1932

Abstract

Agent-based models (ABMs) provide a methodology to explore systems of interacting, adaptive, diverse, spatially situated actors. Outcomes in ABMs can be equilibrium points, equilibrium distributions, cycles, randomness, or complex patterns; these outcomes are not directly determined by assumptions but instead emerge from the interactions of actors in the model. These behaviors may range from rational and payoff-maximizing strategies to rules that mimic heuristics identified by cognitive science. Agent-based techniques can be applied in isolation to create high-fidelity models and to explore new questions using simple constructions. They can also be used as a complement to deductive techniques. Overall, ABMs offer the potential to advance social sciences and to help us better understand our complex world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-polisci-080812-191558
2014-05-11
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/polisci/17/1/annurev-polisci-080812-191558.html?itemId=/content/journals/10.1146/annurev-polisci-080812-191558&mimeType=html&fmt=ahah

Literature Cited

  1. Alchian AA. 1950. Uncertainty, evolution, and economic theory. J. Polit. Econ. 58.3:211–21 [Google Scholar]
  2. Anderson P. 1972. More is different. Science 177:393–96 [Google Scholar]
  3. Andreoni J, Miller JH. 1995. Auctions with artificial adaptive agents. Games Econ. Behav. 10:139–64 [Google Scholar]
  4. Ansolabehere S. et al. 2005. Voting weights and formateur advantages in the formation of coalition governments. Am. J. Polit. Sci. 49:3550–63 [Google Scholar]
  5. Axelrod R. 1997. The Complexity of Cooperation Princeton, NJ: Princeton Univ. Press [Google Scholar]
  6. Axelrod R, Axtell R, Epstein J, Cohen MD. 1996. Aligning simulation models: a case study and results. Comput. Math. Organ. Theory 1:123–41 [Google Scholar]
  7. Axelrod R, Cohen MD. 2000. Harnessing Complexity: Organizational Implications of a Scientific Frontier. New York: Free Press [Google Scholar]
  8. Axelrod R, Mitchell W, Thomas RE, Bennett DS, Bruderer E. 1995. Coalition formation in standard-setting alliances. Manag. Sci. 41:1493–508 [Google Scholar]
  9. Bak P. 1996. How Nature Works: The Science of Self-Organized Criticality New York: Springer-Verlag [Google Scholar]
  10. Bankes S. 2002. Agent-based modeling: a revolution?. Proc. Natl. Acad. Sci. USA 99:7199–200 [Google Scholar]
  11. Baron DP, Ferejohn JA. 1989. Bargaining in legislatures. Am. Polit. Sci. Rev. 89:1181–206 [Google Scholar]
  12. Bednar J. 2009. The Robust Federation: Principles of Design New York: Cambridge Univ. Press [Google Scholar]
  13. Bednar J, Bramson A, Jones-Rooy A, Page SE. 2010. Emergent cultural signatures and persistent diversity: a model of conformity and consistency. Ration. Soc. 22:4407–44 [Google Scholar]
  14. Bednar J, Chen Y, Liu X, Page SE. 2012. Behavioral spillovers and cognitive load in multiple games: an experimental study. Games Econ. Behav. 74:112–31 [Google Scholar]
  15. Bednar J, Page SE. 2007. Can game(s) theory explain culture? The emergence of cultural behavior within multiple games. Ration. Soc. 19:65–97 [Google Scholar]
  16. Bendor J, Diermeier D, Ting M. 2003. A behavioral model of turnout. Am. Polit. Sci. Rev. 97:2261–80 [Google Scholar]
  17. Billings D, Papp D, Schaeffer J, Szafron D. 1998. Poker as a testbed for machine intelligence research. Work. Pap., Dept. Comput. Sci., Univ. Alberta. http://poker.cs.ualberta.ca/publications.html
  18. Brown GW. 1951. Iterative solutions of games by fictitious play. Activity Analysis of Production and Allocation TC Koopmans 374–76 New York: Wiley [Google Scholar]
  19. Bruch E, Mare R. 2006. Neighborhood choice and neighborhood change. Am. J. Sociol. 112:667–709 [Google Scholar]
