1932

Abstract

A probabilistic forecast takes the form of a predictive probability distribution over future quantities or events of interest. Probabilistic forecasting aims to maximize the sharpness of the predictive distributions, subject to calibration, on the basis of the available information set. We formalize and study notions of calibration in a prediction space setting. In practice, probabilistic calibration can be checked by examining probability integral transform (PIT) histograms. Proper scoring rules such as the logarithmic score and the continuous ranked probability score serve to assess calibration and sharpness simultaneously. As a special case, consistent scoring functions provide decision-theoretically coherent tools for evaluating point forecasts. We emphasize methodological links to parametric and nonparametric distributional regression techniques, which attempt to model and to estimate conditional distribution functions; we use the context of statistically postprocessed ensemble forecasts in numerical weather prediction as an example. Throughout, we illustrate concepts and methodologies in data examples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-062713-085831
2014-01-03
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/statistics/1/1/annurev-statistics-062713-085831.html?itemId=/content/journals/10.1146/annurev-statistics-062713-085831&mimeType=html&fmt=ahah

Literature Cited

  1. Alkema L, Raftery AE, Clark SJ. 2007. Probabilistic projections of HIV prevalence using Bayesian melding. Ann. Appl. Stat. 1:229–48 [Google Scholar]
  2. Araújo MB, New M. 2006. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22:42–47 [Google Scholar]
  3. Artzner P, Delbaen F, Eber J-M, Heath D. 1999. Coherent measures of risk. Math. Finance 9:203–28 [Google Scholar]
  4. Banerjee A, Guo X, Wang H. 2005. On the optimality of conditional expectation as a Bregman predictor. IEEE Trans. Inf. Theory 51:2664–69 [Google Scholar]
  5. Bank of England 2013. Inflation Report February 2013 London: Bank of England http://www.bankofengland.co.uk/publications/Documents/inflationreport/2013/ir13feb.pdf
  6. Basu S, Markov S. 2004. Loss function assumptions in rational expectations tests on financial analysts' earnings forecasts. J. Account. Econ. 38:171–203 [Google Scholar]
  7. Ben Bouallègue Z. 2013. Calibrated short-range ensemble precipitation forecasts using extended logistic regression with interaction terms. Weather Forecast. 28:515–24 [Google Scholar]
  8. Bernardo JM. 1979. Expected information as expected utility. Ann. Stat. 7:686–90 [Google Scholar]
  9. Berrocal VJ, Raftery AE, Gneiting T. 2008. Probabilistic quantitative precipitation field forecasting using a two-stage spatial model. Ann. Appl. Stat. 2:1170–93 [Google Scholar]
  10. Berrocal VJ, Raftery AE, Gneiting T, Steed RC. 2010. Probabilistic weather forecasting for winter road maintenance. J. Am. Stat. Assoc. 105:522–37 [Google Scholar]
  11. Birgé L, Massart P. 1993. Rates of convergence for minimum contrast estimators. Probab. Theory Relat. Fields 97:113–50 [Google Scholar]
  12. Bröcker J, Smith LA. 2008. From ensemble forecasts to predictive distribution functions. Tellus A 60:663–78 [Google Scholar]
  13. Brown BG, Katz RW, Murphy AH. 1984. Time series models to simulate and forecast wind speed and wind power. J. Clim. Appl. Meteorol. 23:1184–95 [Google Scholar]
  14. Buizza R, Houtekamer PL, Toth Z, Pellerin G, Wei M, Zhu Y. 2005. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133:1076–97 [Google Scholar]
  15. Buizza R, Miller M, Palmer TN. 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125:2887–908 [Google Scholar]
  16. Cannon AJ. 2012. Neural networks for probabilistic environmental prediction: conditional density estimation network creation and evaluation (CaDENCE) in R. Comput. Geosci. 41:126–35 [Google Scholar]
  17. Cawley GC, Janacek GJ, Haylock MR, Dorling SR. 2007. Predictive uncertainty in environmental modelling. Neural Netw. 20:537–49 [Google Scholar]
  18. Clark M, Gangopadhyay S, Hay L, Rajagopalan B, Wilby R. 2004. The Schaake shuffle: a method for reconstructing space-time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5:243–62 [Google Scholar]
  19. Cloke HL, Pappenberger F. 2009. Ensemble flood forecasting: a review. J. Hydrol. 375:613–26 [Google Scholar]
  20. Collins M, Knight S. 2007. Theme Issue: Ensembles and probabilities: a new era in the prediction of climate change. Philos. Trans. R. Soc. A 365:1857 [Google Scholar]
  21. Corradi V, Swanson NR. 2006. Predictive density evaluation. Handbook of Economic Forecasting G Elliott, CWJ Granger, A Timmermann 197–284 Amsterdam: Elsevier [Google Scholar]
  22. Cover T, Hart P. 1967. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13:21–27 [Google Scholar]
  23. Cressie NAC, Wikle CK. 2011. Statistics for Spatio-Temporal Data Hoboken, NJ: Wiley
  24. Czado C, Gneiting T, Held L. 2009. Predictive model assessment for count data. Biometrics 65:1254–61 [Google Scholar]
  25. D'Agostino A, McQuinn K, Whelan K. 2012. Are some forecasters really better than others?. J. Money Credit Bank. 44:715–32 [Google Scholar]
  26. Dawid AP. 1984. Present position and potential developments: some personal views: statistical theory: the prequential approach. J. R. Stat. Soc. A 147:278–90 [Google Scholar]
