1932

Abstract

Plant disease epidemics often transcend land management boundaries, creating a collective-action problem where a group must cooperate in a common effort to maximize individual and group benefits. Drawing upon the social-ecological systems framework and associated design principles, we review variables of resource systems, resource units, actors, and governance systems relevant to collective action in plant health. We identify a need to better characterize how attributes of epidemics determine the usefulness of collective management, what influences actors’ decisions to participate, what governance systems fit different plant health threats, and how these subsystems interact to lead to plant health outcomes. We emphasize that there is not a single governance structure that ensures collective action but rather a continuum of structures that depend on the key system variables identified. An integrated social-ecological systems approach to collective action in plant health should enable institutional designs to better fit specific plant health challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-121423-041950
2024-09-09
2025-02-15
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-121423-041950.html?itemId=/content/journals/10.1146/annurev-phyto-121423-041950&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agrawal A. 2001.. Common property institutions and sustainable governance of resources. . World Dev. 29:(10):164972
    [Crossref] [Google Scholar]
  2. 2.
    Ajzen I. 1991.. The theory of planned behavior. . Organ. Behav. Hum. Decis. Process. 50:(2):179211
    [Crossref] [Google Scholar]
  3. 3.
    Alstad DN, Andow DA. 1995.. Managing the evolution of insect resistance to transgenic plants. . Science 268:(5219):189496
    [Crossref] [Google Scholar]
  4. 4.
    Anco DJ, Rouse L, Lucas L, Parks F, Mellinger HC, et al. 2020.. Spatial and temporal physiognomies of whitefly and tomato yellow leaf curl virus epidemics in southwestern Florida tomato fields. . Phytopathology 110:(1):13045
    [Crossref] [Google Scholar]
  5. 5.
    Anderies J, Janssen M, Ostrom E. 2004.. A framework to analyze the robustness of social-ecological systems from an institutional perspective. . Ecol. Soc. 9:(1):18
    [Crossref] [Google Scholar]
  6. 6.
    Anderson JR, Feder G. 2004.. Agricultural extension: good intentions and hard realities. . World Bank Res. Obs. 19:(1):4160
    [Crossref] [Google Scholar]
  7. 7.
    Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. 2004.. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. . Trends Ecol. Evol. 19:(10):53544
    [Crossref] [Google Scholar]
  8. 8.
    Axelrod R, Hamilton WD. 1981.. The evolution of cooperation. . Science 211:(4489):139096
    [Crossref] [Google Scholar]
  9. 9.
    Ayer HW. 1997.. Grass roots collective action: agricultural opportunities. . J. Agric. Resour. Econ. 22:(1):111
    [Google Scholar]
  10. 10.
    Babcock B, McRoberts N, Garcia-Figuera S. 2022.. Efficacy of coordinated area-wide treatments to control HLB. . Citrograph 13:(2):3843
    [Google Scholar]
  11. 11.
    Baker BP. 1988.. Pest control in the public interest: crop protection in California. . UCLA J. Environ. Law Policy 8:(1):3171
    [Crossref] [Google Scholar]
  12. 12.
    Baker R, Cowley J. 1989.. Evaluation of the economic impact of newly introduced pests. . N. Z. J. For. Sci. 19:(2/3):33034
    [Google Scholar]
  13. 13.
    Bassanezi RB, Montesino LH, Gimenes-Fernandes N, Yamamoto PT, Gottwald TR, et al. 2013.. Efficacy of area-wide inoculum reduction and vector control on temporal progress of Huanglongbing in young sweet orange plantings. . Plant Dis. 97:(6):78996
    [Crossref] [Google Scholar]
  14. 14.
    Bergamin Filho A, Inoue-Nagata AK, Bassanezi RB, Belasque J Jr., Amorim L, et al. 2016.. The importance of primary inoculum and area-wide disease management to crop health and food security. . Food Secur. 8:(1):22138
    [Crossref] [Google Scholar]
  15. 15.
    Bodin Ö. 2017.. Collaborative environmental governance: achieving collective action in social-ecological systems. . Science 357:(6352):eaan1114
    [Crossref] [Google Scholar]
  16. 16.
    Brown C, Kovács E, Herzon I, Villamayor-Tomas S, Albizua A, et al. 2021.. Simplistic understandings of farmer motivations could undermine the environmental potential of the common agricultural policy. . Land Use Policy 101::105136
    [Crossref] [Google Scholar]
  17. 17.
    Burton RJF, Wilson GA. 2006.. Injecting social psychology theory into conceptualisations of agricultural agency: towards a post-productivist farmer self-identity?. J. Rural Stud. 22:(1):95115
    [Crossref] [Google Scholar]
  18. 18.