  20. Camerer. 2003. Behavioral Game Theory: Experiments in Strategic Interaction Princeton, NJ: Princeton Univ. Press [Google Scholar]
  21. Carpenter DP, Esterling KM, Lazer DMJ. 2004. Friends, brokers, and transitivity: Who informs whom in Washington politics?. J. Polit. 66:1224–46 [Google Scholar]
  22. Cederman LE. 1997. Emergent Actors in World Politics Princeton, NJ: Princeton Univ. Press [Google Scholar]
  23. Cederman LE. 2005. Computational models of social forms: advancing generative process theory. Am. J. Sociol. 110:4864–93 [Google Scholar]
  24. Conitzer V, Sandholm T. 2006. Computing the optimal strategy to commit to. Proc. Seventh ACM Conf. Electron. Commer. New York: Assoc. Comp. Mach. [Google Scholar]
  25. Cutler J, de Marchi S, Gallop M, Hollenbach F, Laver M, Orlowski M. 2013. Cabinet formation and portfolio distribution in European multi-party systems Work. Pap., Dept. Polit. Sci., Duke Univ. [Google Scholar]
  26. de Marchi S. 1999. Adaptive models and electoral instability. J. Theor. Polit. 11:3393–419 [Google Scholar]
  27. de Marchi S. 2005. Computational and Mathematical Modelling in the Social Sciences New York: Cambridge Univ. Press [Google Scholar]
  28. de Marchi S, Page S. 2009. Agent-based modeling. Oxford Handbook of Political Science Methodology JM Box-Steffensmeier, HE Brady, D Collier 71–96 New York: Cambridge Univ. Press [Google Scholar]
  29. Diermeier D, Krehbiel K. 2003. Institutionalism as methodology. J. Theor. Polit. 15:2123–44 [Google Scholar]
  30. Ensley MJ, Tofias MW, de Marchi S. 2009. District complexity as an advantage in congressional elections. Am. J. Polit. Sci. 53:4990–1005 [Google Scholar]
  31. Epstein JM. 2007. Generative Social Science: Studies in Agent-Based Computational Modeling Princeton, NJ: Princeton Univ. Press [Google Scholar]
  32. Epstein JM. 2014. Toward Neurocognitive Foundations for Generative Social Science. Princeton, NJ: Princeton Univ. Press [Google Scholar]
  33. Epstein JM, Axtell R. 1996. Growing Artificial Societies: Social Science from the Bottom Up Cambridge, MA: MIT Press [Google Scholar]
  34. Epstein JM, Goedecke DM, Yu F, Morris RJ, Wagener DK, Bobashev GV. 2006. Pandemic influenza and the value of international travel restrictions CSED Work. Pap. 46, Brookings Inst., Washington, DC [Google Scholar]
  35. Fowler J. 2006a. Connecting the Congress: a study of cosponsorship networks. Polit. Anal. 14:4456–87 [Google Scholar]
  36. Fowler J. 2006b. Habitual voting and voter turnout. J. Polit. 68:2335–44 [Google Scholar]
  37. Fowler J. 2006c. Legislative cosponsorship networks in the U.S. House and Senate. Soc. Netw. 28:4454–65 [Google Scholar]
  38. Fowler J, Laver M. 2008. A tournament of party decision rules. J. Conf. Resolut. 52:168–92 [Google Scholar]
  39. Fowler J, Smirnov O. 2005. Dynamic parties and social turnout: an agent-based model. Am. J. Sociol. 110:4 [Google Scholar]
  40. Gartzke E, Weisiger A. 2013. Fading friendships: alliances, affinities and the activation of international identities. Br. J. Polit. Sci. 43:25–52 [Google Scholar]
  41. Gaylord R, D'Andria LJ. 1998. Simulating Society: A Mathematical Toolkit for Modeling Socioeconomic Behavior London: Springer [Google Scholar]
  42. Geanakoplos J, Axtell R, Farmer JD, Howitt P, Conlee B. et al. 2012. Getting at systemic risk via an agent-based model of the housing market. Am. Econ. Rev. 102:353–58 [Google Scholar]
  43. Gell-Mann M. 1994. The Quark and the Jaguar: Adventures in the Simple and the Complex New York: Freeman [Google Scholar]
  44. Glaeser E, Sacerdote B, Scheinkman J. 1996. Crime and social interactions. Q. J. Econ. 111:507–48 [Google Scholar]
