1932

Abstract

São Paulo, Brazil, and Florida, USA, were the two major orange production areas in the world until Huanglongbing (HLB) was discovered in São Paulo in 2004 and Florida in 2005. In the absence of resistant citrus varieties, HLB is the most destructive citrus disease known because of the lack of effective tools to reduce spread of the vector, (Asian citrus psyllid), and transmission of the associated pathogen, Liberibacter asiaticus. In both countries, a three-pronged management approach was recommended and begun: planting only disease-free nursery trees, effective psyllid control, and removal of all symptomatic trees. In Brazil, these management procedures were continued and improved and resulted in relatively little overall loss of production. In contrast, in Florida the citrus industry has been devastated with annual production reduced by approximately 80%. This review compares and contrasts various cultural and pest management strategies that have been used to reduce infection by the pathogen and increase tolerance of HLB in the main orange-growing regions in the world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-121423-041921
2024-09-09
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-121423-041921.html?itemId=/content/journals/10.1146/annurev-phyto-121423-041921&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Albrigo LG, Stover EW. 2015.. Effect of plant growth regulators and fungicides on Huanglongbing-related preharvest fruit drop of citrus. . HortTechnology 25::78590
    [Crossref] [Google Scholar]
  2. 2.
    Alférez F, Gaire S, Albrecht U, Batuman O, Qureshi J, Zekri M. 2019.. Individual protective covers for psyllid exclusion and HLB disease prevention in young trees. . Citrus Ind. 100::10
    [Google Scholar]
  3. 3.
    Alférez F, Pozo L, Burns JK. 2006.. Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. . Physiol. Plant 127::6673
    [Crossref] [Google Scholar]
  4. 4.
    Archer L, Crane JH, Albrecht U. 2022.. Trunk injection as a tool to deliver plant protection materials—an overview of basic principles and practical considerations. . Horticulturae 8::552
    [Crossref] [Google Scholar]
  5. 5.
    Aryal D, Ben Abdallah S, Perez-Hedo M, Urbaneja A, Alferez F. 2023.. Brassinosteroids enhance immunity against Candidatus Liberibacter asiaticus in citrus plants: a promising approach to control Huanglongbing (HLB). Paper presented at the 2023 Annual Conference of the American Society for Horticultural Science, Orlando, FL:, Aug. 1. https://ashs.confex.com/ashs/2023/meetingapp.cgi/Paper/39925
    [Google Scholar]
  6. 6.
    Aubert B, Bové JM. 1980.. Effect of penicillin or tetracycline injections of citrus trees affected by greening disease under field conditions in Reunion Island. . In Proceedings of the 8th Conference of the International Organization of Citrus Virologists, ed. EC Calavan, pp. 1038. Riverside, CA:: IOCV
    [Google Scholar]
  7. 7.
    Ausique JJS, D'Alessandro CP, Conceschi MR, Mascarin GM, Delalibera I Jr. 2017.. Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. . J. Pest Sci. 90::94760
    [Crossref] [Google Scholar]
  8. 8.
    Bassanezi RB, Lopes SA, Miranda MP, Wulff NA, Volpe HXL, Ayres AJ. 2020.. Overview of citrus Huanglongbing spread and management strategies in Brazil. . Trop. Plant Pathol. 45::25164
    [Crossref] [Google Scholar]
  9. 9.
    Bassanezi RB, Montesino LH, Belasque J Jr. 2013.. Frequency of symptomatic trees removal in small citrus blocks on citrus Huanglongbing epidemics. . Crop Prot. 52::7277
    [Crossref] [Google Scholar]
  10. 10.
    Bassanezi RB, Montesino LH, Gimenes-Fernandes N, Yamamoto PT, Gottwald TR, et al. 2013.. Efficacy of area-wide inoculum reduction and vector control on temporal progress of Huanglongbing in young sweet orange plantings. . Plant Dis. 97::78996
    [Crossref] [Google Scholar]
  11. 11.
