1932

Abstract

The disease triangle is a structurally simple but conceptually rich model that is used in plant pathology and other fields of study to explain infectious disease as an outcome of the three-way relationship between a host, a pathogen, and their environment. It also serves as a guide for finding solutions to treat, predict, and prevent such diseases. With the omics-driven, evidence-based realization that the abundance and activity of a pathogen are impacted by proximity to and interaction with a diverse multitude of other microorganisms colonizing the same host, the disease triangle evolved into a tetrahedron shape, which features an added fourth dimension representing the host-associated microbiota. Another variant of the disease triangle emerged from the recently formulated pathobiome paradigm, which deviates from the classical “one pathogen” etiology of infectious disease in favor of a scenario in which disease represents a conditional outcome of complex interactions between and among a host, its microbiota (including microbes with pathogenic potential), and the environment. The result is a version of the original disease triangle where “pathogen” is substituted with “microbiota.” Here, as part of a careful and concise review of the origin, history, and usage of the disease triangle, I propose a next step in its evolution, which is to replace the word “disease” in the center of the host–microbiota–environment triad with the word “health.” This triangle highlights health as a desirable outcome (rather than disease as an unwanted state) and as an emergent property of host–microbiota–environment interactions. Applied to the discipline of plant pathology, the health triangle offers an expanded range of targets and approaches for the diagnosis, prediction, restoration, and maintenance of plant health outcomes. Its applications are not restricted to infectious diseases only, and its underlying framework is more inclusive of all microbial contributions to plant well-being, including those by mycorrhizal fungi and nitrogen-fixing bacteria, for which there never was a proper place in the plant disease triangle. The plant health triangle also may have an edge as an education and communication tool to convey and stress the importance of healthy plants and their associated microbiota to a broader public and stakeholdership.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-121423-042021
2024-09-09
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/phyto/62/1/annurev-phyto-121423-042021.html?itemId=/content/journals/10.1146/annurev-phyto-121423-042021&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agrios GN. 1997.. Plant Pathology. San Diego, CA:: Academic Press
    [Google Scholar]
  2. 2.
    Am. Phytopathol. Soc. 2018.. One hundred and tenth annual report of the American Phytopathological Society. Rep., Am. Phytopathol. Soc., St. Paul, MN:. https://www.apsnet.org/members/leadership/governance/annualreports/Documents/2018%20110th%20%20Annual%20Report.pdf
    [Google Scholar]
  3. 3.
    Armitage DW, Carter ME, Choudhury RA, Remus-Emsermann MNP, Morris CE, et al. 2023.. Predictive ecology and management of phyllosphere microbial communities through cross-scale synthesis. . Phytobiomes J. 7::14550
    [Crossref] [Google Scholar]
  4. 4.
    Arnault G, Mony C, Vandenkoornhuyse P. 2023.. Plant microbiota dysbiosis and the Anna Karenina Principle. . Trends Plant Sci. 28::1830
    [Crossref] [Google Scholar]
  5. 5.
    Aust HJ, Pils A, Sawert A, Bartels G, Wagner KG. 1990.. Physiological epidemiology: a new concept in epidemiology explained with examples of yellow rust and powdery mildew. . Fitopatol. Bras. 15::913
    [Google Scholar]
  6. 6.
    Baltrus DA. 2017.. Adaptation, specialization, and coevolution within phytobiomes. . Curr. Opin. Plant Biol. 38::10916
    [Crossref] [Google Scholar]
  7. 7.
    Barrett LG, Kniskern JM, Bodenhausen N, Zhang W, Bergelson J. 2009.. Continua of specificity and virulence in plant host-pathogen interactions: causes and consequences. . New Phytol. 183::51329
    [Crossref] [Google Scholar]
  8. 8.
    Bass D, Stentiford GD, Wang HC, Koskella B, Tyler CR. 2019.. The pathobiome in animal and plant diseases. . Trends Ecol. Evol. 34::9961008
    [Crossref] [Google Scholar]
  9. 9.
    Berg G, Rybakova D, Fischer D, Cernava T, Vergès MCC, et al. 2020.. Microbiome definition re-visited: old concepts and new challenges. . Microbiome 8:(1):103
    [Crossref] [Google Scholar]
  10. 10.
    Berg G, Schweitzer M, Abdelfattah A, Cernava T, Wassermann B. 2023.. Missing symbionts: emerging pathogens? Microbiome management for sustainable agriculture. . Symbiosis 89::16371
    [Google Scholar]
  11. 11.