    Cabunagan RC, Castilla N, Coloquio EL, Tiongco ER, Truong XH, et al. 2001.. Synchrony of planting and proportions of susceptible varieties affect rice tungro disease epidemics in the Philippines. . Crop Prot 20:(6):499510
    [Crossref] [Google Scholar]
  19. 19.
    Calvert RL. 1995.. The rational choice theory of social institutions: cooperation, coordination, and communication. . In Modern Political Economy: Old Topics, New Directions, ed. EA Hanushek, JS Banks , pp. 21668. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  20. 20.
    Carisse O, Tremblay D-M, McDonald MR, Brodeur L, McRoberts N. 2011.. Management of Botrytis leaf blight of onion: the Québec experience of 20 years of continual improvement. . Plant Dis. 95:(5):50414
    [Crossref] [Google Scholar]
  21. 21.
    Carnegie AJ, Pegg GS. 2018.. Lessons from the incursion of myrtle rust in Australia. . Annu. Rev. Phytopathol. 56::45778
    [Crossref] [Google Scholar]
  22. 22.
    Centner TJ, Ferreira S. 2012.. Ability of governments to take actions to confront incursions of diseases—a case study: citrus canker in Florida. . Plant Pathol. 61:(5):82128
    [Crossref] [Google Scholar]
  23. 23.
    Choudhury RA, Koike ST, Fox AD, Anchieta A, Subbarao KV, et al. 2016.. Season-long dynamics of spinach downy mildew determined by spore trapping and disease incidence. . Phytopathology 106:(11):131118
    [Crossref] [Google Scholar]
  24. 24.
    Clark JS, Carlson GA. 1990.. Testing for common versus private property: the case of pesticide resistance. . J. Environ. Econ. Manag. 19:(1):4560
    [Crossref] [Google Scholar]
  25. 25.
    Cofré-Bravo G, Klerkx L, Engler A. 2019.. Combinations of bonding, bridging, and linking social capital for farm innovation: how farmers configure different support networks. . J. Rural Stud. 69::5364
    [Crossref] [Google Scholar]
  26. 26.
    Colella C, Carradore R, Cerroni A. 2019.. Problem setting and problem solving in the case of olive quick decline syndrome in Apulia, Italy: a sociological approach. . Phytopathology 109:(2):18799
    [Crossref] [Google Scholar]
  27. 27.
    Corkley I, Fraaije B, Hawkins N. 2022.. Fungicide resistance management: maximizing the effective life of plant protection products. . Plant Pathol. 71:(1):15069
    [Crossref] [Google Scholar]
  28. 28.
    Cox M, Arnold G, Villamayor-Tomas S. 2010.. A review of design principles for community-based natural resource management. . Ecol. Soc. 15:(4):38
    [Crossref] [Google Scholar]
  29. 29.
    Cunniffe NJ, Laranjeira FF, Neri FM, DeSimone RE, Gilligan CA. 2014.. Cost-effective control of plant disease when epidemiological knowledge is incomplete: modelling Bahia bark scaling of citrus. . PLOS Comput. Biol. 10:(8):e1003753
    [Crossref] [Google Scholar]
  30. 30.
    Damtew E, Tafesse S, Lie R, van Mierlo B, Lemaga B, et al. 2018.. Diagnosis of management of bacterial wilt and late blight in potato in Ethiopia: a systems thinking perspective. . NJAS 86–87::1224
    [Google Scholar]
  31. 31.
    Damtew E, van Mierlo B, Lie R, Struik P, Leeuwis C, et al. 2020.. Governing a collective bad: social learning in the management of crop diseases. . Syst. Pract. Action Res. 33:(1):11134
    [Crossref] [Google Scholar]
  32. 32.
    Dentzman K, Jussaume R. 2017.. The ideology of U.S. agriculture: How are integrated management approaches envisioned?. Soc. Nat. Resour. 30:(11):131127
    [Crossref] [Google Scholar]
  33. 33.
    Epanchin-Niell RS, Hastings A. 2010.. Controlling established invaders: integrating economics and spread dynamics to determine optimal management. . Ecol. Lett. 13:(4):52841
    [Crossref] [Google Scholar]
  34. 34.
    Ervin DE, Breshears EH, Frisvold GB, Hurley T, Dentzman KE, et al. 2019.. Farmer attitudes toward cooperative approaches to herbicide resistance management: a common pool ecosystem service challenge. . Ecol. Econ. 157::23745
    [Crossref] [Google Scholar]
  35. 35.