    Bassanezi RB, Primiano IV, Mattos D Jr., Quaggio JA, Boaretto RM, et al. 2023.. Calcium and magnesium input did not decrease Huanglongbing progress and yield loss of sweet orange trees. . Crop Prot. 172::106338
    [Crossref] [Google Scholar]
  12. 12.
    Bassanezi RB, Primiano IV, de Mattos D Jr., Quaggio JA, Boaretto RM, et al. 2024.. HLB progress and yield sustainability in mature sweet orange orchards treated with nutritional and elicitor products. . PhytoFrontiers 4:(2):21322
    [Crossref] [Google Scholar]
  13. 13.
    Bassanezi RB, Primiano IV, Vescove HV. 2021.. Effect of enhanced nutritional programs and exogenous auxin spraying on Huanglongbing severity, fruit drop, yield, and economic profitability of orange orchards. . Crop Prot. 145::105609
    [Crossref] [Google Scholar]
  14. 14.
    Belasque J Jr., Bassanezi RB, Yamamoto PT, Ayres AJ, Tachibana A, et al. 2010.. Lessons from Huanglongbing management in São Paulo state, Brazil. . J. Plant Pathol. 92::285302
    [Google Scholar]
  15. 15.
    Bergamin Filho A, Inoue-Nagata AK, Bassanezi RB, Belasque J Jr., Amorim L, et al. 2016.. The importance of primary inoculum and area-wide disease management to crop health and food security. . Food Secur. 8::22138
    [Crossref] [Google Scholar]
  16. 16.
    Boina DR, Meyer WL, Onagbola EO, Stelinski LL. 2009.. Quantifying dispersal of Diaphorina citri (Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management. . Environ. Entomol. 38::125058
    [Crossref] [Google Scholar]
  17. 17.
    Bové JM. 2006.. Huanglongbing: a destructive, newly emerging, century-old disease of citrus. . J. Plant Pathol. 88::737
    [Google Scholar]
  18. 18.
    Bové JM. 2019.. From spinach chloroplasts to endogenous bacteria causing disease in citrus: an autobiography of Joseph Marie Bové. . J. Citrus Pathol. 6:(1). https://doi.org/10.5070/C461045133
    [Crossref] [Google Scholar]
  19. 19.
    Bové JM, Bonnet P, Garnier M, Aubert B. 1980.. Penicillin and tetracycline treatments of greening disease-affected citrus plants in the glasshouse, and the bacterial nature of the prokaryote associated with greening. . In Proceedings of the 8th Conference of the International Organization of Citrus Virologists, ed. EC Calavan , pp. 91102. Riverside, CA:: IOCV
    [Google Scholar]
  20. 20.
    Buitendag CH, Bronkhorst GJ. 1983.. Micro-injection of citrus trees with N-pyrrolidinomethyl tetracycline (PMT) for the control of greening disease. . Citrus Subtrop. Fruit J. 592::810
    [Google Scholar]
  21. 21.
    Cakmak I. 2000.. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. . New Phytol. 146::185205
    [Crossref] [Google Scholar]
  22. 22.
    Canales E, Coll Y, Hernández I, Portieles R, Rodríguez García M, et al. 2015.. ‘ Candidatus Liberibacter asiaticus’, causal agent of citrus Huanglongbing, is reduced by treatment with brassinosteroids. . PLOS ONE 11:(1):e0146223
    [Crossref] [Google Scholar]
  23. 23.
    Carmo-Sousa M, Garcia RB, Wulff NA, Fereres A, Miranda MP. 2020.. Drench application of systemic inseticides disrupts probing behavior of Diaphorina citri (Hemiptera: Liviidae) and inoculation of Candidatus Liberibacter asiaticus. . Insects 11::314
    [Crossref] [Google Scholar]
  24. 24.
    Chen XD, Stockton D, Gossett H, Qureshi JA, Ibanez F, et al. 2022.. Comparisons of economic thresholds for Asian citrus psyllid management suggest a revised approach to reduce management costs and improve yield. . Front. Sustain. Food Syst. 6::948278
    [Crossref] [Google Scholar]
  25. 25.
