Methods 187:2435–42 [Google Scholar]
  9. Bryner SF, Rigling D. 9.  2012. Virulence not only costs but also benefits the transmission of a fungal virus. Evolution 66:82540–50 [Google Scholar]
  10. Cai G, Hillman BI. 10.  2013. Phytophthora viruses. Adv. Virus Res. 86:327–50 [Google Scholar]
  11. Castón JR, Luque D, Trus BL, Rivas G, Alfonso C. 11.  et al. 2006. Three-dimensional structure and stoichiometry of Helmintosporium victoriae 190S totivirus. Virology 347:323–32 [Google Scholar]
  12. Castro M, Kramer K, Valdivia L, Ortiz S, Castillo A. 12.  2003. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol. Lett. 228:187–91 [Google Scholar]
  13. Chen B, Choi GH, Nuss DL. 13.  1994. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264:1762–64 [Google Scholar]
  14. Chen B, Nuss DL. 14.  1999. Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virol. 73:985–92 [Google Scholar]
  15. Chiba S, Kondo H, Tani A, Saisho D, Sakamoto W. 15.  et al. 2011. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog. 7:7e1002146 [Google Scholar]
  16. Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N. 16.  2013. Effects of defective interfering RNA on symptom induction by, and replication of, a novel partitivirus from a phytopathogenic fungus, Rosellinia necatrix. J. Virol. 87:42330–41 [Google Scholar]
  17. Chiba S, Lin YH, Kondo H, Kanematsu S, Suzuki N. 17.  2013. A novel Victorivirus from a phytopathogenic fungus, Rosellinia necatrix, is infectious as particles and targeted by RNA silencing. J. Virol. 87:126727–38 [Google Scholar]
  18. Chiba S, Salaipeth L, Lin YH, Sasaki A, Kanematsu S. 18.  et al. 2009. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: molecular and biological characterization, taxonomic considerations, and potential for biological control. J. Virol. 83:2412801–12 [Google Scholar]
  19. Cho WK, Lee KM, Yu J, Son M, Kim KH. 19.  2013. Insight into mycoviruses infecting Fusarium species. Adv. Virus Res. 86:273–88 [Google Scholar]
  20. Cho WK, Yu J, Lee KM, Son M, Min K. 20.  et al. 2012. Genome-wide expression profiling shows transcriptional reprogramming in Fusarium graminearum by Fusarium graminearum virus 1-DK21 infection. BMC Genomics 13:173 [Google Scholar]
  21. Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG. 21.  et al. 2012. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics 190:1113–27 [Google Scholar]
  22. Choi GH, Nuss DL. 22.  1992. A viral gene confers hypovirulence associated traits to the chestnut blight fungus. EMBO J. 11:473–77 [Google Scholar]
  23. Choi GH, Nuss DL. 23.  1992. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800–3 [Google Scholar]
  24. Chun SJ, Lee YH. 24.  1997. Inheritance of dsRNAs in the rice blast fungus, Magnaporthe grisea. FEMS Microbiol. Lett. 148:2159–62 [Google Scholar]
  25. Dawe AL, Nuss DL. 25.  2001. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu. Rev. Genet. 35:1–29 [Google Scholar]
  26. Dawe AL, Nuss DL. 26.  2013. Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission. Adv. Virus Res. 86:109–47 [Google Scholar]
  27. Dayaram A, Jaschke A, Hadfield J, Baschiera M, Dobson RC. 27.  et al. 2012. Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res. 166:130–35 [Google Scholar]
  28. Deng F, Boland GJ. 28.  2003. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 93:111407–14 [Google Scholar]
