A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, and by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce the flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading diseases, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF. 1.  et al. 2014. Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f. sp. tritici. PLoS Pathog. 10:e1003903 [Google Scholar]
  2. Balcan D, Colizza V, Gonçalves B, Hud H, Ramasco JJ, Vespignani A. 2.  2009. Multiscale mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA 106:21484–89 [Google Scholar]
  3. Baranyi G, Saura S, Podani J, Jordán F. 3.  2011. Contribution of habitat patches to network connectivity: redundancy and uniqueness of topological indices. Ecol. Indic. 11:1301–10 [Google Scholar]
  4. Brasier CM. 4.  2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57:792–808 [Google Scholar]
  5. Brockmann D, Helbing D. 5.  2013. The hidden geometry of complex, network-driven contagion phenomena. Science 342:1337–42 [Google Scholar]
  6. Brooks CP. 6.  2006. Quantifying population substructure: extending the graph-theoretic approach. Ecology 87:864–72 [Google Scholar]
  7. Brown JKM, Hovmøller MS. 7.  2002. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–41 [Google Scholar]
  8. Chadès I, Martin TG, Nicol S, Burgman MA, Possingham HP, Buckley YM. 8.  2011. General rules for managing and surveying networks of pests, diseases, and endangered species. Proc. Natl. Acad. Sci. USA 108:8323–28 [Google Scholar]
  9. Chaiboonchoe A, Jurkowski W, Pellet J, Glaab E, Kolodkin A. 9.  et al. 2013. On different aspects of network analysis in systems biology. Systems Biology A Prokop, B Csukás 181–207 Dordrecht, The Neth.: Springer [Google Scholar]
  10. Colunga-Garcia M, Haack RA, Magarey RD, Borchert DM. 10.  2013. Understanding trade pathways to target biosecurity surveillance. NeoBiota 18:103–18 [Google Scholar]
  11. Danon L, Read JM, House TA, Vernon MC, Keeling MJ. 11.  2013. Social encounter networks: characterizing Great Britain. Proc. R. Soc. B 280:20131037 [Google Scholar]
  12. Dehnen-Schmutz K, Holdenrieder O, Jeger MJ, Pautasso M. 12.  2010. Structural change in the international horticultural industry: some implications for plant health. Sci. Hortic. 125:1–15 [Google Scholar]
  13. Dybiec B, Kleczkowski A, Gilligan CA. 13.  2009. Modelling control of epidemics spreading by long-range interactions. J. R. Soc. Interface 6:941–50 [Google Scholar]
  14. Ellis AM, Václavík T, Meentemeyer RK. 14.  2010. When is connectivity important? A case study of the spatial pattern of sudden oak death. Oikos 119:485–93 [Google Scholar]
  15. 15. European Commission 2013. Working Document: Flowers and Ornamental Plants Brussels, Belgium: DG Agri http://ec.europa.eu/agriculture/fruit-and-vegetables/product-reports/flowers/statistics-2013_en.pdf
  16. Florance D, Webb JK, Dempster T, Kearney MR, Worthing A, Letnic M. 16.  2011. Excluding access to invasion hubs can contain the spread of an invasive vertebrate. Proc. R. Soc. B 278:2900–8 [Google Scholar]
  17. Foltête J-C, Clauzel C, Vuidel G. 17.  2012. A software tool dedicated to the modelling of landscape networks. Environ. Model. Softw. 38:316–27 [Google Scholar]
  18. Garrett KA. 18.  2012. Information networks for disease: commonalities in human management networks and within-host signalling networks. Eur. J. Plant Pathol. 133:75–88 [Google Scholar]
  19. Gosme M. 19.  2008. Comment analyser la structure spatiale et modéliser le développement spatio-temporel des épiphyties? [How can the spatial structure and spatio-temporal mode of development of epidemics be analysed?]. Can. J. Plant Pathol. 30:4–23 [Google Scholar]
  20. Gosme M, Lucas P. 20.  2009. Cascade: an epidemiological model to simulate disease spread and aggregation across multiple scales in a spatial hierarchy. Phytopathology 99:823–32 [Google Scholar]
  21. Gray LK, Gylander T, Mbogga MS, Chen P-Y, Hamann A. 21.  2010. Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol. Appl. 21:1591–603 [Google Scholar]