    CitrusBR. 2024.. Estimativa de safras. Rep., CitrusBR, São Paulo, Bras:. https://citrusbr.com/estatisticas/estimativa-de-safras/
    [Google Scholar]
  26. 26.
    Coggins CW Jr., Hield HZ. 1968.. Plant growth regulators. . In The Citrus Industry, Vol. II, ed. W Reuther, LD Batchelor, HJ Webber , pp. 37189. Berkeley, CA:: Div. Agric. Sci.
    [Google Scholar]
  27. 27.
    Coletta-Filho HD, Targon MLPN, Takita MA, De Negri JD, Pompeu J Jr., Machado MA. 2004.. First report of the causal agent of Huanglongbing (‘Candidatus Liberibacter asiaticus’) in Brazil. . Plant Dis. 88::1382
    [Crossref] [Google Scholar]
  28. 28.
    Coord. Def. Agropecu. Estado São Paulo. 2023.. Dados da citricultura paulista. . São Paulo Gov. Estado. https://www.defesa.agricultura.sp.gov.br/www/gdsv/index.php?action=dadosCitriculturaPaulista
    [Google Scholar]
  29. 29.
    Croxton SD, Stansly PM. 2013.. Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of Huanglongbing and improve growth of new citrus plantings. . Pest Manag. Sci. 70::31823
    [Crossref] [Google Scholar]
  30. 30.
    da Graça JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, et al. 2016.. Huanglongbing: an overview of a complex pathosystem ravaging the world's citrus. . J. Integr. Plant Biol. 58::37387
    [Crossref] [Google Scholar]
  31. 31.
    De Carli LF, Miranda MP, Volpe HXL, Zanardi OZ, Vizoni MC, et al. 2018.. Leaf age affects the efficacy of insecticides to control Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). . J. Appl. Entomol. 142::68995
    [Crossref] [Google Scholar]
  32. 32.
    Eduardo WI, Silva AC, Volpe HXL, Alquézar B, Peña L, Miranda MP. 2023.. Push-pull and kill strategy for Diaphorina citri control in citrus orchards. . Entomol. Exp. Appl. 171::28799
    [Crossref] [Google Scholar]
  33. 33.
    Erner Y, Kaplan Y, Artzi B, Hamon M. 1993.. Increasing citrus fruit size using auxins and potassium. . Acta Hortic. 329::11219
    [Crossref] [Google Scholar]
  34. 34.
    Ferrarezi RS, Qureshi JA, Wright AL, Ritenour MA, Macan NPF. 2019.. Citrus production under screen as a strategy to protect grapefruit trees from Huanglongbing disease. . Front. Plant Sci. 10::1598
    [Crossref] [Google Scholar]
  35. 35.
    Fundecitrus. 2024.. Estimativa da safra de laranja parque citrícola de São Paulo e Triângulo/Sudoeste Mineiro. Rep. , Fundecitrus, São Paulo, Bras:. https://www.fundecitrus.com.br/pes/estimativa
    [Google Scholar]
  36. 36.
    Fundo Def. Citricult. 2023.. Levantamento da incidência das doenças dos citros: greening, CVC e cancro cítrico. Rep. , Fundecitrus, Araraquara, Braz:. https://www.fundecitrus.com.br/pdf/levantamentos/Levantamento_de_doencas_2023_completo.pdf
    [Google Scholar]
  37. 37.
    Fundo Def. Citricult. 2023.. Tree inventory and orange crop forecast for the São Paulo and West-Southwest Minas Gerais citrus belt. Rep. , Fundecitrus, Araraquara, Braz:. https://www.fundecitrus.com.br/pdf/pes_relatorios/2023_06_05_Tree_Inventory_and_Orange_Crop_Forecast_2023-2024.pdf
    [Google Scholar]
  38. 38.
    Fundo Def. Citricult. 2023.. 2022–2023 final orange crop update for the São Paulo and West-Southwest Minas Gerais citrus belt. Rep. , Fundecitrus, Araraquara:, Braz. https://www.fundecitrus.com.br/pdf/pes_relatorios/0423_Final_Orange_Crop_Update.pdf
    [Google Scholar]
  39. 39.