    Bernardo-Cravo AP, Schmeller DS, Chatzinotas A, Vredenburg VT, Loyau A. 2020.. Environmental factors and host microbiomes shape host-pathogen dynamics. . Trends Parasitol. 36::61633
    [Crossref] [Google Scholar]
  12. 12.
    Bird LS. 1982.. The MAR (multi-adversity resistance) system for genetic improvement of cotton. . Plant Dis. 66::17276
    [Crossref] [Google Scholar]
  13. 13.
    Bischoff SC. 2011.. ‘ Gut health’: a new objective in medicine?. BMC Med. 9::24
    [Crossref] [Google Scholar]
  14. 14.
    Blaser MJ, Falkow S. 2009.. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol. 7::88794
    [Crossref] [Google Scholar]
  15. 15.
    Bonello P, Campbell FT, Cipollini D, Conrad AO, Farinas C, et al. 2020.. Invasive tree pests devastate ecosystems: a proposed new response framework. . Front. Glob. Change 3::2
    [Crossref] [Google Scholar]
  16. 16.
    Brader G, Compant S, Vescio K, Mitter B, Trognitz F, et al. 2017.. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. . Annu. Rev. Phytopathol. 55::6183
    [Crossref] [Google Scholar]
  17. 17.
    Bujalkova M, Straka S, Jureckova A. 2001.. Hippocrates’ humoral pathology in nowaday's reflections. . Bratisl. Lek. Listy 102::48992
    [Google Scholar]
  18. 18.
    Burgess TI, Oliva J, Sapsford SJ, Sakalidis ML, Balocchi F, Paap T. 2022.. Anthropogenic disturbances and the emergence of native diseases: a threat to forest health. . Curr. Rep. 8::11123
    [Crossref] [Google Scholar]
  19. 19.
    Busby PE, Ridout M, Newcombe G. 2016.. Fungal endophytes: modifiers of plant disease. . Plant Mol. Biol. 90::64555
    [Crossref] [Google Scholar]
  20. 20.
    Casadevall A, Pirofski LA. 2000.. Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. . Infect. Immun. 68::651118
    [Crossref] [Google Scholar]
  21. 21.
    Casadevall A, Pirofski LA. 2003.. The damage-response framework of microbial pathogenesis. . Nat. Rev. Microbiol. 1::1724
    [Crossref] [Google Scholar]
  22. 22.
    Casadevall A, Pirofski LA. 2015.. What is a host? Incorporating the microbiota into the damage-response framework. . Infect. Immun. 83::27
    [Crossref] [Google Scholar]
  23. 23.
    Cerf-Bensussan N, Gaboriau-Routhiau V. 2010.. The immune system and the gut microbiota: friends or foes?. Nat. Rev. Immunol. 10::73544
    [Crossref] [Google Scholar]
  24. 24.
    Chakraborty J. 2023.. Microbiota and the plant immune system work together to defend against pathogens. . Arch. Microbiol. 205:(10):347
    [Crossref] [Google Scholar]
  25. 25.
    Chappelka AH, Grulke NE. 2016.. Disruption of the “disease triangle” by chemical and physical environmental change. . Plant Biol. 18::512
    [Crossref] [Google Scholar]
  26. 26.
    Chatfield JA, Draper EA, Boggs JF. 2004.. The power of the triangle. . In Ornamental Plants: Annual Reports and Research Reviews 2002, pp. 18191. Wooster, OH:: Ohio Agric. Res. Dev. Cent.
    [Google Scholar]
  27. 27.
    Citorik RJ, Mimee M, Lu TK. 2014.. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. . Nat. Biotechnol. 32::114145
    [Crossref] [Google Scholar]
  28. 28.
    Coban O, De Deyn GB, van der Ploeg M. 2022.. Soil microbiota as game-changers in restoration of degraded lands. . Science 375:(6584):abe0725
    [Crossref] [Google Scholar]
  29. 29.
    Coleman M, Elkins C, Gutting B, Mongodin E, Solano-Aguilar G, Walls I. 2018.. Microbiota and dose response: evolving paradigm of health triangle. . Risk Anal. 38::201328
    [Crossref] [Google Scholar]
  30. 30.
    Corke ATK. 1978.. Microbial antagonisms affecting tree diseases. . Ann. Appl. Biol. 89::8993
    [Crossref] [Google Scholar]
  31. 31.
    Curtis CR, Blevins D, O'Hanlon N, Green CT. 2004.. The disease triangle as a reusable learning object. Work. Pap., Ohio State Univ., Columbus, OH:. https://kb.osu.edu/items/038d7d16-f8f3-5b56-9cac-d05e3f541e9b
    [Google Scholar]
  32. 32.