  22. Handford TP, Perez-Reche FJ, Taraskin SN, Costa LF, Miazaki M. 22.  et al. 2011. Epidemics in networks of spatially correlated three-dimensional root-branching structures. J. R. Soc. Interface 8:423–34 [Google Scholar]
  23. Harwood TD, Xu X, Pautasso M, Jeger MJ, Shaw MW. 23.  2009. Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK. Ecol. Model. 220:3353–61 [Google Scholar]
  24. Heesterbeek JAP, Zadoks JC. 24.  1987. Modelling pandemics of quarantine pests and diseases: problems and perspectives. Crop Prot. 6:211–21 [Google Scholar]
  25. Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D. 25.  2004. Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol. Evol. 19:446–52 [Google Scholar]
  26. Irwin ME, Thresh JM. 26.  1988. Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philos. Trans. R. Soc. B 321:421–46 [Google Scholar]
  27. Jeger M, Pautasso M, Stack J. 27.  2012. Climate, globalization, and trade: impacts on dispersal and invasion of fungal plant pathogens. Fungal Diseases: An Emerging Threat to Human, Animal, and Plant Health: Workshop Summary273–96 Washington, DC: Natl. Acad. Sci. [Google Scholar]
  28. Jeger MJ, Pautasso M, Holdenrieder O, Shaw MW. 28.  2007. Modelling disease spread and control in networks: implications for plant sciences. New Phytol. 174:279–97 [Google Scholar]
  29. Jones JH, Handcock MS. 29.  2003. An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. B 270:1123–28 [Google Scholar]
  30. Kleczkowski A, Oles K, Gudowska-Nowak E, Gilligan CA. 30.  2012. Searching for the most cost-effective strategy for controlling epidemics spreading on regular and small-world networks. J. R. Soc. Interface 9:158–69 [Google Scholar]
  31. Lloyd AL, May RM. 31.  2001. How viruses spread among computers and people. Science 292:1316–17 [Google Scholar]
  32. Lu N, Wang J, Chen X, Zhan G, Chen C. 32.  et al. 2011. Spatial genetic diversity and interregional spread of Puccinia striiformis f. sp. tritici in northwest China. Eur. J. Plant Pathol. 131:685–93 [Google Scholar]
  33. Machens A, Gesualdo F, Rizzo C, Tozzi AE, Barrat A, Cattuto C. 33.  2013. An infectious disease model on empirical networks of human contact: bridging the gap between dynamic network data and contact matrices. BMC Infect. Dis. 13:185 [Google Scholar]
  34. Margosian ML, Garrett KA, Shawn Hutchinson JM, With KA. 34.  2009. Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. BioScience 59:141–51 [Google Scholar]
  35. Marvel SA, Martin T, Doering CR, Lusseau D, Newman MEJ. 35.  2013. The small-world effect is a modern phenomenon. arXiv1310.2636v1
  36. May RM. 36.  2013. Networks and webs in ecosystems and financial systems. Philos. Trans. R. Soc. A 371:20120376 [Google Scholar]
  37. Meentemeyer RK, Haas SE, Václavík T. 37.  2012. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu. Rev. Phytopathol. 50:379–402 [Google Scholar]
  38. Minor ES, Gardner RH. 38.  2011. Landscape connectivity and seed dispersal characteristics inform the best management strategy for exotic plants. Ecol. Appl. 21:739–49 [Google Scholar]
  39. Moslonka-Lefebvre M, Finley A, Dorigatti I, Dehnen-Schmutz K, Harwood T. 39.  et al. 2011. Networks in plant epidemiology: from genes to landscapes, countries, and continents. Phytopathology 101:392–403 [Google Scholar]
  40. Moslonka-Lefebvre M, Harwood T, Jeger MJ, Pautasso M. 40.  2012. SIS along a continuum (SISc) epidemiological modelling and control of diseases on directed trade networks. Math. Biosci. 236:44–52 [Google Scholar]
  41. Moslonka-Lefebvre M, Pautasso M, Jeger MJ. 41.  2009. Disease spread in small-size directed networks: epidemic threshold, correlation between links to and from nodes, and clustering. J. Theor. Biol. 260:402–11 [Google Scholar]
  42. Mundt CC, Browning JA. 42.  1985. Development of crown rust epidemics in genetically diverse oat populations: effect of genotype unit area. Phytopathology 75:607–10 [Google Scholar]