    Garnier M, Danel N, Bové JM. 1984.. The greening organism is a Gram negative bacterium. . In Proceedings of the 9th Conference of the International Organization of Citrus Virologists, ed. EC Calavan , pp. 11524. Riverside, CA:: IOCV
    [Google Scholar]
  40. 40.
    Gottwald TR. 2010.. Current epidemiological understanding of citrus Huanglongbing. . Annu. Rev. Phytopathol. 48::11939
    [Crossref] [Google Scholar]
  41. 41.
    Gottwald TR, da Graca JV, Bassanezi RB. 2007.. Citrus Huanglongbing: the pathogen, its epidemiology, and impact. . Plant Health Prog. https://doi.org/10.1094/PHP-2007-0906-01-RV
    [Google Scholar]
  42. 42.
    Graham J. 2011.. Cooperative producers: integrating best management practices for HLB. . Citrus Ind. 92::1012
    [Google Scholar]
  43. 43.
    Graham JH, Johnson EG, Gottwald TR, Irey M. 2013.. Pre-symptomatic fibrous root decline in citrus trees caused by Huanglongbing and potential synergistic interaction with Phytophthora spp. . Plant Dis. 97::119599
    [Crossref] [Google Scholar]
  44. 44.
    Graham J, Johnson E, Gottwald TR, Irey M. 2013.. Integrated management of root health on HLB-affected trees. . Citrus Ind. 94:(2):1214
    [Google Scholar]
  45. 45.
    Graham J, Morgan K. 2017.. Why bicarbonates matter for HLB management. . Citrus Ind. 98::1621
    [Google Scholar]
  46. 46.
    Graham J, Vallad G. 2011.. The ABCs of SAR. . Citrus Ind. 92::1215
    [Google Scholar]
  47. 47.
    Hall DG, Hentz MG. 2011.. Seasonal flight activity by the Asian citrus psyllid in east central Florida. . Entomol. Exp. Appl. 139::7585
    [Crossref] [Google Scholar]
  48. 48.
    Hartmond U, Yuan R, Burns JK, Grant A, Kender WJ. 2000.. Citrus fruit abscission induced by methyl-jasmonate. . J. Am. Soc. Hortic. Sci. 125::54752
    [Crossref] [Google Scholar]
  49. 49.
    Halbert S. 2007.. Establishment of Diaphorina citri and citrus greening in Florida—a case study. . J. Insect Sci. 9::6
    [Google Scholar]
  50. 50.
    Hijaz F, Nehela Y, Al-Rimawi F, Vincent CI, Killiny N. 2020.. The role of the xylem in oxytetracycline translocation within citrus trees. . Antibiotics 9::691
    [Crossref] [Google Scholar]
  51. 51.
    Hu J, Jiang J, Wang N. 2018.. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. . Phytopathology 108::18695
    [Crossref] [Google Scholar]
  52. 52.
    Hu J, Wang N. 2016.. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus Huanglongbing via trunk injection. . Phytopathology 106::1495503
    [Crossref] [Google Scholar]
  53. 53.
    Irey MS, Morris RA, Estes M. 2011.. Survey to estimate the rate of HLB infection in Florida citrus groves. . In Proceedings of the 2nd International Research Conference on Huanglongbing, ed. JK Burns, JH Graham, TR Gottwald , p. 73. St. Paul, MN:: Plant Manag. Netw. https://www.plantmanagementnetwork.org/proceedings/irchlb/2011/presentations/IRCHLB_2011_4.7.pdf
    [Google Scholar]
  54. 54.
    Irey M, Mai P, Graham J, Johnson J. 2009.. Data trends and results from an HLB testing laboratory that has processed over 64,000 commercial and research samples over a two-year period in Florida. . In Proceedings of the 1st International Research Conference on Huanglongbing, ed. TR Gottwald, JH Graham , p. 103. St. Paul, MN:: Plant Manag. Netw. https://www.plantmanagementnetwork.org/proceedings/irchlb/2008/presentations/IRCHLB.2.2.pdf
    [Google Scholar]
  55. 55.