  29. Deng Q, Ye Y, Miao M, Fang Q, Li T. 29.  et al. 2010. The horizontal transmission of Cryphonectria hypovirus 1(CHV1) is affected by virus strains. Chinese Sci. Bull. 54:173053–60 [Google Scholar]
  30. de Sá PB, Havens WM, Ghabrial SA. 30.  2010. Characterization of a novel broad-spectrum antifungal protein from virus-infected Helminthosporium (Cochliobolus) victoriae. Phytopathology 100:9880–89 [Google Scholar]
  31. Ding SW. 31.  2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632–44 [Google Scholar]
  32. Dunn SE, Li H, Cardone G, Nibert ML, Ghabrial SA. 32.  et al. 2013. Three-dimensional structure of victorivirus HvV190S suggests coat proteins in most totiviruses share a conserved core. PLoS Pathog. 9:3e1003225 [Google Scholar]
  33. Fedorova ND, Badger JH, Robson GD, Wortman JR, Nierman WC. 33.  2005. Comparative analysis of programmed cell death pathways in filamentous fungi. BMC Genomics 6:177 [Google Scholar]
  34. Fulbright DW. 34.  1984. Effect of eliminating dsRNA in hypovirulent Endothia parasitica. Phytopathology 74:722–72 [Google Scholar]
  35. Ghabrial SA. 35.  1998. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16:1119–31 [Google Scholar]
  36. Ghabrial SA, Dunn SE, Li H, Xie J, Baker TS. 36.  2013. Viruses of Helminthosporium (Cochlioblus) victoriae. Adv. Virus Res. 86:289–325 [Google Scholar]
  37. Ghabrial SA, Havens WM. 37.  1992. The Helminthosporium victoriae 190S mycovirus has two forms distinguishable by capsid protein composition and phosphorylation state. Virology 188:657–65 [Google Scholar]
  38. Ghabrial SA, Soldevila AI, Havens WM. 38.  2002. Molecular genetics of the viruses infecting the plant pathogenic fungus Helminthosporium victoriae. Molecular Biology of Double-Stranded RNA: Concepts and Applications in Agriculture, Forestry and Medicine S Tavantzis 213–36 Boca Raton, FL: CRC Press [Google Scholar]
  39. Ghabrial SA, Suzuki N. 39.  2009. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 47:353–84 [Google Scholar]
  40. Grasse W, Zipper R, Totska M, Spring O. 40.  2013. Plasmopara halstedii virus causes hypovirulence in Plasmopara halstedii, the downy mildew pathogen of the sunflower. Fungal Genet. Biol. 57:42–47 [Google Scholar]
  41. Heiniger U, Rigling D. 41.  1994. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32:581–99 [Google Scholar]
  42. Heller-Dohmen M, Göpfert JC, Pfannstiel J, Spring O. 42.  2011. The nucleotide sequence and genome organization of Plasmopara halstedii virus. Virol. J. 8:123 [Google Scholar]
  43. Hillman BI, Fulbright DW, Nuss DL, Van Alfen NK. 43.  1995. Hypoviridae. Virus Taxonomy FA Murphy 261–64 New York: Springer Verlag [Google Scholar]
  44. Hillman BI, Halpern BT, Brown MP. 44.  1994. A viral dsRNA element of the chestnut blight fungus with a distinct genetic organization. Virology 201:241–50 [Google Scholar]
  45. Hillman BI, Shapira R, Nuss DL. 45.  1990. Hypovirulence-associated suppression of host functions in Cryphonectria parasitica can be partially relieved by high light intensity. Phytopathology 80:950–56 [Google Scholar]
  46. Hillman BI, Supyani S, Kondo H, Suzuki N. 46.  2004. A reovirus of the fungus Cryphonectria parasitica that is infectious as particles and related to the Coltivirus genus of animal pathogens. J. Virol. 78:892–98 [Google Scholar]
  47. Hillman BI, Suzuki N. 47.  2004. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63:423–72 [Google Scholar]