  43. Mundt CC, Leonard KJ, Thal WM, Fulton JH. 43.  1986. Computerised simulation of crown rust epidemics in mixtures of immune and susceptible oat plants with different genotype unit areas and spatial distributions of initial disease. Phytopathology 76:590–98 [Google Scholar]
  44. Newman MEJ. 44.  2010. Networks: An Introduction Oxford, UK: Oxford Univ. Press772
  45. Newman MEJ, Jensen I, Ziff RM. 45.  2002. Percolation and epidemics in a two-dimensional small world. Phys. Rev. E 65:021904 [Google Scholar]
  46. Otten W, Bailey DJ, Gilligan CA. 46.  2004. Empirical evidence of spatial thresholds to control invasion of fungal parasites and saprotrophs. New Phytol. 163:125–32 [Google Scholar]
  47. Park AW, Gubbins S, Gilligan CA. 47.  2001. Invasion and persistence of plant parasites in a spatially structured host population. Oikos 94:162–74 [Google Scholar]
  48. Pastor-Satorras R, Vespignani A. 48.  2001. Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86:3200–3 [Google Scholar]
  49. Pautasso M, Aistara G, Barnaud A, Caillon S, Clouvel P. 49.  et al. 2013. Seed exchange networks for agrobiodiversity conservation. A review. Agron. Sustain. Dev. 33:151–75 [Google Scholar]
  50. Pautasso M, Moslonka-Lefebvre M, Jeger MJ. 50.  2010. The number of links to and from the starting node as a predictor of epidemic size in small-size directed networks. Ecol. Complexity 7:424–32 [Google Scholar]
  51. Pautasso M, Xu X, Jeger MJ, Harwood TD, Moslonka-Lefebvre M, Pellis L. 51.  2010. Disease spread in small-size directed trade networks: the role of hierarchical categories. J. Appl. Ecol. 47:1300–9 [Google Scholar]
  52. Rebaudo F, Dangles O. 52.  2011. Coupled information diffusion: pest dynamics models predict delayed benefits of farmer cooperation in pest management programs. PLoS Comput. Biol. 7:e1002222 [Google Scholar]
  53. Rowthorn RE, Laxminarayan R, Gilligan CA. 53.  2009. Optimal control of epidemics in metapopulations. J. R. Soc. Interface 6:1135–44 [Google Scholar]
  54. Rubio L, Saura S. 54.  2012. Assessing the importance of individual habitat patches as irreplaceable connecting elements: an analysis of simulated and real landscape data. Ecol. Complex. 11:28–37 [Google Scholar]
  55. Saura S, Vogt P, Velázquez J, Hernando A, Tejera R. 55.  2011. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. Forest Ecol. Manag. 262:150–60 [Google Scholar]
  56. Shaw MW. 56.  1995. Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. R. Soc. B 259:249–57 [Google Scholar]
  57. Skelsey P, van der Werf W, Kessel GJT, Rossing WAH, Holtslag AAM. 57.  2007. Multi-scale modelling of infection pressure from Phytophthora infestans. EPPO Bull. 37:313–16 [Google Scholar]
  58. Sutrave S, Scoglio C, Isard SA, Hutchinson JMS, Garrett KA. 58.  2012. Identifying highly connected counties compensates for resource limitations when evaluating national spread of an invasive pathogen. PLoS ONE 7:e37793 [Google Scholar]
  59. Suzuki SU, Sasaki A. 59.  2011. How does the resistance threshold in spatially explicit epidemic dynamics depend on the basic reproductive ratio and spatial correlation of crop genotypes?. J. Theor. Biol. 276:117–25 [Google Scholar]
  60. van den Bosch F, Metz JAJ, Zadoks JC. 60.  1999. Pandemics of focal plant disease, a model. Phytopathology 89:495–505 [Google Scholar]
  61. van den Bosch F, Zadoks JC, Metz JAJ. 61.  1988. Focus expansion in plant disease. 2: Realistic parameter-sparse models. Phytopathology 78:59–64 [Google Scholar]
  62. Wang Y, Chakrabarti D, Wang C, Faloutsos C. 62.  2003. Epidemic spreading in real networks: an eigenvalue viewpoint. Proc. Symp. Reliab. Distrib. Comput., 22nd, Florence Oct. 6–18 25–34 Washington, DC: IEEE [Google Scholar]
  63. Woolhouse MEJ, Dye C, Etard J-F, Smith T, Charlwood JD. 63.  et al. 1997. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc. Natl. Acad. Sci. USA 94:338–42 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error