    Jagoueix S, Bové JM, Garnier M. 1996.. PCR detection of the two ‘Candidatus’ liberobacter species associated with greening disease of citrus. . Mol. Cell. Probes 10::4350
    [Crossref] [Google Scholar]
  56. 56.
    Johnson E, Bassanezi RB. 2016.. HLB in Brazil: what's working and what Florida can use. . Citrus Ind. 97:(6):1416
    [Google Scholar]
  57. 57.
    Johnson EG, Irey MS, Gast T, Bright DB, Graham JH. 2014.. Evaluation of enhanced nutritional programs for mitigating HLB damage. . J. Citrus Pathol. 1::196
    [Google Scholar]
  58. 58.
    Johnson EG, Wu J, Bright DB, Graham JH. 2014.. Association of ‘Candidatus Liberibacter asiaticus’ root infection, but not phloem plugging with root loss on Huanglongbing-affected trees prior to appearance of foliar symptoms. . Plant Pathol. 63::29098
    [Crossref] [Google Scholar]
  59. 59.
    Killiny N, Valim MF, Jones S, Omar AA, Hijaz F, et al. 2017.. Metabolically speaking: possible reasons behind the tolerance of ‘Sugar Belle’ mandarin hybrid to Huanglongbing. . Plant Phys. Biochem. 116::3647
    [Crossref] [Google Scholar]
  60. 60.
    Khripach V, Zhabinskii V, De Groot A. 2000.. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. . Ann. Bot. 86::44147
    [Crossref] [Google Scholar]
  61. 61.
    Laflèche D, Bové JM. 1970.. Structures de type mycoplasme dans les feuilles d'orangers atteints de la maladie du greening. . CR Acad. Sci. Paris 270::191517
    [Google Scholar]
  62. 62.
    Lee JA, Halbert SE, Dawson WO, Robertson CJ, Keesling JE, Singer BH. 2015.. Asymptomatic spread of Huanglongbing and implications for disease control. . PNAS 112::760510
    [Crossref] [Google Scholar]
  63. 63.
    Li J, Pang Z, Duan S, Lee D, Kolbasov VG, Wang N. 2019.. The in planta effective concentration of oxytetracycline against ‘Candidatus Liberibacter asiaticus’ for suppression of citrus huanglongbing. . Phytopathology 109::204654
    [Crossref] [Google Scholar]
  64. 64.
    Lima AC. 1942.. Insetos do Brasil: Homópteros. . Ser. Didát. 4 Es. Nac. Agron. Rio de Janeiro: Esc. Nac. Agron.
    [Google Scholar]
  65. 65.
    Lopes SA, Bertolini E, Frare GF, Martins EC, Wulff NA, et al. 2009.. Graft transmission efficiencies and multiplication of ‘Candidatus Liberibacter americanus’ and ‘Ca. Liberibacter asiaticus’ in citrus plants. . Phytopathology 99::3016
    [Crossref] [Google Scholar]
  66. 66.
    Manjunath KL, Halbert SE, Ramadugu C, Webb S, Lee RF. 2008.. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus Huanglongbing in Florida. . Phytopathology 98::38796
    [Crossref] [Google Scholar]
  67. 67.
    Martini X, Pelz-Stelinski KS, Stelinski LL. 2015.. Absence of windbreaks and replanting citrus in solid sets increase density of Asian citrus psyllid populations. . Agric. Ecosyst. Environ. 212::16874
    [Crossref] [Google Scholar]
  68. 68.
    Michigami FAB, Girotto LF, Bassanezi RB. 2015.. Effect of internal and external inoculum control practices on HLB epidemics progress in a commercial citrus grove. . J. Citrus Pathol. 2::30
    [Google Scholar]
  69. 69.
    Miranda MP, Eduardo WI, Tomaseto AF, Volpe HXL, Bachmann L. 2021.. Frequency of processed kaolin application to prevent Diaphorina citri infestation and dispersal in flushing citrus orchards. . Pest Manag. Sci. 77::5396406
    [Crossref] [Google Scholar]
  70. 70.