    Darwiche H, Bokor JR. 2016.. Ebola epidemic: using current events to teach authentic inquiry science. . Am. Biol. Teach. 78::19097
    [Crossref] [Google Scholar]
  33. 33.
    Delitte M, Caulier S, Bragard C, Desoignies N. 2021.. Plant microbiota beyond farming practices: a review. . Front. Sustain. Food Syst. 5::624203
    [Crossref] [Google Scholar]
  34. 34.
    Dong ZQ, Shen XL, Hao YN, Li J, Xu HZ, et al. 2022.. Gut microbiome: a potential indicator for predicting treatment outcomes in major depressive disorder. . Front. Neurosci. 16::813075
    [Crossref] [Google Scholar]
  35. 35.
    Doonan JM, Broberg M, Denman S, McDonald JE. 2020.. Host-microbiota-insect interactions drive emergent virulence in a complex tree disease. . Proc. R. Soc. B 287:(1933):20200956
    [Crossref] [Google Scholar]
  36. 36.
    Duggar BM. 1909.. Fungous Diseases of Plants. Boston, MA:: Ginn and Company
    [Google Scholar]
  37. 37.
    Dundore-Arias JP, Michalska-Smith M, Millican M, Kinkel LL. 2023.. More than the sum of its parts: unlocking the power of network structure for understanding organization and function in microbiomes. . Annu. Rev. Phytopathol. 61::40323
    [Crossref] [Google Scholar]
  38. 38.
    Dung JKS, Alderman SC, Kaur N, Walenta DL, Frost KE, Hamm PB. 2017.. Identification of environmental factors related to ascospore production in perennial ryegrass seed fields and development of predictive models. . Plant Dis. 101::895906
    [Crossref] [Google Scholar]
  39. 39.
    Egger G, Swinburn B, Rossner S. 2003.. Dusting off the epidemiological triad: Could it work with obesity?. Obes. Rev. 4::11519
    [Crossref] [Google Scholar]
  40. 40.
    Ehau-Taumaunu H, Hockett KL. 2023.. Passaging phyllosphere microbial communities develop suppression towards bacterial speck disease in tomato. . Phytobiomes J. 7::23343
    [Crossref] [Google Scholar]
  41. 41.
    Fearer CJ, Conrad AO, Marra RE, Georskey C, Villari C, et al. 2022.. A combined approach for early in-field detection of beech leaf disease using near-infrared spectroscopy and machine learning. . Front. Glob. Change 5::934545
    [Crossref] [Google Scholar]
  42. 42.
    Fenu G, Malloci FM. 2021.. Forecasting plant and crop disease: an explorative study on current algorithms. . Big Data Cogn. Comput. 5:(1):2
    [Crossref] [Google Scholar]
  43. 43.
    Fergnani A. 2019.. Futures Triangle 2.0: integrating the Futures Triangle with scenario planning. . Foresight 22::17888
    [Crossref] [Google Scholar]
  44. 44.
    Fick GW, Lamp WO, Collins M. 2003.. Integrated pest management in forages. . In Forages: An Introduction to Grassland Agriculture, ed. RF Barnes, CJ Nelson, M Collinas, KJ Moore , pp. 295313. Ames, IA:: Iowa State Press
    [Google Scholar]
  45. 45.
    Fones HN, Bebber DP, Chaloner TM, Kay WT, Steinberg G, Gurr SJ. 2020.. Threats to global food security from emerging fungal and oomycete crop pathogens. . Nat. Food 1::33242
    [Crossref] [Google Scholar]
  46. 46.
    Foxman B, Rosenthal M. 2013.. Implications of the human microbiome project for epidemiology. . Am. J. Epidemiol. 177::197201
    [Crossref] [Google Scholar]
  47. 47.
    Francl LJ. 2001.. The disease triangle: a plant pathological paradigm revisited. . Plant Health Instr. https://doi.org/10.1094/PHI-T-2001-0517-01
    [Google Scholar]
  48. 48.
    Freimoser FM, Pelludat C, Remus-Emsermann MNP. 2016.. Tritagonist as a new term for uncharacterised microorganisms in environmental systems. . ISME J. 10::13
    [Crossref] [Google Scholar]
  49. 49.
    French E, Kaplan I, Lyer-Pascuzzi A, Nakatsu CH, Enders L. 2021.. Emerging strategies for precision microbiome management in diverse agroecosystems. . Nat. Plants 7::25667
    [Crossref] [Google Scholar]
  50. 50.