  48. Hillman BI, Tian Y, Bedker PJ, Brown MP. 48.  1992. A North American hypovirulent isolate of the chestnut blight fungus with European isolate-related dsRNA. J. Gen. Virol. 73:681–86 [Google Scholar]
  49. Howitt R, Beever RE, Pearson MN, Forster RL. 49.  1995. Presence of double-stranded RNA and virus like particles in Botrytis cinerea. Mycol. Res. 99:1472–78 [Google Scholar]
  50. Hutchison E, Brown S, Tian C, Glass NL. 50.  2005. Transcriptional profiling and functional analysis of heterokaryon incompatibility in Neurospora crassa reveals that reactive oxygen species, but not metacaspases, are associated with programmed cell death. Microbiology 155:3957–70 [Google Scholar]
  51. Ikeda K, Inoue K, Kida C, Uwamori T, Sasaki A. 51.  et al. 2013. Potentiation of mycovirus transmission by zinc compounds via attenuation of heterogenic incompatibility in Rosellinia necatrix. Appl. Environ. Microbiol. 79:123684–91 [Google Scholar]
  52. Jian JH, Lakshman DK, Tavantzis SM. 52.  1998. A virulence-associated, 6.4-kb, double-stranded RNA from Rhizoctonia solani is phylogenetically related to plant bromoviruses and electron transport enzymes. Mol. Plant-Microbe Interact. 11:7601–9 [Google Scholar]
  53. Jiang D, Fu Y, Li G, Ghabrial SA. 53.  2013. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum. Adv. Virus Res. 86:215–48 [Google Scholar]
  54. Kanematsu S, Sasaki A, Onoue M, Oikawa Y, Ito T. 54.  2010. Extending the fungal host range of a partitivirus and a mycoreovirus from Rosellinia necatrix by inoculation of protoplasts with virus particles. Phytopathology 100:9922–30 [Google Scholar]
  55. Khalifa ME, Pearson MN. 55.  2013. Molecular characterization of three mitoviruses co-infecting a hypovirulent isolate of Sclerotinia sclerotiorum fungus. Virology 441:122–30 [Google Scholar]
  56. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ. 56.  2012. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses Amsterdam, The Neth: Elsevier Acad.
  57. Kondo H, Chiba S, Toyoda K, Suzuki N. 57.  2013. Evidence for negative-strand RNA virus infection in fungi. Virology 435:2201–9 [Google Scholar]
  58. Kondo H, Kanematsu S, Suzuki N. 58.  2013. Viruses of the white root rot fungus, Rosellinia necatrix. Adv. Virus Res. 86:177–214 [Google Scholar]
  59. Koonin EV, Choi GH, Nuss DL, Shapira R, Carrington JC. 59.  1991. Evidence for common ancestry of a chestnut blight hypovirulence associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc. Natl. Acad. Sci. USA 88:10647–51 [Google Scholar]
  60. Kraberger S, Stainton D, Dayaram A, Zawar-Reza P, Gomez C. 60.  et al. 2013. Discovery of Sclerotinia sclerotiorum hypovirulence-associated virus-1 in urban river sediments of Heathcote and Styx Rivers in Christchurch city, New Zealand. Genome Announc. 1:4e559–613 [Google Scholar]
  61. Krupovic M. 61.  2013. Networks of evolutionary interactions underlying the polyphyletic origin of ssDNA viruses. Curr. Opin. Virol. 3:5578–86 [Google Scholar]
  62. Kwon SJ, Cho SY, Lee KM, Yu J, Son M. 62.  et al. 2009. Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res. 144:1–296–106 [Google Scholar]
  63. Kwon SJ, Lim WS, Park SH, Park MR, Kim KH. 63.  2007. Molecular characterization of a dsRNA mycovirus, Fusarium graminearum virus-DK21, which is phylogenetically related to hypoviruses but has a genome organization and gene expression strategy resembling those of plant potex-like viruses. Mol. Cells 23:3304–15 [Google Scholar]