    Miranda MP, Scapin MS, Vizoni MC, Zanardi OZ, Eduardo WI, Volpe HXL. 2021.. Spray volumes and frequencies of insecticide applications for suppressing Diaphorina citri populations in orchards. . Crop Prot. 140::105406
    [Crossref] [Google Scholar]
  71. 71.
    Miranda MP, Yamamoto PT, Garcia RB, Lopes JPA, Lopes JRS. 2016.. Thiamethoxam and imidacloprid drench applications on sweet orange nursery trees disrupt the feeding and settling behaviour of Diaphorina citri (Hemiptera: Liviidae). . Pest Manag. Sci. 72::178593
    [Crossref] [Google Scholar]
  72. 72.
    Miranda MP, Zanardi OZ, Tomaseto AF, Volpe HXL, Garcia RB, Prado E. 2018.. Processed kaolin affects the probing and settling behavior of Diaphorina citri (Hemiptera: Lividae). . Pest Manag. Sci. 74::196472
    [Crossref] [Google Scholar]
  73. 73.
    Moll JN, van Vuuren SP. 1977.. Greening disease in Africa. . Proc. Int. Soc. Citric. 3::90312
    [Google Scholar]
  74. 74.
    Morgan KT, Graham JH. 2017.. Nutrient status and root density of Huanglongbing-affected trees: consequences of irrigation water bicarbonate and soil pH mitigation with acidification. . Agronomy 9::746
    [Crossref] [Google Scholar]
  75. 75.
    Morgan K, Hamido S. 2017.. Insight on improved management of HLB affected trees. . Citrus Ind. 98::2226
    [Google Scholar]
  76. 76.
    Morgan KT, Kadyampakeni D, Strauss S, Johnson EG. 2023.. Florida citrus production guide: root health management. Rep. CMG15 , IFAS Ext., Gainesville, FL:. https://doi.org/10.32473/edis-cg094-2022
    [Google Scholar]
  77. 77.
    Morgan KT, Kadyampakeni DM. 2020.. Nutrition of Florida Citrus Trees. Gainesville, FL:: UF/IFAS. , 3rd ed..
    [Google Scholar]
  78. 78.
    Morgan KT, Rouse RE, Ebel RC. 2016.. Foliar applications of essential nutrients on growth and yield of ‘Valencia’ sweet orange infected with Huanglongbing. . HortScience 51::148293
    [Crossref] [Google Scholar]
  79. 79.
    Parnell S, Gottwald TR, Riley T, van den Bosch F. 2014.. A generic risk-based surveying method for invading plant pathogens. . Ecol. Appl. 24::77990
    [Crossref] [Google Scholar]
  80. 80.
    Parra JRP, Alves GR, Diniz AJF, Vieira JM. 2016.. Tamarixia radiata (Hymenoptera: Eulophidae) × Diaphorina citri (Hemiptera: Liviidae): mass rearing and potential use of the parasitoid in Brazil. . J. Integr. Pest Manag. 7::511
    [Crossref] [Google Scholar]
  81. 81.
    Pelz-Stelinski KS, Brlansky RH, Ebert TA, Rogers ME. 2010.. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). . J. Econ. Entomol. 103::53141
    [Crossref] [Google Scholar]
  82. 82.
    Qureshi JA, Rogers ME, Hall DG, Stansly PA. 2009.. Incidence of invasive Diaphorina citri (Hemiptera: Psyllidae) and its introduced parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) in Florida citrus. . J. Econ. Entomol. 102::24756
    [Crossref] [Google Scholar]
  83. 83.
    Qureshi JA, Stansly PA. 2010.. Dormant season foliar sprays of broad-spectrum insecticides: an effective component of integrated management for Diaphorina citri (Hemiptera: Psyllidae) in citrus orchards. . Crop Prot. 29::86066
    [Crossref] [Google Scholar]
  84. 84.