    Fenichel EP, Richards TJ, Shanafelt DW. 2014.. The control of invasive species on private property with neighbor-to-neighbor spillovers. . Environ. Resour. Econ. 59:(2):23155
    [Crossref] [Google Scholar]
  36. 36.
    Filho AB, Inoue-Nagata AK, Bassanezi RB, Belasque J, Amorim L, et al. 2016.. The importance of primary inoculum and area-wide disease management to crop health and food security. . Food Secur. 8:(1):22138
    [Crossref] [Google Scholar]
  37. 37.
    Garcia-Figuera S, Babcock B, Lubell M, McRoberts N. 2022.. Collective action in the area-wide management of an invasive plant disease. . Ecol. Soc. 27:(2):12
    [Crossref] [Google Scholar]
  38. 38.
    Garcia-Figuera S, Deniston-Sheets H, Grafton-Cardwell E, Babcock B, Lubell M, McRoberts N. 2021.. Perceived vulnerability and propensity to adopt best management practices for Huanglongbing disease of citrus in California. . Phytopathology 111:(10):175873
    [Crossref] [Google Scholar]
  39. 39.
    Garcia-Figuera S, Grafton-Cardwell EE, Babcock BA, Lubell MN, McRoberts N. 2021.. Institutional approaches for plant health provision as a collective action problem. . Food Secur. 13:(2):27390
    [Crossref] [Google Scholar]
  40. 40.
    Garnault M, Duplaix C, Leroux P, Couleaud G, David O, et al. 2021.. Large-scale study validates that regional fungicide applications are major determinants of resistance evolution in the wheat pathogen Zymoseptoria tritici in France. . New Phytol. 229:(6):350821
    [Crossref] [Google Scholar]
  41. 41.
    Garrett KA, Jumpponen A, Montano LG. 2010.. Emerging plant diseases: What are our best strategies for management?. In Controversies in Science and Technology, Vol. 3: From Evolution to Energy, ed. EL Kleinman, JA Delbourne, KA Cloud-Hansen, J Handelsman , pp. 15260. New Rochelle, NY:: Liebert
    [Google Scholar]
  42. 42.
    Gavrilets S. 2015.. Collective action problem in heterogeneous groups. . Philos. Trans. R. Soc. B 370:(1683):20150016
    [Crossref] [Google Scholar]
  43. 43.
    Gent DH, Bhattacharyya S, Ruiz T. 2019.. Prediction of spread and regional development of hop powdery mildew: a network analysis. . Phytopathology 109:(8):1392403
    [Crossref] [Google Scholar]
  44. 44.
    Gergerich RC, Welliver RA, Gettys S, Osterbauer NK, Kamenidou S, et al. 2015.. Safeguarding fruit crops in the age of agricultural globalization. . Plant Dis. 99:(2):17687
    [Crossref] [Google Scholar]
  45. 45.
    Gilligan CA, Truscott JE, Stacey AJ. 2007.. Impact of scale on the effectiveness of disease control strategies for epidemics with cryptic infection in a dynamical landscape: an example for a crop disease. . J. R. Soc. Interface 4:(16):92534
    [Crossref] [Google Scholar]
  46. 46.
    Godoy CV, Seixas CDS, Soares RM, Marcelino-Guimarães FC, Meyer MC, Costamilan LM. 2016.. Asian soybean rust in Brazil: past, present, and future. . Pesqui. Agropecu. Bras. 51::40721
    [Crossref] [Google Scholar]
  47. 47.
    Goodell GE. 1984.. Bugs, bunds, banks, and bottlenecks: organizational contradictions in the new rice technology. . Econ. Dev. Cult. Change 33:(1):2341
    [Crossref] [Google Scholar]
  48. 48.
    Gottwald TR. 2010.. Current epidemiological understanding of citrus Huanglongbing. . Annu. Rev. Phytopathol. 48::11939
    [Crossref] [Google Scholar]
  49. 49.
    Gottwald TR, Hughes G, Graham JH, Sun X, Riley T. 2001.. The citrus canker epidemic in Florida: the scientific basis of regulatory eradication policy for an invasive species. . Phytopathology 91:(1):3034
    [Crossref] [Google Scholar]
  50. 50.
    Graham S. 2013.. Three cooperative pathways to solving a collective weed management problem. . Aust. J. Environ. Manag. 20:(2):11629
    [Crossref] [Google Scholar]
  51. 51.
    Graham S, Metcalf AL, Gill N, Niemiec R, Moreno C, et al. 2019.. Opportunities for better use of collective action theory in research and governance for invasive species management. . Conserv. Biol. 33:(2):27587
    [Crossref] [Google Scholar]
  52. 52.