  45. Golder M, Golder S, Siegel D. 2012. Modeling the institutional foundation of parliamentary government formation. J. Polit. 74:2427 [Google Scholar]
  46. Golman R, Page SE. 2009. Basins of attraction and equilibrium selection under different learning rules. Evol. Econ. 20:49–72 [Google Scholar]
  47. Golman R, Page SE. 2010. Individual and cultural learning in stag hunt games with multiple actions. J. Econ. Behav. Organ. 73:3359–76 [Google Scholar]
  48. Hoff PD, Ward MD. 2004. Modeling dependencies in international relations networks. Polit. Anal. 12:160–75 [Google Scholar]
  49. Holland J, Miller J. 1991. Artificial agents in economic theory. Am. Econ. Rev. Pap. Proc. 81:365–70 [Google Scholar]
  50. Hong L, Page S. 2009. Interpreted and generated signals. J. Econ. Theory 144:2174–96 [Google Scholar]
  51. Huckfeldt RR, Johnson PE, Sprague JD. 2004. Political Disagreement: The Survival of Diverse Opinions Within Communication Networks Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  52. Jackson M. 2008. Social and Economic Networks Princeton, NJ: Princeton Univ. Press [Google Scholar]
  53. Jen E. 2005. Robust Design: A Repertoire of Biological, Ecological, and Engineering Case Studies Oxford, UK: Oxford Univ. Press [Google Scholar]
  54. Jervis R. 1997. System Effects: Complexity in Political and Social Life Princeton, NJ: Princeton Univ. Press [Google Scholar]
  55. Jones-Rooy A, Page SE. 2012. The Complexity of Systems Effects. Crit. Rev. 24:3313–42 [Google Scholar]
  56. Judd K. 1997. Computational economics and economic theory: complements or substitutes?. J. Econ. Dyn. Control 21:6907–42 [Google Scholar]
  57. Kauffman SA. 1993. The Origins of Order: Self-Organization and Selection in Evolution New York: Oxford Univ. Press [Google Scholar]
  58. Kim S-Y, Taber CS, Lodge M. 2010. A computational model of the citizen as motivated reasoner: modeling the dynamics of the 2000 presidential election. Polit. Behav. 32:1–28 [Google Scholar]
  59. Kirman A. 1997. The economy as an interactive system. The Economy as a Complex Evolving System II WB Arthur, S Durlauf, D Lane 491–533 Reading, MA: Addison Wesley [Google Scholar]
  60. Kollman K. 2012. The potential value of computational models in social science research. Oxford Handbook in Philosophy in the Social Sciences H Kincaid New York: Oxford Univ. Press [Google Scholar]
  61. Kollman K, Miller J, Page S. 1992. Adaptive parties in spatial elections. Am. Polit. Sci. Rev. 86:929–37 [Google Scholar]
  62. Kollman K, Miller J, Page S. 1997. Political institutions and sorting in a Tiebout model. Am. Econ. Rev. 87:977–92 [Google Scholar]
  63. Kollman K, Miller J, Page S. 2003. Computational Models of Political Economy Cambridge, MA: MIT Press [Google Scholar]
  64. Kollman K, Page S. 2005. Computational methods and models of politics. The Handbook of Computational Economics L Tesfatsion, K Judd 1433–63 Amsterdam: Elsevier/North Holland [Google Scholar]
  65. Lamberson PJ, Page SE. 2012. Tipping points. Q. J. Polit. Sci. 7:2175–208 [Google Scholar]
  66. Laver M. 2005. Policy and the dynamics of political competition. Am. Polit. Sci. Rev. 99:2263–81 [Google Scholar]
  67. Laver M, de Marchi S, Mutlu H. 2011. Negotiation in legislatures over government formation. Public Choice 147:285–304 [Google Scholar]
  68. Laver M, Sergenti E. 2011. Party Competition: An Agent-Based Model Princeton, NJ: Princeton Univ. Press [Google Scholar]
  69. Lazer D. 2001. The co-evolution of individual and network. J. Math. Sociol. 25:69–108 [Google Scholar]
  70. LeBaron B. 2001. Stochastic volatility as a simple generator of apparent financial power laws and long memory. Q. Financ. 1:621–31 [Google Scholar]