    Ruiz GJP, Tozze HJ Jr., Sguarezi CN, Usberti R, Martello VP, Tomazela MS. 2010.. Ações de defesa sanitária vegetal no estado de São Paulo contra o Huanglongbing. . Citrus Res. Technol. 31:(2):15562
    [Crossref] [Google Scholar]
  85. 85.
    Schumann AW, Singerman A, Ritenour MA, Qureshi J, Alferez F. 2023.. 2023–2024 Florida citrus production guide: citrus under protective screen (CUPS) production systems. Rep. CMG19 , IFAS Ext., Gainesville, FL:. https://doi.org/10.32473/edis-hs1304-2023
    [Google Scholar]
  86. 86.
    Schumann AW, Spann T, Rouse R. 2011.. Maintaining productivity in the presence of HLB. . Citrus Ind. 92::69
    [Google Scholar]
  87. 87.
    Schwarz RE, Moll JN, van Vuuren SP. 1974.. Control of citrus greening and its psylla vector by trunk injections of tetracyclines and insecticides. . In Proceedings of the 6th Conference of the International Organization of Citrus Virologists, ed. EC Calavan , pp. 2629. Riverside, CA:: IOCV
    [Google Scholar]
  88. 88.
    Schwarz RE, van Vuuren SP. 1971.. Decrease in fruit greening of sweet orange by trunk injections of tetracyclines. . Plant Dis. Rep. 55::74750
    [Google Scholar]
  89. 89.
    Shahzad F, Chun C, Schumann A, Vashisth T. 2020.. Nutrient uptake in Huanglongbing-affected sweet orange: transcriptomic and physiological analysis. . J. Am. Soc. Hortic. Sci. 145:(6):34962
    [Crossref] [Google Scholar]
  90. 90.
    Singerman A, Burani-Arouca M. 2017.. Evolution of citrus disease management programs and their economic implications: the case of Florida's citrus industry. Rep. FE915 , IFAS Ext., Gainesville, FL:. http://edis.ifas.ufl.edu/FE915
    [Google Scholar]
  91. 91.
    Singerman A, Burani-Arouca M, Futch SH. 2018.. The economics of planting new citrus groves in Florida in the era of HLB. Rep. FE1050 , IFAS Ext., Gainesville, FL:. http://edis.ifas.ufl.edu./FE1050
    [Google Scholar]
  92. 92.
    Singerman A, Page B. 2016.. What is the economic benefit of a citrus health management area (CHMA)? A case study. Rep. FE982 , IFAS Ext., Gainesville, FL:. http://edis.ifas.ufl.edu./FE982
    [Google Scholar]
  93. 93.
    Singerman A, Rogers M. 2020.. The economic challenges of dealing with citrus greening: the case of Florida. . J. Integr. Pest Manag. 11:(1):3
    [Crossref] [Google Scholar]
  94. 94.
    Singerman A, Useche P. 2016.. Impact of citrus greening on citrus operations in Florida. Rep. FE983 , IFAS Ext., Gainesville, FL:. http://edis.ifas.ufl.edu./FE983
    [Google Scholar]
  95. 95.
    Spann T, Schumann A. 2012.. Using good horticultural practices to maintain yield of HLB-affected groves. . Citrus Ind. 93:(6):611
    [Google Scholar]
  96. 96.
    Spann TM, Rouse RE, Schumann AW. 2011.. The theory of managing Huanglongbing with plant nutrition and real-world success in Florida. . In Proceedings of the 2nd International Research Conference on Huanglongbing, ed. JK Burns, JH Graham, TR Gottwald , p. 177. St. Paul, MN:: Plant Manag. Netw. https://www.plantmanagementnetwork.org/proceedings/irchlb/2011/presentations/IRCHLB_2011_10.4.pdf
    [Google Scholar]
  97. 97.
    Stansly PA, Arevalo HA, Qureshi JA, Jones MM, Hendricks K, et al. 2014.. Vector control and foliar nutrition to maintain economic sustainability of bearing citrus in Florida groves affected by Huanglongbing. . Pest Manag. Sci. 70::41526
    [Crossref] [Google Scholar]
  98. 98.
