1932

Abstract

This article surveys advances in the field of Bayesian computation over the past 20 years from a purely personal viewpoint, hence containing some ommissions given the spectrum of the field. Monte Carlo, MCMC, and ABC themes are covered here, whereas the rapidly expanding area of particle methods is only briefly mentioned and different approximative techniques such as variational Bayes and linear Bayes methods do not appear at all. This article also contains some novel computational entries on the double-exponential model that may be of interest.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-022513-115543
2014-01-03
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/statistics/1/1/annurev-statistics-022513-115543.html?itemId=/content/journals/10.1146/annurev-statistics-022513-115543&mimeType=html&fmt=ahah

Literature Cited

  1. Andrieu C, Doucet A, Holenstein R. 2011. Particle Markov chain Monte Carlo (with discussion). J. R. Stat. Soc. Ser. B 72:2269–342 [Google Scholar]
  2. Beaumont M. 2008. Joint determination of topology, divergence time and immigration in population trees. Simulations, Genetics and Human Prehistory S Matsumura, P Forster, C Renfrew 134–54 Cambridge, UK: McDonald Inst. Archaeol. Res. [Google Scholar]
  3. Beaumont M. 2010. Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst. 41:379–406 [Google Scholar]
  4. Beaumont M, Zhang W, Balding D. 2002. Approximate Bayesian computation in population genetics. Genetics 162:2025–35 [Google Scholar]
  5. Beskos A, Papaspiliopoulos O, Roberts G, Fearnhead P. 2006. Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Stat. Soc. Ser. B 68:333–82 [Google Scholar]
  6. Blum M, François O. 2010. Non-linear regression models for approximate Bayesian computation. Stat. Comput. 20:63–73 [Google Scholar]
  7. Breslow N, Clayton D. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88:9–25 [Google Scholar]
  8. Brooks S, Gelman A, Jones G, Meng X. 2011. Handbook of Markov Chain Monte Carlo New York: Taylor & Francis
  9. Casella G, George E. 1992. An introduction to Gibbs sampling. Am. Stat. 46:167–74 [Google Scholar]
  10. Chen M, Shao Q, Ibrahim J. 2000. Monte Carlo Methods in Bayesian Computation New York: Springer-Verlag
  11. Chib S. 1995. Marginal likelihood from the Gibbs output. J. Am. Stat. Assoc. 90:1313–21 [Google Scholar]
  12. Chopin N, Robert C. 2010. Properties of nested sampling. Biometrika 97:741–55 [Google Scholar]
  13. Congdon P. 2006. Bayesian model choice based on Monte Carlo estimates of posterior model probabilities. Comput. Stat. Data Anal. 50:346–57 [Google Scholar]
  14. Cornuet J-M, Santos F, Beaumont M, Robert C, Marin J-M. et al. 2008. Inferring population history with DIYABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–19 [Google Scholar]
  15. Del Moral P, Doucet A, Jasra A. 2006. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B 68:411–36 [Google Scholar]
  16. Dickens C. 1859. A Tale of Two Cities London: Chapman & Hall
  17. Doucet A, de Freitas N, Gordon N. 2001. Sequential Monte Carlo Methods in Practice New York: Springer-Verlag
  18. Fearnhead P, Prangle D. 2012. Semi-automatic approximate Bayesian computation (with discussion). J. R. Stat. Soc. Ser. B 74:419–74 [Google Scholar]
  19. Gelman A, Meng X. 1998. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 13:163–85 [Google Scholar]
  20. Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:721–41 [Google Scholar]
  21. Gouriéroux C, Monfort A, Renault E. 1993. Indirect inference. J. Appl. Econ. 8:85–118 [Google Scholar]
  22. Green P. 1995. Reversible-jump MCMC computation and Bayesian model determination. Biometrika 82:711–32 [Google Scholar]
  23. Hastings W. 1970. Monte Carlo sampling methods using Markov chains and their application. Biometrika 57:97–109 [Google Scholar]
  24. Hjort N, Holmes C, Müller P, Walker S. 2010. Bayesian Nonparametrics Cambridge, UK: Cambridge Univ. Press
  25. Hobert J, Casella G. 1996. The effect of improper priors on Gibbs sampling in hierarchical linear models. J. Am. Stat. Assoc. 91:1461–73 [Google Scholar]
  26. Holmes C, Denison D, Mallick B, Smith A. 2002. Bayesian Methods for Nonlinear Classification and Regression New York: John Wiley
  27. Jaakkola T, Jordan M. 2000. Bayesian parameter estimation via variational methods. Stat. Comput. 10:25–37 [Google Scholar]
  28. Jeffreys H. 1939. Theory of Probability Oxford: Clarendon, 1st ed..
  29. Lauritzen S. 1996. Graphical Models Oxford: Oxford Univ. Press
  30. Lee K, Marin J-M, Mengersen K, Robert C. 2009. Bayesian inference on mixtures of distributions. Perspectives in Mathematical Sciences I: Probability and Statistics NN Sastry, M Delampady, B Rajeev 165–202 Singapore: World Sci. [Google Scholar]
  31. Marin J, Pillai N, Robert C, Rousseau J. 2011a. Relevant statistics for Bayesian model choice Tech. Rep., arXiv:1111.4700