    Graham S, Rogers S. 2017.. How local landholder groups collectively manage weeds in south-eastern Australia. . Environ. Manag. 60:(3):396408
    [Crossref] [Google Scholar]
  53. 53.
    Haviland DR, Stone-Smith B, Gonzalez M. 2021.. Control of Pierce's disease through areawide management of glassy-winged sharpshooter (Hemiptera: Cicadellidae) and roguing of infected grapevines. . J. Integr. Pest Manag. 12:(1):14
    [Crossref] [Google Scholar]
  54. 54.
    Hendrichs J, Kenmore P, Robinson AS, Vreysen MJB. 2007.. Area-wide integrated pest management (AW-IPM): principles, practice and prospects. . In Area-Wide Control of Insect Pests: From Research to Implementation, ed. MJB Vreysen, AS Robinson, J Hendrichs , pp. 333. Dordrecht, Neth.:: Springer
    [Google Scholar]
  55. 55.
    Hillis V, Lubell M, Kaplan J, Doll D, Baumgartner K. 2016.. The role of pest control advisers in preventative management of grapevine trunk diseases. . Phytopathology 106:(4):33947
    [Crossref] [Google Scholar]
  56. 56.
    Hirshleifer J. 1983.. From weakest-link to best-shot: the voluntary provision of public goods. . Public Choice 41:(3):37186
    [Crossref] [Google Scholar]
  57. 57.
    Hobbs MB, Vengco SM, Bolton SL, Bettiga LJ, Moyer MM, Cooper ML. 2023.. Meeting the challenge of viral disease management in the US wine grape industries of California and Washington: demystifying decision making, fostering agricultural networks, and optimizing educational resources. . Aust. J. Grape Wine Res. 2023::e7534116
    [Crossref] [Google Scholar]
  58. 58.
    Hurley TM. 2016.. Shock and awe pest management: time for change. . Choices 31:(4):8
    [Google Scholar]
  59. 59.
    Irwin ME. 1999.. Implications of movement in developing and deploying integrated pest management strategies. . Agric. For. Meteorol. 97:(4):23548
    [Crossref] [Google Scholar]
  60. 60.
    Isaac RM, Walker JM. 1988.. Communication and free-riding behavior: the voluntary contribution mechanism. . Econ. Inq. 26:(4):585608
    [Crossref] [Google Scholar]
  61. 61.
    Isard SA, Russo JM, DeWolf ED. 2006.. The establishment of a national pest information platform for extension and education. . Plant Health Prog. 7:(1). https://doi.org/10.1094/PHP-2006-0915-01-RV
    [Crossref] [Google Scholar]
  62. 62.
    Jameson JD. 1964.. Cassava mosaic disease in Uganda. . East Afr. Agric. For. J. 29:(3):20813
    [Crossref] [Google Scholar]
  63. 63.
    Jeger M, Beresford R, Bock C, Brown N, Fox A, et al. 2021.. Global challenges facing plant pathology: multidisciplinary approaches to meet the food security and environmental challenges in the mid-twenty-first century. . CABI Agric. Biosci. 2:(1):20
    [Crossref] [Google Scholar]
  64. 64.
    Jeger M, Fereres A, Mauck K, Wintermantel WM. 2020.. Reducing the spread of plant viruses through communication and global cooperation. . Virus Res. 288::198139
    [Crossref] [Google Scholar]
  65. 65.
    John D. 2006.. Top-down, grassroots, and civic environmentalism: three ways to protect ecosystems. . Front. Ecol. Environ. 4:(1):4551
    [Crossref] [Google Scholar]
  66. 66.
    Kahn RP. 1991.. Exclusion as a plant disease control strategy. . Annu. Rev. Phytopathol. 29::21946
    [Crossref] [Google Scholar]
  67. 67.
    Kamprath M. 2005.. Addressing the shaky legal foundations of Florida's fight against citrus canker. . J. Land Use Environ. Law 20:(2):45388
    [Google Scholar]
  68. 68.
    Kim H, Toyokawa W, Kameda T. 2019.. How do we decide when (not) to free-ride? Risk tolerance predicts behavioral plasticity in cooperation. . Evol. Hum. Behav. 40:(1):5564
    [Crossref] [Google Scholar]
  69. 69.
    Klassen W, Vreysen MJB. 2021.. Area-wide integrated pest management and the sterile insect technique. . In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management, ed. VA Dyck, J Hendrichs, AS Robinson , pp. 75112. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  70. 70.
    Kruger H. 2016.. Designing local institutions for cooperative pest management to underpin market access: the case of industry-driven fruit fly area-wide management. . Int. J. Commons 10:(1):17699
    [Crossref] [Google Scholar]
  71. 71.