  71. Leombruni R, Richiardi M. 2005. Why are economists sceptical about agent-based simulations?. Phys. A 355:1103–9 [Google Scholar]
  72. Lodge M, Sung-Youn K, Charles T. 2004. A computational model of political cognition—the dynamics of candidate evaluation in the 2000 presidential election Presented at Annu. Meet. Midwest Polit. Sci. Assoc., Chicago [Google Scholar]
  73. Lustick I, Miodownik D. 2000. Deliberative democracy and public discourse: the agent-based argument repertoire model. Complexity 5:413–30 [Google Scholar]
  74. Lustick I, Miodownik D, Eidelson RJ. 2004. Secessionism in multicultural states: Does sharing power prevent or encourage it?. Am. Polit. Sci. Rev. 98:2209–29 [Google Scholar]
  75. Miller J. 1998. Active nonlinear tests (ANTs) of complex simulations models. Manag. Sci. 44:820–30 [Google Scholar]
  76. Miller J, Page S. 2007. Complex Adaptive Systems: Computational Models of Social Life Princeton, NJ: Princeton Univ. Press [Google Scholar]
  77. Mitchell M. 2009. Complexity: A Guided Tour Oxford, UK: Oxford Univ. Press [Google Scholar]
  78. Newman MJ. 2003. On the logic and structure of complex networks. SIAM Rev. 45:167–256 [Google Scholar]
  79. Nowak M, Bonhoeffer S, May R. 1994. Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91:4877–81 [Google Scholar]
  80. Nowak M, May RM. 1992. Evolutionary games and spatial chaos. Nature 359:826–29 [Google Scholar]
  81. Ostrom E. 1990. Governing the Commons: The Evolution of Institutions for Collective Action Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  82. Page SE. 1997. On incentives and updating in agent based models. Comput. Econ. 10:67–87 [Google Scholar]
  83. Page SE. 2006. Essay: path dependence. Q. J. Polit. Sci. 1:187–115 [Google Scholar]
  84. Page SE. 2007. The Difference: How the Power of Diversity Creates Better Groups, Teams, Schools, and Societies Princeton, NJ: Princeton Univ. Press [Google Scholar]
  85. Page SE. 2008. Uncertainty, difficulty, and complexity. J. Theor. Polit. 20:115–49 [Google Scholar]
  86. Page SE. 2011. Diversity and Complexity Princeton, NJ: Princeton Univ. Press [Google Scholar]
  87. Palmer R, Arthur W, Holland J, Lebaron B, Tayler P. 1994. Artificial economic life: a simple model of a stock market. Phys. D 75:264–74 [Google Scholar]
  88. Richards D. 2000. Nonlinear dynamics in games: convergence and stability in international environmental agreements. Political Complexity: Nonlinear Models of Politics D Richards 173–206 Ann Arbor: Univ. Michigan Press [Google Scholar]
  89. Schelling T. 1978. Micromotives and Macrobehavior New York: Norton [Google Scholar]
  90. Smirnov O, Fowler JH. 2007. Policy-motivated parties in dynamic political competition. J. Theor. Polit. 19:19–31 [Google Scholar]
  91. Tesfatsion L. 1997. How economists can get alife. The Economy as a Complex Evolving System II W Arthur, S Durlauf, D Lane 533–65 Reading, MA: Addison Wesley [Google Scholar]
  92. Vriend N. 2000. An illustration of the essential difference between individual and social learning, and its consequences for computational analyses. J. Econ. Dyn. Control 24:1–19 [Google Scholar]
  93. Weidmann N, Salehyan I. 2013. Violence and ethnic segregation: a computational model applied to Baghdad. Int. Stud. Q. 57:52–64 [Google Scholar]
  94. Wichowsky A. 2012. District complexity and the personal vote. Legis. Stud. Q. 37:4437–63 [Google Scholar]
  95. Zinkevich M, Bowling M, Johanson M, Piccione C. 2007. Regret minimization in games with incomplete information Presented at Neural Inf. Process. Syst., Dec. 3–6, British Columbia, Can. http://books.nips.cc/nips20.html [Google Scholar]
/content/journals/10.1146/annurev-polisci-080812-191558
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error