  32. Marin J, Pudlo P, Robert C, Ryder R. 2011b. Approximate Bayesian computational methods. Stat. Comput. 22:1167–80 [Google Scholar]
  33. Marin J, Robert C. 2007. Bayesian Core New York: Springer-Verlag
  34. Marin J, Robert C. 2011. Importance sampling methods for Bayesian discrimination between embedded models. Frontiers of Statistical Decision Making and Bayesian Analysis M-H Chen, D Dey, P Müller, D Sun, K Ye 513–27 New York: Springer-Verlag [Google Scholar]
  35. Martins TG, Simpson D, Lindgren F, Rue H. 2013. Bayesian computing with inla: New features. Comput. Stat. Data Anal. 67:68–83 [Google Scholar]
  36. McKinley T, Cook A, Deardon R. 2009. Inference in epidemic models without likelihoods. Int. J. Biostat. 5:24 [Google Scholar]
  37. Meng X, Wong W. 1996. Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Stat. Sin. 6:831–60 [Google Scholar]
  38. Neal R. 1994. Contribution to the discussion of “Approximate Bayesian inference with the weighted likelihood bootstrap” by Michael A. Newton and Adrian E. Raftery. J. R. Stat. Soc. Ser. B 56:141–42 [Google Scholar]
  39. Newton M, Raftery A. 1994. Approximate Bayesian inference by the weighted likelihood bootstrap (with discussion). J. R. Stat. Soc. Ser. B 56:1–48 [Google Scholar]
  40. Potthoff RF, Roy S. 1964. A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51:313–26 [Google Scholar]
  41. Pritchard J, Seielstad M, Perez-Lezaun A, Feldman M. 1999. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol. Biol. Evol. 16:1791–98 [Google Scholar]
  42. Ratmann O. 2009. ABC under model uncertainty PhD Thesis, Imperial Coll. Lond.
  43. Richardson S, Green P. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. Ser. B 59:731–92 [Google Scholar]
  44. Robert C. 2001. The Bayesian Choice New York: Springer-Verlag, 2nd ed..
  45. Robert C, Casella G. 2004. Monte Carlo Statistical Methods New York: Springer-Verlag, 2nd ed..
  46. Robert C, Casella G. 2009. Introducing Monte Carlo Methods with R New York: Springer-Verlag
  47. Robert C, Casella G. 2011. A history of Markov chain Monte Carlo: subjective recollections from incomplete data. Stat. Sci. 26:102–15 [Google Scholar]
  48. Robert C, Cornuet J-M, Marin J-M, Pillai N. 2011. Lack of confidence in ABC model choice. Proc. Natl. Acad. Sci. USA 108:3715112–17 [Google Scholar]
  49. Robert C, Marin J-M. 2008. On some difficulties with a posterior probability approximation technique. Bayesian Anal. 3:2427–42 [Google Scholar]
  50. Robert C, Wraith D. 2009. Computational methods for Bayesian model choice. MaxEnt 2009 Proceedings 1193 PM Goggans, C-Y Chan College Park, MD: AIP [Google Scholar]
  51. Rosenthal JS, Craiu RV. 2014. Bayesian computation via Markov chain Monte Carlo. Annu. Rev. Stat. Appl. 1179–201
  52. Rudin W. 1976. Principles of Real Analysis New York: McGraw-Hill
  53. Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 71:319–92 [Google Scholar]
  54. Scott SL. 2002. Bayesian methods for hidden Markov models: recursive computing in the 21st century. J. Am. Stat. Assoc. 97:337–51 [Google Scholar]
  55. Sedki MA, Pudlo P. 2012. Discussion of D. Fearnhead and D. Prangle's “Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation”. J. R. Stat. Soc. Ser. B 74:466–67 [Google Scholar]
  56. Smith A. 1984. Present position and potential developments: some personal views on Bayesian statistics. J. R. Stat. Soc. Ser. A 147:245–59 [Google Scholar]
  57. Spiegelhalter D, Dawid A, Lauritzen S, Cowell R. 1993. Bayesian analysis in expert systems (with discussion). Stat. Sci. 8:219–83 [Google Scholar]
  58. Tavaré S, Balding D, Griffith R, Donnelly P. 1997. Inferring coalescence times from DNA sequence data. Genetics 145:505–18 [Google Scholar]
  59. Templeton A. 2008. Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis versus approximate Bayesian computation. Mol. Ecol. 18:2319–31 [Google Scholar]
  60. Templeton A. 2010. Coherent and incoherent inference in phylogeography and human evolution. Proc. Natl. Acad. Sci. USA 107:146376–81 [Google Scholar]
  61. Toni T, Stumpf M. 2010. Simulation-based model selection for dynamical systems in systems and population biology. Bioinformatics 26:104–10 [Google Scholar]
  62. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M. 2009. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6:187–202 [Google Scholar]
  63. Ventura L, Cabras S, Racugno W. 2009. Prior distributions from pseudo-likelihoods in the presence of nuisance parameters. J. Am. Stat. Assoc. 104:768–74 [Google Scholar]
  64. Weinberg M. 2012. Computing the Bayes factor from a Markov chain Monte Carlo simulation of the posterior distribution. Bayesian Anal. 7:737–70 [Google Scholar]
/content/journals/10.1146/annurev-statistics-022513-115543
Loading
/content/journals/10.1146/annurev-statistics-022513-115543
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error