    Frost WH. 1976.. Some conceptions of epidemics in general. . Am. J. Epidemiol. 103::14151
    [Crossref] [Google Scholar]
  51. 51.
    Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, et al. 2018.. Rebuilding the gut microbiota ecosystem. . Int. J. Environ. Res. Public Health 15:(8):1679
    [Crossref] [Google Scholar]
  52. 52.
    Gao M, Xiong C, Gao C, Tsui CKM, Wang MM, et al. 2021.. Disease-induced changes in plant microbiome assembly and functional adaptation. . Microbiome 9::187
    [Crossref] [Google Scholar]
  53. 53.
    Gilbert GS, Parker IM. 2023.. The Evolutionary Ecology of Plant Disease. New York:: Oxford Univ. Press
    [Google Scholar]
  54. 54.
    Gopal M, Gupta A. 2016.. Microbiome selection could spur next-generation plant breeding strategies. . Front. Microbiol. 7::1971
    [Crossref] [Google Scholar]
  55. 55.
    Griffiths E. 1981.. Iatrogenic plant diseases. . Annu. Rev. Phytopathol. 19::6982
    [Crossref] [Google Scholar]
  56. 56.
    Gupta VK, Kim M, Bakshi U, Cunningham KY, Davis JM, et al. 2020.. A predictive index for health status using species-level gut microbiome profiling. . Nat. Commun. 11::4635
    [Crossref] [Google Scholar]
  57. 57.
    Haddon W. 1980.. Advances in the epidemiology of injuries as a basis for public policy. . Public Health Rep. 95::41121
    [Google Scholar]
  58. 58.
    Hanson BM, Weinstock GM. 2016.. The importance of the microbiome in epidemiologic research. . Ann. Epidemiol. 26::3015
    [Crossref] [Google Scholar]
  59. 59.
    Hartman K, Schmid MW, Bodenhausen N, Bender SF, Valzano-Held AY, et al. 2023.. A symbiotic footprint in the plant root microbiome. . Environ. Microbiome 18:(1):65
    [Crossref] [Google Scholar]
  60. 60.
    Heim E. 1994.. Salutogenese versus Pathogenese–ein neuer Zugang zu einer alten Weisheit. . Schweiz. Med. Wochenschr. 124::126775
    [Google Scholar]
  61. 61.
    Henry LP, Fernandez M, Webb A, Ayroles JF. 2020.. Host evolutionary history and ecological context modulate the adaptive potential of the microbiome. . bioRxiv 306779:. https://doi.org/10.1101/2020.09.21.306779
    [Google Scholar]
  62. 62.
    Hoffmann V, Paul B, Falade T, Moodley A, Ramankutty N, et al. 2022.. A One Health approach to plant health. . CABI Agric. Biosci. 3::62
    [Crossref] [Google Scholar]
  63. 63.
    Jiranek J, Miller IF, An R, Bruns E, Metcalf CJE. 2023.. Mechanistic models to meet the challenge of climate change in plant-pathogen systems. . Philos. Trans. R. Soc. Lond. B 378::20220017
    [Crossref] [Google Scholar]
  64. 64.
    Jochum L, Stecher B. 2020.. Label or concept: What is a pathobiont?. Trends Microbiol. 28::78992
    [Crossref] [Google Scholar]
  65. 65.
    John TJ, Kompithra RZ. 2023.. Eco-epidemiology triad to explain infectious diseases. . Indian J. Med. Res. 158::10712
    [Crossref] [Google Scholar]
  66. 66.
    Kleczkowski A, Hoyle A, McMenemy P. 2019.. One model to rule them all? Modelling approaches across OneHealth for human, animal and plant epidemics. . Philos. Trans. R. Soc. Lond. B 374:(1775):20180255
    [Crossref] [Google Scholar]
  67. 67.
    Lamelas A, Desgarennes D, López-Lima D, Villain L, Alonso-Sánchez A, et al. 2020.. The bacterial microbiome of Meloidogyne-based disease complex in coffee and tomato. . Front. Plant Sci. 11::136
    [Crossref] [Google Scholar]
  68. 68.
    Lamichhane JR, Venturi V. 2015.. Synergisms between microbial pathogens in plant disease complexes: a growing trend. . Front. Plant Sci. 6::385
    [Crossref] [Google Scholar]
  69. 69.
    Le Mire G, Nguyen ML, Fassotte B, du Jardin P, Verheggen F, et al. 2016.. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. A review. . Biotechnol. Agron. Soc. 20::299313
    [Crossref] [Google Scholar]
  70. 70.