    Lansink AO. 2011.. Public and private roles in plant health management. . Food Policy 36:(2):16670
    [Crossref] [Google Scholar]
  72. 72.
    Lazarus WF, Dixon BL. 1984.. Agricultural pests as common property: control of the corn rootworm. . Am. J. Agric. Econ. 66:(4):45665
    [Crossref] [Google Scholar]
  73. 73.
    Legg J, Ndalahwa M, Yabeja J, Ndyetabula I, Bouwmeester H, et al. 2017.. Community phytosanitation to manage cassava brown streak disease. . Virus Res. 241::23653
    [Crossref] [Google Scholar]
  74. 74.
    Lence SH, Singerman A. 2023.. When does voluntary coordination work? Evidence from area-wide pest management. . Am. J. Agric. Econ. 105:(1):24364
    [Crossref] [Google Scholar]
  75. 75.
    Levy MA, Lubell MN. 2018.. Innovation, cooperation, and the structure of three regional sustainable agriculture networks in California. . Reg. Environ. Change 18:(4):123546
    [Crossref] [Google Scholar]
  76. 76.
    Lowder SR, Moyer MM, Cooper ML, Pscheidt J, Mahaffee WF. 2023.. Information transfer among grape producers in the western United States on pest and disease management. . PhytoFrontiers. https://doi.org/10.1094/PHYTOFR-07-23-0081-R
    [Google Scholar]
  77. 77.
    Lowder SR, Moyer MM, Cooper ML, Pscheidt J, Mahaffee WF. 2023.. Perspectives towards collective action for pest and disease management in vineyards in the western US. . PhytoFrontiers. https://doi.org/10.1094/PHYTOFR-07-23-0082-R
    [Google Scholar]
  78. 78.
    Lubell M. 2004.. Collaborative watershed management: a view from the grassroots. . Policy Stud. J. 32:(3):34161
    [Crossref] [Google Scholar]
  79. 79.
    Lubell M, Fulton A. 2008.. Local policy networks and agricultural watershed management. . J. Public Adm. Res. Theory 18:(4):67396
    [Crossref] [Google Scholar]
  80. 80.
    Lubell M, Hillis V, Hoffman M. 2011.. Innovation, cooperation, and the perceived benefits and costs of sustainable agriculture practices. . Ecol. Soc. 16:(4):23
    [Crossref] [Google Scholar]
  81. 81.
    Lubell M, Schneider M, Scholz JT, Mete M. 2002.. Watershed partnerships and the emergence of collective action institutions. . Am. J. Political Sci. 46:(1):14863
    [Crossref] [Google Scholar]
  82. 82.
    Luvisi A, Nicolì F, De Bellis L. 2017.. Sustainable management of plant quarantine pests: the case of olive quick decline syndrome. . Sustainability 9:(4):659
    [Crossref] [Google Scholar]
  83. 83.
    Magarey RD, Colunga-Garcia M, Fieselmann DA. 2009.. Plant biosecurity in the United States: roles, responsibilities, and information needs. . BioScience 59:(10):87584
    [Crossref] [Google Scholar]
  84. 84.
    Mahaffee WF, Stoll R. 2016.. The ebb and flow of airborne pathogens: monitoring and use in disease management decisions. . Phytopathology 106:(5):42031
    [Crossref] [Google Scholar]
  85. 85.
    Margosian ML, Garrett KA, Hutchinson JMS, With KA. 2009.. Connectivity of the American agricultural landscape: assessing the national risk of crop pest and disease spread. . BioScience 59:(2):14151
    [Crossref] [Google Scholar]
  86. 86.
    Markell SG, Tylka GL, Anderson EJ, van Esse HP. 2020.. Developing public-private partnerships in plant pathology extension: case studies and opportunities in the United States. . Annu. Rev. Phytopathol. 58::16180
    [Crossref] [Google Scholar]
  87. 87.
    McAllister RRJ, Robinson CJ, Brown A, Maclean K, Perry S, Liu S. 2017.. Balancing collaboration with coordination: contesting eradication in the Australian plant pest and disease biosecurity system. . Int. J. Commons 11:(1):33054
    [Crossref] [Google Scholar]
  88. 88.
    McAllister RRJ, Robinson CJ, Maclean K, Guerrero AM, Collins K, et al. 2015.. From local to central: a network analysis of who manages plant pest and disease outbreaks across scales. . Ecol. Soc. 20:(1):11
    [Crossref] [Google Scholar]
  89. 89.
    McGinnis M, Ostrom E. 2014.. Social-ecological system framework: initial changes and continuing challenges. . Ecol. Soc. 19:(2):30
    [Crossref] [Google Scholar]
  90. 90.