  64. Lakshman DK, Jian J, Tavantzis SM. 64.  1998. A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proc. Natl. Acad. Sci. USA 195:116425–29 [Google Scholar]
  65. Lee KM, Yu J, Son M, Lee YW, Kim KH. 65.  2012. Transmission of Fusarium boothii mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PLoS ONE 6:e21629 [Google Scholar]
  66. Li G, Wang D, Jiang D, Huang HC. 66.  2000. First report of Sclerotinia nivalis on lettuce in central China. Mycol. Res. 104:2232–37 [Google Scholar]
  67. Li H, Fu Y, Jiang D, Li G, Ghabrial SA. 67.  et al. 2008. Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res. 135:195–106 [Google Scholar]
  68. Li H, Havens WM, Nibert ML, Ghabrial SA. 68.  2011. RNA sequence determinants of a coupled termination-reinitiation strategy for downstream open reading frame translation in Helminthosporium victoriae virus 190S and other victoriviruses (Family Totiviridae). J. Virol. 85:147343–52 [Google Scholar]
  69. Lin YH, Chiba S, Tani A, Kondo H, Sasaki A. 69.  et al. 2012. A novel quadripartite dsRNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix. Virology 2426:142–50 [Google Scholar]
  70. Lin YH, Hisano S, Yaegashi H, Kanematsu S, Suzuki N. 70.  2013. A second quadrivirus strain from the phytopathogenic filamentous fungus Rosellinia necatrix. Arch. Virol. 158:51093–98 [Google Scholar]
  71. Linder-Basso D, Dynek JN, Hillman BI. 71.  2005. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 337:192–203 [Google Scholar]
  72. Liu H, Fu Y, Jiang D, Li G, Xie J. 72.  et al. 2009. A novel mycovirus that is related to the human pathogen hepatitis E virus and rubi-like viruses. J. Virol. 83:41981–91 [Google Scholar]
  73. Liu H, Fu Y, Jiang D, Li G, Xie J. 73.  et al. 2010. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes. J. Virol. 84:2211876–87 [Google Scholar]
  74. Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA. 74.  et al. 2012. Discovery of novel dsRNA viral sequences by in silico cloning and implications for viral diversity, host range and evolution. PLoS ONE 7:7e42147 [Google Scholar]
  75. Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA. 75.  et al. 2012. Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages. BMC Evol. Biol. 12:91 [Google Scholar]
  76. Liu YC, Dynek JN, Hillman BI, Milgroom MG. 76.  2007. Diversity of viruses in Cryphonectria parasitica and C. nitschkei in Japan and China, and partial characterization of a new chrysovirus species. Mycol. Res. 111:433–43 [Google Scholar]
  77. Liu YC, Linder-Basso D, Hillman BI, Kaneko S, Milgroom MG. 77.  2003. Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Mol. Ecol. 12:61619–28 [Google Scholar]
  78. Maejima K, Himeno M, Komatsu K, Kakizawa S, Yamaji Y. 78.  et al. 2008. Complete nucleotide sequence of a new double-stranded RNA virus from the rice blast fungus, Magnaporthe oryzae. Arch. Virol. 153:2389–91 [Google Scholar]
  79. Marvelli RA, Hobbs HA, Li S, McCoppin NK, Domier LL. 79.  et al. 2014. Identification of novel double-stranded RNA mycoviruses of Fusarium virguliforme and evidence of their effects on virulence. Arch. Virol. 159:2349–52 [Google Scholar]
  80. McCabe PM, Pfeiffer P, Van Alfen NK. 80.  1999. The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends Microbiol. 7:377–81 [Google Scholar]
  81. McFadden JJP, Buck KW, Rawlinson CJ. 81.  1983. Infrequent transmission of double-stranded RNA virus particles but absence of DNA proviruses in single ascospore cultures of Gaeumannomyces graminis. J. Gen. Virol. 64:927–37 [Google Scholar]