    Leben C. 1965.. Epiphytic microorganisms in relation to plant disease. . Annu. Rev. Phytopathol. 3::20930
    [Crossref] [Google Scholar]
  71. 71.
    Leben C. 1981.. How plant-pathogenic bacteria survive. . Plant Dis. 65::63337
    [Crossref] [Google Scholar]
  72. 72.
    Lee SM, Kong HG, Song GC, Ryu CM. 2021.. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. . ISME J. 15::33047
    [Crossref] [Google Scholar]
  73. 73.
    Leonard JM, Pascual JL, Kaplan LJ. 2023.. Dysbiome and its role in surgically relevant medical disease. . Surg. Infect. 24::22631
    [Crossref] [Google Scholar]
  74. 74.
    Leveau JHJ. 2017.. Plant-microbe symbiosis. . Microbiologist 18:(1):1819
    [Google Scholar]
  75. 75.
    Leveau JHJ. 2019.. A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. . Curr. Opin. Microbiol. 49::4149
    [Crossref] [Google Scholar]
  76. 76.
    Lv T, Zhan C, Pan Q, Xu H, Fang H, et al. 2023.. Plant pathogenesis: toward multidimensional understanding of the microbiome. . iMeta 2::e129
    [Crossref] [Google Scholar]
  77. 77.
    Madhusoodanan J. 2020.. News feature: editing the microbiome. . PNAS 117::334548
    [Crossref] [Google Scholar]
  78. 78.
    Mahaffee WF, Margairaz F, Ulmer L, Bailey BN, Stoll R. 2023.. Catching spores: linking epidemiology, pathogen biology, and physics to ground-based airborne inoculum monitoring. . Plant Dis. 107::1333
    [Crossref] [Google Scholar]
  79. 79.
    Mannaa M, Seo YS. 2021.. Plants under the attack of allies: moving towards the plant pathobiome paradigm. . Plants 10:(1):125
    [Crossref] [Google Scholar]
  80. 80.
    Martins SJ, Pasche J, Silva HAO, Selten G, Savastano N, et al. 2023.. The use of synthetic microbial communities to improve plant health. . Phytopathology 113:(8):136979
    [Crossref] [Google Scholar]
  81. 81.
    Mazmanian SK, Round JL, Kasper DL. 2008.. A microbial symbiosis factor prevents intestinal inflammatory disease. . Nature 453::62025
    [Crossref] [Google Scholar]
  82. 82.
    McNew GL. 1960.. The nature, origin, and evolution of parasitism. . In Plant Pathology: An Advanced Treatise, ed. JG Horsfall, AE Dimond , pp. 1969. New York:: Academic Press
    [Google Scholar]
  83. 83.
    Methot PO, Alizon S. 2014.. What is a pathogen? Toward a process view of host-parasite interactions. . Virulence 5::77585
    [Crossref] [Google Scholar]
  84. 84.
    Meyer KM, Porch R, Muscettola IE, Vasconcelos ALS, Sherman JK, et al. 2022.. Plant neighborhood shapes diversity and reduces interspecific variation of the phyllosphere microbiome. . ISME J. 16::137687
    [Crossref] [Google Scholar]
  85. 85.
    Morabia A. 2013.. Snippets from the past: the evolution of Wade Hampton Frost's epidemiology as viewed from the American Journal of Hygiene/Epidemiology. . Am. J. Epidemiol. 178::101319
    [Crossref] [Google Scholar]
  86. 86.
    Mueller UG, Linksvayer TA. 2022.. Microbiome breeding: conceptual and practical issues. . Trends Microbiol. 30::9971011
    [Crossref] [Google Scholar]
  87. 87.
    Najmanova L, Videnska P, Cahova M. 2022.. Healthy microbiome: a mere idea or a sound concept?. Physiol. Res. 71::71938
    [Crossref] [Google Scholar]
  88. 88.
    Narvaez P, Vaughan DB, Grutter AS, Hutson KS. 2021.. New perspectives on the role of cleaning symbiosis in the possible transmission of fish diseases. . Rev. Fish Biol. Fish. 31::23351
    [Crossref] [Google Scholar]
  89. 89.
    Natl. Acad. Press. 1972.. Genetic vulnerability of major crops: a challenge to scientists and the nation. . Agric. Sci. Rev. 10::4783
    [Google Scholar]
  90. 90.
    Natl. Inst. Health. 2007.. Understanding Emerging and Re-Emerging Infectious Diseases. Bethesda, MD:: NIH. https://www.ncbi.nlm.nih.gov/books/NBK20370/
    [Google Scholar]
  91. 91.