    Stover E, Inch S, Richardson ML, Hal DG. 2016.. Conventional citrus of some scion/rootstock combinations show field tolerance under high Huanglongbing disease pressure. . HortScience 51::12732
    [Crossref] [Google Scholar]
  99. 99.
    Su HJ, Chang SC. 1976.. The responses of likubin pathogen to antibiotics and heat therapy. . In Proceedings of the 6th Conference of the International Organization of Citrus Virologists, ed. EC Calavan , pp. 2734. Riverside, CA:: IOCV
    [Google Scholar]
  100. 100.
    Subba P, Mukhopadhyay M, Mahato SK, Bhutia KD, Mondal TK, Ghosh SK. 2014.. Zinc stress induces physiological, ultra-structural and biochemical changes in mandarin orange (Citrus reticulata Blanco) seedlings. . Physiol. Mol. Biol. Plants 20:(4):46173
    [Crossref] [Google Scholar]
  101. 101.
    Supriyanto A, Whittle AM. 1991.. Citrus rehabilitation in Indonesia. . In Proceedings of the 11th Conference of the International Organization of Citrus Virologists, ed. EC Calavan , pp. 40913. Riverside, CA:: IOCV
    [Google Scholar]
  102. 102.
    Tang L, Chhajed S, Vashisth T. 2019.. Preharvest fruit drop in Huanglongbing-affected ‘Valencia’ sweet orange. . J. Am. Soc. Hortic. Sci. 144::10717
    [Crossref] [Google Scholar]
  103. 103.
    Tang L, Singh S, Vashisth T. 2020.. Association between fruit development and mature fruit drop in Huanglongbing-affected sweet orange. . HortScience 55: (6):85157
    [Crossref] [Google Scholar]
  104. 104.
    Teixeira DC, Ayres AJ, Kitajima EW, Tanaka FAO, Jagoueix-Eveillard S, et al. 2005.. First report of a Huanglongbing-like disease of citrus in São Paulo State, Brazil, and association of a new Liberibacter species, Candidatus Liberibacter americanus, with the disease. . Plant Dis. 89::107
    [Crossref] [Google Scholar]
  105. 105.
    Teixeira DC, Danet JL, Eveillard S, Martins EC, de Jesus WC Jr., et al. 2005.. Citrus Huanglongbing in São Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. . Mol. Cell. Probes 19::17379
    [Crossref] [Google Scholar]
  106. 106.
    Timmer LW. 2010.. HLB: a public health problem. . Citrus Ind. 91::1416
    [Google Scholar]
  107. 107.
    Tiwari S, Mann RS, Rogers ME, Stelinski LL. 2011.. Insecticide resistance in field populations of Asian citrus psyllid in Florida. . Pest Manag. Sci. 67::125868
    [Crossref] [Google Scholar]
  108. 108.
    Vincent C, Pierre M, Li J, Wang N. 2019.. Implications of heat treatment and systemic delivery of foliar-applied oxytetracycline on citrus physiological management and therapy delivery. . Front. Plant Sci. 10::41
    [Crossref] [Google Scholar]
  109. 109.
    US Dep. Agric. Natl. Agric. Stat. Serv. 2023.. Citrus production forecast (historic). Rep. , USDA/NASS, Washington, DC:. https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Forecast/history.php
    [Google Scholar]
  110. 110.
    US Dep. Agric. Natl. Agric. Stat. Serv. 2023.. Florida citrus statistics 2021–2022. Rep ., USDA/NASS, Washington, DC:. https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Statistics/2021-22/fcs2022.pdf
    [Google Scholar]
  111. 111.
    Yamamoto PT, Felippe MR, Sanches AL, Coelho JHC, Garbim LF, Ximenes NL. 2009.. Eficácia de inseticidas para o manejo de Diaphorina citri Kuwayama (Hemiptera: Psyllidae) em citros. . BioAssay 4:. https://doi.org/10.14295/BA.v4.0.21
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-121423-041921
Loading
/content/journals/10.1146/annurev-phyto-121423-041921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error