  82. Melzer MS, Ikeda SS, Boland GJ. 82.  2002. Interspecific transmission of double-stranded RNA and hypovirulence from Sclerotinia sclerotiorum to S. minor. Phytopathology 92:7780–84 [Google Scholar]
  83. Milgroom MG, Cortesi P. 83.  2004. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol. 42:311–38 [Google Scholar]
  84. Milgroom MG, Wang K, Zhou Y, Lipari SE, Kaneko S. 84.  1996. Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia 88:179–90 [Google Scholar]
  85. Moleleki N, Wingfield MJ, Wingfield BD, Preisig O. 85.  2011. Effect of Diaporthe RNA virus 1 (DRV1) on growth and pathogenicity of different Diaporthe species. Eur. J. Plant. Pathol. 131:2261–68 [Google Scholar]
  86. Ng TF, Willner DL, Lim YW, Schmieder R, Chau B. 86.  et al. 2011. Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. PLoS ONE 6:e20579 [Google Scholar]
  87. Nuss DL. 87.  1992. Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiol. Rev. 56:561–76 [Google Scholar]
  88. Nuss DL. 88.  1996. Using hypoviruses to probe and perturb signal transduction processes underlying fungal pathogenesis. Plant Cell 8:1846–53 [Google Scholar]
  89. Nuss DL. 89.  2000. Hypovirulence and chestnut blight: from the field to the laboratory and back. Fungal Pathology JW Kronstad 149–70 The Hague, The Neth: Kluwer Acad. [Google Scholar]
  90. Nuss DL. 90.  2005. Hypovirulence: mycoviruses at the fungal-plant interface. Nat. Rev. Microbiol. 3:632–42 [Google Scholar]
  91. Nuss DL. 91.  2011. Mycoviruses, RNA silencing, and viral RNA recombination. Adv. Virus Res. 80:25–48 [Google Scholar]
  92. Nuss DL, Koltin Y. 92.  1990. Significance of dsRNA genetic elements in plant pathogenic fungi. Annu. Rev. Phytopathol. 28:37–58 [Google Scholar]
  93. Pearson MN, Beever RE, Boine B, Arthur K. 93.  2009. Mycoviruses of filamentous fungi and their relevance to plant pathology. Mol. Plant Pathol. 10:1115–28 [Google Scholar]
  94. Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL. 94.  et al. 2011. The fecal viral flora of wild rodents. PLoS Pathog. 7:9e1002218 [Google Scholar]
  95. Polashock JJ, Hillman BI. 95.  1994. A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc. Natl. Acad. Sci. USA 91:8680–84 [Google Scholar]
  96. Preisig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ. 96.  2000. A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J. Gen. Virol. 81:123107–14 [Google Scholar]
  97. Rodríguez-García C, Medina V, Alonso A, Ayllón MA. 97.  2013. Mycoviruses of Botrytis cinerea isolates from different hosts. Ann. Appl. Biol. 164:46–61 [Google Scholar]
  98. Roossinck MJ. 98.  2011. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9:299–108 [Google Scholar]
  99. Rosario K, Dayaram A, Marinov M, Ware J, Kraberger S. 99.  et al. 2012. Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J. Gen. Virol. 93:122668–81 [Google Scholar]
  100. Saccardo F, Cettul E, Palmano S, Noris E, Firrao G. 100.  2011. On the alleged origin of geminiviruses from extrachromosomal DNAs of phytoplasmas. BMC Evol. Biol. 11:185 [Google Scholar]
  101. Salaipeth L, Chiba S, Eusebio-Cope A, Kanematsu S, Suzuki N. 101.  2013. Biological properties and expression strategy of Rosellinia necatrix megabirnavirus 1 analyzed in an experimental host, Cryphonectria parasitica. J. Gen. Virol. 95:Pt. 3740–50 [Google Scholar]