    Ottesen AR, Gorham S, Reed E, Newell MJ, Ramachandra P, et al. 2016.. Using a control to better understand phyllosphere microbiota. . PLOS ONE 11:(9):e0163482
    [Crossref] [Google Scholar]
  92. 92.
    Oulhen N, Schulz BJ, Carrier TJ. 2016.. English translation of Heinrich Anton de Bary's 1878 speech, ‘Die Erscheinung der Symbiose’ (‘De la symbiose’). . Symbiosis 69::13139
    [Crossref] [Google Scholar]
  93. 93.
    Paasch BC, He SY. 2021.. Toward understanding microbiota homeostasis in the plant kingdom. . PLOS Pathog. 17:(4):e1009472
    [Crossref] [Google Scholar]
  94. 94.
    Padhi EMT, Maharaj N, Lin SY, Mishchuk DO, Chin E, et al. 2019.. Metabolome and microbiome signatures in the roots of citrus affected by Huanglongbing. . Phytopathology 109::202232
    [Crossref] [Google Scholar]
  95. 95.
    Panke-Buisse K, Poole AC, Goodrich JK, Ley RE, Kao-Kniffin J. 2015.. Selection on soil microbiomes reveals reproducible impacts on plant function. . ISME J. 9::98089
    [Crossref] [Google Scholar]
  96. 96.
    Partida-Martinez LP, Heil M. 2011.. The microbe-free plant: fact or artifact?. Front. Plant Sci. 2::100
    [Crossref] [Google Scholar]
  97. 97.
    Partida-Martinez LP, Hertweck C. 2005.. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. . Nature 437::88488
    [Crossref] [Google Scholar]
  98. 98.
    Pereira MR, dos Santos FN, Tavares F, Cunha M. 2023.. Enhancing host-pathogen phenotyping dynamics: early detection of tomato bacterial diseases using hyperspectral point measurement and predictive modeling. . Front. Plant Sci. 14::1242201
    [Crossref] [Google Scholar]
  99. 99.
    Perkins LB, Leger EA, Nowak RS. 2011.. Invasion triangle: an organizational framework for species invasion. . Ecol. Evol. 1:(4):61025
    [Crossref] [Google Scholar]
  100. 100.
    Piombo E, Abdelfattah A, Droby S, Wisniewski M, Spadaro D, Schena L. 2021.. Metagenomics approaches for the detection and surveillance of emerging and recurrent plant pathogens. . Microorganisms 9:(1):188
    [Crossref] [Google Scholar]
  101. 101.
    Pirofski LA, Casadevall A. 2012.. Q&A: What is a pathogen? A question that begs the point. . BMC Biol. 10::6
    [Crossref] [Google Scholar]
  102. 102.
    Pitlik SD, Koren O. 2017.. How holobionts get sick: toward a unifying scheme of disease. . Microbiome 5::64
    [Crossref] [Google Scholar]
  103. 103.
    Potter MC. 1909.. Bacteria in their relation to plant pathology. . Br. Mycol. Soc. Trans. 3::5068
    [Google Scholar]
  104. 104.
    Poutahidis T, Kearney SM, Levkovich T, Qi PM, Varian BJ, et al. 2013.. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. . PLOS ONE 8:(10):e78898
    [Crossref] [Google Scholar]
  105. 105.
    Rastogi G, Coaker GL, Leveau JHJ. 2013.. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. . FEMS Microbiol. Lett. 348::110
    [Crossref] [Google Scholar]
  106. 106.
    Reich J, Chatterton S. 2023.. Predicting field diseases caused by Sclerotinia sclerotiorum: a review. . Plant Pathol. 72::318
    [Crossref] [Google Scholar]
  107. 107.
    Riley MB, Williamson MR, Maloy O. 2002.. Plant disease diagnosis. . Plant Health Instr. https://doi.org/10.1094/PHI-I-2002-1021-01
    [Google Scholar]
  108. 108.
    Rivero RM, Mittler R, Blumwald E, Zandalinas SI. 2022.. Developing climate-resilient crops: improving plant tolerance to stress combination. . Plant J. 109::37389
    [Crossref] [Google Scholar]
  109. 109.
    Roman-Reyna V, Rioux R, Babler B, Klass T, Jacobs J. 2023.. Toward metagenomic sequencing for rapid, sensitive, and accurate detection of bacterial pathogens in potato seed production. . PhytoFrontiers 3::8290
    [Crossref] [Google Scholar]
  110. 110.