    McRoberts N, Garcia-Figuera S, Olkowski S, McGuire B, Luo W, et al. 2019.. Using models to provide rapid programme support for California's efforts to suppress Huanglongbing disease of citrus. . Philos. Trans. R. Soc. B 374:(1776):20180281
    [Crossref] [Google Scholar]
  91. 91.
    McRoberts N, Hall C, Madden LV, Hughes G. 2011.. Perceptions of disease risk: from social construction of subjective judgments to rational decision making. . Phytopathology 101:(6):65465
    [Crossref] [Google Scholar]
  92. 92.
    Meinzen-Dick R, DiGregorio M, McCarthy N. 2004.. Methods for studying collective action in rural development. . Agric. Syst. 82:(3):197214
    [Crossref] [Google Scholar]
  93. 93.
    Milne AE, Gottwald T, Parnell SR, Alonso Chavez V, van den Bosch F. 2020.. What makes or breaks a campaign to stop an invading plant pathogen?. PLOS Comput. Biol. 16:(2):e1007570
    [Crossref] [Google Scholar]
  94. 94.
    Miranowski JA, Carlson GA. 1986.. Economic issues in public and private approaches to preserving pest susceptibility. . In Pesticide Resistance: Strategies and Tactics for Management. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  95. 95.
    Morse RS. 2010.. Integrative public leadership: catalyzing collaboration to create public value. . Leadersh. Q. 21:(2):23145
    [Crossref] [Google Scholar]
  96. 96.
    Moss S. 2019.. Integrated weed management (IWM): Why are farmers reluctant to adopt non-chemical alternatives to herbicides?. Pest Manag. Sci. 75:(5):120511
    [Crossref] [Google Scholar]
  97. 97.
    Mundt CC. 2014.. Durable resistance: a key to sustainable management of pathogens and pests. . Infect. Genet. Evol. 27::44655
    [Crossref] [Google Scholar]
  98. 98.
    Murray-Watson RE, Hamelin FM, Cunniffe NJ. 2022.. How growers make decisions impacts plant disease control. . PLOS Comput. Biol. 18:(8):e1010309
    [Crossref] [Google Scholar]
  99. 99.
    Ohmart C. 2008.. Innovative outreach increases adoption of sustainable winegrowing practices in Lodi region. . Calif. Agric. 62:(4):14247
    [Crossref] [Google Scholar]
  100. 100.
    Ojiambo PS, Holmes GJ, Britton W, Babadoost M, Bost SC, et al. 2011.. Cucurbit downy mildew ipmPIPE: a next generation web-based interactive tool for disease management and extension outreach. . Plant Health Prog. 12:(1). https://doi.org/10.1094/PHP-2011-0411-01-RV
    [Crossref] [Google Scholar]
  101. 101.
    Olson M Jr. 1971.. The Logic of Collective Action: Public Goods and the Theory of Groups. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  102. 102.
    Ostrom E. 1990.. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  103. 103.
    Ostrom E. 2005.. Understanding Institutional Diversity. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  104. 104.
    Ostrom E. 2007.. A diagnostic approach for going beyond panaceas. . PNAS 104:(39):1518187
    [Crossref] [Google Scholar]
  105. 105.
    Ostrom E. 2009.. A general framework for analyzing sustainability of social-ecological systems. . Science 325:(5939):41922
    [Crossref] [Google Scholar]
  106. 106.
    Ostrom E. 2010.. Analyzing collective action. . Agric. Econ. 41:(S1):15566
    [Crossref] [Google Scholar]
  107. 107.
    Ostrom E, Walker J. 2003.. Trust and Reciprocity: Interdisciplinary Lessons for Experimental Research. New York:: Russell Sage Found.
    [Google Scholar]
  108. 108.
    Pannell DJ. 2008.. Public benefits, private benefits, and policy mechanism choice for land-use change for environmental benefits. . Land Econ. 84:(2):22540
    [Crossref] [Google Scholar]
  109. 109.
    Papaïx J, Goyeau H, Du Cheyron P, Monod H, Lannou C. 2011.. Influence of cultivated landscape composition on variety resistance: an assessment based on wheat leaf rust epidemics. . New Phytol 191:(4):1095107
    [Crossref] [Google Scholar]
  110. 110.
    Parnell S, Gottwald TR, Gilligan CA, Cunniffe NJ, van den Bosch F. 2010.. The effect of landscape pattern on the optimal eradication zone of an invading epidemic. . Phytopathology 100:(7):63844
    [Crossref] [Google Scholar]
  111. 111.
    Picard C, Soubeyrand S, Jacquot E, Thebaud G. 2019.. Analyzing the influence of landscape aggregation on disease spread to improve management strategies. . Phytopathology 109::1198207
    [Crossref] [Google Scholar]
  112. 112.