  102. Sasaki A, Kanematsu S, Onoue M, Oikawa Y, Nakamura H. 102.  et al. 2007. Artificial infection of Rosellinia necatrix with purified viral particles of a member of the genus mycoreovirus reveals its uneven distribution in single colonies. Phytopathology 97:278–86 [Google Scholar]
  103. Sasaki A, Onoue M, Kanematsu S, Suzaki K, Miyanishi M. 103.  et al. 2002. Extending chestnut blight hypovirus host range within diaporthales by biolistic delivery of viral cDNA. Mol. Plant-Microbe Interact. 15:8780–89 [Google Scholar]
  104. Shang J, Wu X, Lan X, Fan Y, Dong H. 104.  et al. 2008. Large-scale expressed sequence tag analysis for the chestnut blight fungus Cryphonectria parasitica. Fungal Genet. Biol. 45:3319–27 [Google Scholar]
  105. Shapira R, Choi GH, Nuss DL. 105.  1991. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10:4731–39 [Google Scholar]
  106. Sikorskia A, Massaro M, Kraberger S, Young LM, Smalley D. 106.  et al. 2013. Novel myco-like DNA viruses discovered in the faecal matter of various animals. Virus Res. 177:2209–16 [Google Scholar]
  107. Smart CD, Yuan W, Foglia R, Nuss DL, Fulbright DW. 107.  et al. 1999. Cryphonectria hypovirus 3, a virus species in the family Hypoviridae with a single open reading frame. Virology 265:66–73 [Google Scholar]
  108. Son M, Lee KM, Yu J, Kang M, Park JM. 108.  et al. 2013. The HEX1 gene of Fusarium graminearum is required for fungal asexual reproduction and pathogenesis and for efficient viral RNA accumulation of Fusarium graminearum virus 1. J. Virol. 87:1810356–67 [Google Scholar]
  109. Strauss EE, Lakshman DK, Tavantzis SM. 109.  2000. Molecular characterization of the genome of a partitivirus from the basidiomycete Rhizoctonia solani. J. Gen. Virol. 81:2549–55 [Google Scholar]
  110. Tuomivirta TT, Kaitera T, Hantula J. 110.  2009. A novel putative virus of Gremmeniella abietina type B (Ascomycota: Helotiaceae) has a composite genome with endornavirus affinities. J. Gen. Virol. 90:2299–305 [Google Scholar]
  111. Urayama S, Kato S, Suzuki Y, Aoki N, Le TM. 111.  et al. 2010. Mycoviruses related to chrysovirus affect vegetative growth in the rice blast fungus Magnaporthe oryzae. J. Gen. Virol. 91:3085–94 [Google Scholar]
  112. Vainio EJ, Korhonen K, Tuomivirta TT, Hantula J. 112.  2010. A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. Fungal Biol. 114:955–65 [Google Scholar]
  113. Vainio EJ, Piri T, Hantula J. 113.  2013. Virus community dynamics in the conifer pathogenic fungus Heterobasidion parviporum following an artificial introduction of a partitivirus. Microb. Ecol. 65:28–38 [Google Scholar]
  114. van den Brand JM, van Leeuwen M, Schapendonk CM, Simon JH, Haagmans BL. 114.  et al. 2012. Metagenomic analysis of the viral flora of pine marten and European badger feces. J. Virol. 86:2360–65 [Google Scholar]
  115. Vilches S, Castillo A. 115.  1997. A double-stranded RNA mycovirus in Botrytis cinerea. FEMS Microbiol. Lett. 155:125–30 [Google Scholar]
  116. Wang S, Kondo H, Liu L, Guo L, Qiu D. 116.  2013. A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Virus Res. 174:1–269–77 [Google Scholar]
  117. Whon TW, Kim MS, Roh SW, Shin NR, Lee HW. 117.  et al. 2012. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. J. Virol. 86:158221–31 [Google Scholar]