    Roossinck MJ. 2015.. A new look at plant viruses and their potential beneficial roles in crops. . Mol. Plant Pathol. 16::33133
    [Crossref] [Google Scholar]
  111. 111.
    Roossinck MJ, Martin DP, Roumagnac P. 2015.. Plant virus metagenomics: advances in virus discovery. . Phytopathology 105::71627
    [Crossref] [Google Scholar]
  112. 112.
    Ruuskanen MO, Erawijantari PP, Havulinna AS, Liu Y, Méric G, et al. 2022.. Gut microbiome composition is predictive of incident type 2 diabetes in a population cohort of 5,572 Finnish adults. . Diabetes Care 45::81118
    [Crossref] [Google Scholar]
  113. 113.
    Ryan ET. 2013.. The intestinal pathobiome: its reality and consequences among infants and young children in resource-limited settings. . J. Infect. Dis. 208::173233
    [Crossref] [Google Scholar]
  114. 114.
    Sanders P. 1991.. Diagnosis and management of turfgrass diseases. . In Proceedings of the 61st Annual Michigan Turfgrass Conference, pp. 17783. Lansing, MI:: Michigan State Univ.
    [Google Scholar]
  115. 115.
    Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. 2017.. Disease suppressive soils: new insights from the soil microbiome. . Phytopathology 107::128497
    [Crossref] [Google Scholar]
  116. 116.
    Scholthof KB. 2007.. The disease triangle: pathogens, the environment and society. . Nat. Rev. Microbiol. 5::15256
    [Crossref] [Google Scholar]
  117. 117.
    Sexton AC, Howlett BJ. 2006.. Parallels in fungal pathogenesis on plant and animal hosts. . Eukaryot. Cell 5::194149
    [Crossref] [Google Scholar]
  118. 118.
    Shah DA, Paul PA, De Wolf ED, Madden LV. 2019.. Predicting plant disease epidemics from functionally represented weather series. . Philos. Trans. R. Soc. Lond. B 374:(1775):20180273
    [Crossref] [Google Scholar]
  119. 119.
    Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, et al. 2023.. Climate change impacts on plant pathogens, food security and paths forward. . Nat. Rev. Microbiol. 21::64056
    [Crossref] [Google Scholar]
  120. 120.
    Slippers B. 2020.. The plant disease pyramid: the relevance of the original vision of plant pathology in 2020. . S. Afr. J. Sci. 116::1012
    [Crossref] [Google Scholar]
  121. 121.
    Smith EF. 1905.. Bacteria in Relation to Plant Diseases. Washington, DC:: Carnegie Inst.
    [Google Scholar]
  122. 122.
    Snieszko SF. 1974.. Effects of environmental stress on outbreaks of infectious diseases of fishes. . J. Fish. Biol. 6::197208
    [Crossref] [Google Scholar]
  123. 123.
    Sobol M, Chang YJ. 2024.. Three's (not necessarily) a crowd: state-of-the-art review of the strategic triangle. . Political Stud. Rev. 22:(1):20722
    [Crossref] [Google Scholar]
  124. 124.
    Sohrabi R, Paasch BC, Liber JA, He SY. 2023.. Phyllosphere microbiome. . Annu. Rev. Plant Biol. 74::53968
    [Crossref] [Google Scholar]
  125. 125.
    Stengel A, Drijber RA, Carr E, Egreja T, Hillman E, et al. 2022.. Rethinking the roles of pathogens and mutualists: exploring the continuum of symbiosis in the context of microbial ecology and evolution. . Phytobiomes J. 6::10817
    [Crossref] [Google Scholar]
  126. 126.
    Stevens EJ, Bates KA, King KC. 2021.. Host microbiota can facilitate pathogen infection. . PLOS Pathog. 17:(5):e1009514
    [Crossref] [Google Scholar]
  127. 127.
    Stevens RB. 1960.. Cultural practices in disease control. . In Plant Pathology: An Advanced Treatise, ed. JG Horsfall, AE Dimond , pp. 357431. Cambridge, MA:: Academic Press
    [Google Scholar]
  128. 128.
    Sturmberg JP. 2014.. Emergent properties define the subjective nature of health and dis-ease. . J. Public Health Policy 35::41419
    [Crossref] [Google Scholar]
  129. 129.
    Stutz MR, Dylla NP, Pearson SD, Lecompte-Osorio P, Nayak R, et al. 2022.. Immunomodulatory fecal metabolites are associated with mortality in COVID-19 patients with respiratory failure. . Nat. Commun. 13::6615
    [Crossref] [Google Scholar]
  130. 130.