    Rimbaud L, Papaïx J, Rey J-F, Barrett LG, Thrall PH. 2018.. Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. . PLOS Comput. Biol. 14:(4):e1006067
    [Crossref] [Google Scholar]
  113. 113.
    Rizzo DM, Garbelotto M. 2003.. Sudden oak death: endangering California and Oregon forest ecosystems. . Front. Ecol. Environ. 1:(4):197204
    [Crossref] [Google Scholar]
  114. 114.
    Rogers E. 2003.. Diffusion of Innovations. New York:: Free Press. , 5th ed..
    [Google Scholar]
  115. 115.
    Saikai Y, Hurley TM, Mitchell PD. 2021.. An agent-based model of insect resistance management and mitigation for Bt maize: a social science perspective. . Pest Manag. Sci. 77:(1):27384
    [Crossref] [Google Scholar]
  116. 116.
    Sally D. 1995.. Conversation and cooperation in social dilemmas: a meta-analysis of experiments from 1958 to 1992. . Ration. Soc. 7:(1):5892
    [Crossref] [Google Scholar]
  117. 117.
    Savary S, Horgan F, Willocquet L, Heong KL. 2012.. A review of principles for sustainable pest management in rice. . Crop Prot 32::5463
    [Crossref] [Google Scholar]
  118. 118.
    Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A. 2019.. The global burden of pathogens and pests on major food crops. . Nat. Ecol. Evol. 3:(3):43039
    [Crossref] [Google Scholar]
  119. 119.
    Seabright P. 1993.. Managing local commons: theoretical issues in incentive design. . J. Econ. Perspect. 7:(4):11334
    [Crossref] [Google Scholar]
  120. 120.
    Severns PM, Mundt CC. 2022.. Delays in epidemic outbreak control cost disproportionately large treatment footprints to offset. . Pathogens 11:(4):393
    [Crossref] [Google Scholar]
  121. 121.
    Sherman J, Burke JM, Gent DH. 2019.. Cooperation and coordination in plant disease management. . Phytopathology 109:(10):172031
    [Crossref] [Google Scholar]
  122. 122.
    Singerman A, Lence SH, Useche P. 2017.. Is area-wide pest management useful? The case of citrus greening. . Appl. Econ. Perspect. Policy 39:(4):60934
    [Crossref] [Google Scholar]
  123. 123.
    Singerman A, Rogers ME. 2020.. The economic challenges of dealing with citrus greening: the case of Florida. . J. Integr. Pest Manag. 11:(1):3
    [Crossref] [Google Scholar]
  124. 124.
    Singerman A, Useche P. 2019.. The role of strategic uncertainty in area-wide pest management decisions of Florida citrus growers. . Am. J. Agric. Econ. 101:(4):9911011
    [Crossref] [Google Scholar]
  125. 125.
    Stallman HR, James HS. 2015.. Determinants affecting farmers’ willingness to cooperate to control pests. . Ecol. Econ. 117::18292
    [Crossref] [Google Scholar]
  126. 126.
    Stevens NE, Nienow I. 1947.. Plant disease control by unusual methods. . Bot. Rev. 13:(2):11624
    [Crossref] [Google Scholar]
  127. 127.
    Subbarao KV, Sundin GW, Klosterman SJ. 2015.. Focus issue articles on emerging and re-emerging plant diseases. . Phytopathology 105:(7):85254
    [Crossref] [Google Scholar]
  128. 128.
    Sunstein CR. 1990.. Paradoxes of the regulatory state. . Univ. Chic. Law Rev. 57:(2):40741
    [Crossref] [Google Scholar]
  129. 129.
    Tafesse S, Damtew E, van Mierlo B, Lie R, Lemaga B, et al. 2018.. Farmers’ knowledge and practices of potato disease management in Ethiopia. . NJAS 86–87::2538
    [Google Scholar]
  130. 130.
    Thiessen LD, Neill TM, Keune JA, Mahaffee WF, Turechek WW, Grove GG. 2015.. Development of a grower-conducted inoculum detection assay for management of grape powdery mildew. . Plant Pathol. 65:(2):23849
    [Crossref] [Google Scholar]
  131. 131.
    Thompson RN, Cobb RC, Gilligan CA, Cunniffe NJ. 2016.. Management of invading pathogens should be informed by epidemiology rather than administrative boundaries. . Ecol. Model. 324::2832
    [Crossref] [Google Scholar]
  132. 132.
    Turechek WW, McRoberts N. 2013.. Considerations of scale in the analysis of spatial pattern of plant disease epidemics. . Annu. Rev. Phytopathol. 51::45372
    [Crossref] [Google Scholar]
  133. 133.