  118. Wu M, Jin F, Zhang J, Yang L, Jiang D. 118.  et al. 2012. Characterization of a novel bipartite double-stranded RNA mycovirus conferring hypovirulence in the pathogenic fungus Botrytis porri. J. Virol. 86:6605–19 [Google Scholar]
  119. Wu M, Zhang L, Li G, Jiang D, Ghabrial SA. 119.  2010. Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology 406:1117–26 [Google Scholar]
  120. Wu M, Zhang L, Li G, Jiang D, Hou M. 120.  et al. 2007. Hypovirulence and double-stranded RNA in Botrytis cinerea. Phytopathology 97:121590–99 [Google Scholar]
  121. Xie J, Ghabrial SA. 121.  2012. Molecular characterization of two mitoviruses co-infecting a hypovirulent isolate of the plant pathogenic fungus Sclerotinia sclerotiorum. Virology 428:277–85 [Google Scholar]
  122. Xie J, Wei D, Jiang D, Fu Y, Li G. 122.  et al. 2006. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. J. Gen. Virol. 87:1241–49 [Google Scholar]
  123. Xie J, Xiao X, Fu Y, Liu H, Cheng J. 123.  et al. 2011. A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology 418:149–56 [Google Scholar]
  124. Yaegashi H, Kanematsu S, Ito T. 124.  2012. Molecular characterization of a new hypovirus infecting a phytopathogenic fungus, Valsa ceratosperma. Virus Res. 165:2143–50 [Google Scholar]
  125. Yaegashi H, Nakamura H, Sawahata T, Sasaki A, Iwanami Y. 125.  et al. 2013. Appearance of mycovirus-like double-stranded RNAs in the white root rot fungus, Rosellinia necatrix, in an apple orchard. FEMS Microbiol. Ecol. 83:140–62 [Google Scholar]
  126. Yaegashi H, Yoshikawa N, Ito T, Kanematsu S. 126.  2013. A mycoreovirus suppresses RNA silencing in the white root rot fungus, Rosellinia necatrix. Virology 444:1–2409–16 [Google Scholar]
  127. Yokoi T, Takemoto Y, Suzuki M, Yamashita S, Hibi T. 127.  1999. The nucleotide sequence and genome organization of Sclerophthora macrospora virus B. Virology 264:2344–49 [Google Scholar]
  128. Yokoi T, Yamashita S, Hibi T. 128.  2003. The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311:2394–99 [Google Scholar]
  129. Yokoi T, Yamashita S, Hibi T. 129.  2007. The nucleotide sequence and genome organization of Magnaporthe oryzae virus 1. Arch. Virol. 152:122265–69 [Google Scholar]
  130. Yu X, Li B, Fu Y, Jiang D, Ghabrial SA. 130.  et al. 2010. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc. Natl. Acad. Sci. USA 107:8387–92 [Google Scholar]
  131. Yu X, Li B, Fu Y, Xie J, Cheng J. 131.  et al. 2013. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proc. Natl. Acad. Sci. USA 110:41452–57 [Google Scholar]
  132. Zhang L, Fu Y, Xie J, Jiang D, Li G. 132.  et al. 2009. A novel virus that infecting hypovirulent strain XG36-1 of plant fungal pathogen Sclerotinia sclerotiorum. Virol. J. 6:96 [Google Scholar]
  133. Zhang T, Jiang Y, Huang J, Dong W. 133.  2013. Complete genome sequence of a putative novel victorivirus from Ustilaginoidea virens. Arch. Virol. 158:61403–6 [Google Scholar]
  134. Zhang T, Jiang Y, Huang J, Dong W. 134.  2013. Genomic organization of a novel partitivirus from the phytopathogenic fungus Ustilaginoidea virens. Arch. Virol. 158:112415–19 [Google Scholar]
  135. Zheng L, Liu H, Zhang M, Cao X, Zhou E. 135.  2013. The complete genomic sequence of a novel mycovirus from Rhizoctonia solani AG-1 IA strain B275. Arch. Virol. 158:71609–12 [Google Scholar]
  136. Zhu W, Wei W, Fu Y, Cheng J, Xie J. 136.  et al. 2013. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS ONE 8:1e53901 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error