    Sumrall L, O'Malley MA. 2023.. The medical microbiome paradigm and its parallels with humoural medicine. Work. Pap., Univ . Pittsburgh. http://philsci-archive.pitt.edu/21761/1/Sumrall%20O%27Malley%20Perspective%20PREPRINT.pdf
    [Google Scholar]
  131. 131.
    Sweet MJ, Bulling MT. 2017.. On the importance of the microbiome and pathobiome in coral health and disease. . Front. Mar. Sci. 4::9
    [Crossref] [Google Scholar]
  132. 132.
    Thoenen L, Giroud C, Kreuzer M, Waelchli J, Gfeller V, et al. 2023.. Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome. . PNAS 120::e2310134120
    [Crossref] [Google Scholar]
  133. 133.
    Tjosvold SA. 2018.. The disease triangle: aiding the diagnosis of plant diseases. . Nursery and Flower Grower. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=28910
    [Google Scholar]
  134. 134.
    Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, et al. 2018.. Core microbiomes for sustainable agroecosystems. . Nat. Plants 4::24757
    [Crossref] [Google Scholar]
  135. 135.
    Trivedi P, Mattupalli C, Eversole K, Leach JE. 2021.. Enabling sustainable agriculture through understanding and enhancement of microbiomes. . New Phytol. 230::212947
    [Crossref] [Google Scholar]
  136. 136.
    Tufte ER. 2001.. The Visual Display of Quantitative Information. Cheshire, CT:: Graphics Press
    [Google Scholar]
  137. 137.
    Ujlaki G, Kovács T, Vida A, Kókai E, Rauch B, et al. 2023.. Identification of bacterial metabolites modulating breast cancer cell proliferation and epithelial-mesenchymal transition. . Molecules 28:(15):5898
    [Crossref] [Google Scholar]
  138. 138.
    van der Bijl PA. 1926.. Landmarks in the development of the science of plant pathology and of disease control. . S. Afr. J. Sci. 23::4260
    [Google Scholar]
  139. 139.
    Vassileva M, Flor-Peregrin E, Malusa E, Vassilev N. 2020.. Towards better understanding of the interactions and efficient application of plant beneficial prebiotics, probiotics, postbiotics and synbiotics. . Front. Plant Sci. 11::1068
    [Crossref] [Google Scholar]
  140. 140.
    Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, et al. 2014.. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. . Front. Cell. Infect. Microbiol. 4::29
    [Crossref] [Google Scholar]
  141. 141.
    Velasquez AC, Castroverde CDM, He SY. 2018.. Plant-pathogen warfare under changing climate conditions. . Curr. Biol. 28::61934
    [Crossref] [Google Scholar]
  142. 142.
    Wang MC, Cernava T. 2023.. Soterobionts: disease-preventing microorganisms and proposed strategies to facilitate their discovery. . Curr. Opin. Microbiol. 75::102349
    [Crossref] [Google Scholar]
  143. 143.
    Wang NR, Haney CH. 2020.. Harnessing the genetic potential of the plant microbiome. . Biochemist 42::2025
    [Crossref] [Google Scholar]
  144. 144.
    Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu YC, et al. 2019.. Initial soil microbiome composition and functioning predetermine future plant health. . Sci. Adv. 5:(9):eaaw0759
    [Crossref] [Google Scholar]
  145. 145.
    Whipps J, Lewis K, Cooke R. 1988.. Mycoparasitism and plant disease control. . In Fungi in Biological Control Systems, ed. M Burge , pp. 16187. Manchester, UK:: Manchester Univ. Press
    [Google Scholar]
  146. 146.
    Xin XF, Kvitko B, He SY. 2018.. Pseudomonas syringae: what it takes to be a pathogen. . Nat. Rev. Microbiol. 16::31628
    [Crossref] [Google Scholar]
  147. 147.
    Yang N, Nesme J, Roder HL, Li XJ, Zuo ZL, et al. 2021.. Emergent bacterial community properties induce enhanced drought tolerance in Arabidopsis. . npj Biofilms Microbiomes 7::82
    [Crossref] [Google Scholar]
  148. 148.
    Yin X, Kelly KN, Maharaj NN, Rolshausen P, Leveau JHJ. 2018.. A microbiota-based approach to citrus tree health: in search of microbial biomarkers to pre-diagnose trees for HLB infection. . Citrograph 9::5863
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-121423-042021
Loading
/content/journals/10.1146/annurev-phyto-121423-042021
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error