    Valentinov V. 2007.. Why are cooperatives important in agriculture? An organizational economics perspective. . J. Inst. Econ. 3:(1):5569
    [Google Scholar]
  134. 134.
    Van der Heyden H, Dutilleul P, Charron J-B, Bilodeau GJ, Carisse O. 2021.. Monitoring airborne inoculum for improved plant disease management. A review. . Agron. Sustain. Dev. 41:(3):40
    [Crossref] [Google Scholar]
  135. 135.
    Villamayor-Tomas S, Oberlack C, Epstein G, Partelow S, Roggero M, et al. 2020.. Using case study data to understand SES interactions: a model-centered meta-analysis of SES framework applications. . Curr. Opin. Environ. Sustain. 44::4857
    [Crossref] [Google Scholar]
  136. 136.
    Vreysen MJB, Robinson AS, Hendrichs J, eds. 2007.. Area-Wide Control of Insect Pests: From Research to Field Implementation. Dordrecht, Neth:.: Springer
    [Google Scholar]
  137. 137.
    Wehn U, Almomani A. 2019.. Incentives and barriers for participation in community-based environmental monitoring and information systems: a critical analysis and integration of the literature. . Environ. Sci. Policy 101::34157
    [Crossref] [Google Scholar]
  138. 138.
    Wejnert B. 2002.. Integrating models of diffusion of innovations: a conceptual framework. . Annu. Rev. Sociol. 28::297326
    [Crossref] [Google Scholar]
  139. 139.
    Weldon WA, Knaus BJ, Grünwald NJ, Havill JS, Block MH, et al. 2021.. Transcriptome-derived amplicon sequencing markers elucidate the U.S. Podosphaera macularis population structure across feral and commercial plantings of Humulus lupulus. . Phytopathology 111:(1):194203
    [Crossref] [Google Scholar]
  140. 140.
    Whitfield AE, Wang Y-H, Turechek WW, Gottwald T, Schneider W, et al. 2020.. Novel strategies for management of arthropod vectors of vector-borne vegetable diseases. . In Handbook of Vegetable and Herb Diseases, ed. WH Elmer, M McGrath, RJ McGovern , pp. 124. Cham, Switz:.: Springer
    [Google Scholar]
  141. 141.
    Williams G, Ginzel MD, Ma Z, Adams DC, Campbell F, et al. 2022.. The global forest health crisis: a public good social dilemma in need of international collective action. . Annu. Rev. Phytopathol. 61::377401
    [Crossref] [Google Scholar]
  142. 142.
    Wilson DS, Ostrom E, Cox ME. 2013.. Generalizing the core design principles for the efficacy of groups. . Evol. Gen. Theor. Framew. Econ. Public Policy 90::S2132
    [Google Scholar]
  143. 143.
    Wisler GC, Duffus JE. 2000.. A century of plant virus management in the Salinas Valley of California, “East of Eden. .” Virus Res. 71:(1–2):16169
    [Crossref] [Google Scholar]
  144. 144.
    Wolfenbarger SN, Twomey MC, Gadoury DM, Knaus BJ, Grünwald NJ, Gent DH. 2015.. Identification and distribution of mating-type idiomorphs in populations of Podosphaera macularis and development of chasmothecia of the fungus. . Plant Pathol. 64:(5):1094102
    [Crossref] [Google Scholar]
  145. 145.
    Wood BA, Blair HT, Gray DI, Kemp PD, Kenyon PR, et al. 2014.. Agricultural science in the wild: a social network analysis of farmer knowledge exchange. . PLOS ONE 9:(8):e105203
    [Crossref] [Google Scholar]
  146. 146.
    Xu G, Sarkar A, Qian L. 2021.. Does organizational participation affect farmers’ behavior in adopting the joint mechanism of pest and disease control? A study of Meixian County, Shaanxi Province. . Pest Manag. Sci. 77:(3):142843
    [Crossref] [Google Scholar]
  147. 147.
    Yu R, Leung P. 2006.. Optimal pest management: a reproductive pollutant perspective. . Int. J. Pest Manag. 52:(3):15566
    [Crossref] [Google Scholar]
  148. 148.
    Zadoks JC, Schein RD. 1979.. Epidemiology and Plant Disease Management. New York:: Oxford Univ. Press
    [Google Scholar]
  149. 149.
    Zelmer J. 2003.. Linear public goods experiments: a meta-analysis. . Exp. Econ. 6:(3):299310
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-phyto-121423-041950
Loading
/content/journals/10.1146/annurev-phyto-121423-041950
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error