  27. Dawid AP. 1986. Probability forecasting. Encyclopedia of Statistical Sciences 7 S Kotz, NL Johnson, CB Read 210–18 New York: Wiley [Google Scholar]
  28. Dawid AP. 2007. The geometry of proper scoring rules. Ann. Inst. Stat. Math. 59:77–93 [Google Scholar]
  29. Dawid AP, Sebastiani P. 1999. Coherent dispersion criteria for optimal experimental design. Ann. Stat. 27:65–81 [Google Scholar]
  30. Dette H, Volgushev S. 2008. Non-crossing non-parametric estimates of quantile curves. J. R. Stat. Soc. B 70:609–27 [Google Scholar]
  31. Diebold FX. 2012. Comparing predictive accuracy, twenty years later: a personal perspective on the use and abuse of Diebold–Mariano tests Natl. Bur. Econ. Res. Work. Pap. No. 18391, Natl. Bur. Econ. Res., Cambridge, MA. http://www.nber.org/papers/w18391.pdf
  32. Diebold FX, Gunther TA, Tay AS. 1998. Evaluating density forecasts with applications to financial risk management. Int. Econ. Rev. 39:863–83 [Google Scholar]
  33. Diebold FX, Mariano RS. 1995. Comparing predictive accuracy. J. Bus. Econ. Stat. 13:253–63Introduced the now commonly used Diebold–Mariano test for equal predictive performance. [Google Scholar]
  34. Dunson DB, Pillai N, Park J-H. 2007. Bayesian density regression. J. R. Stat. Soc. B 69:163–83 [Google Scholar]
  35. Efron B. 1991. Regression percentiles using asymmetric squared error loss. Stat. Sin. 1:93–125 [Google Scholar]
  36. Ehm W, Gneiting T. 2012. Local proper scoring rules of order two. Ann. Stat. 40:609–37 [Google Scholar]
  37. Ferguson TS. 1967. Mathematical Statistics: A Decision-Theoretic Approach New York: Academic
  38. Flowerdew J. 2012. Calibration and combination of medium-range ensemble precipitation forecasts Forec. Res. Tech. Rep. 567, Met Office, Exeter, UK. http://www.metoffice.gov.uk/media/pdf/h/6/FRTR567.pdf
  39. Forbes PGM. 2012. Compatible weighted proper scoring rules. Biometrika 99:989–94 [Google Scholar]
  40. Fraley C, Raftery AE, Gneiting T. 2010. Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon. Weather Rev. 138:190–202 [Google Scholar]
  41. Gel Y, Raftery AE, Gneiting T. 2004. Calibrated probabilistic mesoscale weather field forecasting: the geostatistical output perturbation (GOP) method (with discussion). J. Am. Stat. Assoc. 99:575–90 [Google Scholar]
  42. Genest C, Zidek JV. 1986. Combining probability distributions: a critique and an annotated bibliography. Stat. Sci. 1:114–35A comprehensive review of methods for combining predictive distributions. [Google Scholar]
  43. Gentner D, Holyoak KJ. 1997. Reasoning and learning by analogy: introduction. Am. Psychol. 52:32–34 [Google Scholar]
  44. Geweke J, Amisano G. 2011. Optimal prediction pools. J. Econom. 164:130–41 [Google Scholar]
  45. Gigerenzer G, Hertwig R, Van Den Broeck E, Fasolo B, Katsikoupolos KV. 2005. “A 30% chance of rain tomorrow”: How does the public understand probabilistic weather forecasts?. Risk Anal. 25:623–29 [Google Scholar]
  46. Gneiting T. 2008. Editorial: probabilistic forecasting. J. R. Stat. Soc. A 171:319–21 [Google Scholar]
  47. Gneiting T. 2011a. Making and evaluating point forecasts. J. Am. Stat. Assoc. 106:746–62A comprehensive review article on the evaluation of point forecasts. [Google Scholar]
  48. Gneiting T. 2011b. Quantiles as optimal point forecasts. Int. J. Forecast. 27:197–207 [Google Scholar]
  49. Gneiting T. 2012. On the Cover–Hart inequality: What's a sample of size one worth?. Stat 1:12–17 [Google Scholar]
  50. Gneiting T, Balabdaoui F, Raftery AE. 2007. Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. B 67:243–68 [Google Scholar]
  51. Gneiting T, Larson K, Westrick K, Genton MG, Aldrich E. 2006. Calibrated probabilistic forecasting at the Stateline wind energy center: the regime-switching space-time method. J. Am. Stat. Assoc. 101:968–79 [Google Scholar]
  52. Gneiting T, Raftery AE. 2005. Weather forecasting with ensemble methods. Science 310:248–49 [Google Scholar]
  53. Gneiting T, Raftery AE. 2007. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102:359–78A review of proper scoring rules. [Google Scholar]
  54. Gneiting T, Raftery AE, Westveld AH III, Goldman T. 2005. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133:1098–118 [Google Scholar]
  55. Gneiting T, Ranjan R. 2011. Comparing density forecasts using threshold- and quantile-weighted proper scoring rules. J. Bus. Econ. Stat. 29:411–22 [Google Scholar]
  56. Gneiting T, Ranjan R. 2013. Combining predictive distributions. Electron. J. Stat. 7:1747–82 [Google Scholar]
  57. Gneiting T, Stanberry LI, Grimit EP, Held L, Johnson NA. 2008. Assessing probabilistic forecasts of multivariate quantities, with applications to ensemble predictions of surface winds. Test 17:211–64 [Google Scholar]
  58. Good IJ. 1952. Rational decisions. J. R. Stat. Soc. B 14:107–14 [Google Scholar]
  59. Granger CWJ, Newbold P. 1986. Forecasting Economic Time Series San Diego, CA: Academic, 2nd ed..
  60. Groen JJJ, Paap R, Ravazzolo F. 2013. Real-time inflation forecasting in a changing world. J. Bus. Econ. Stat. 31:29–44 [Google Scholar]
  61. Hall P, Racine J, Li Q. 2004. Cross-validation and the estimation of conditional probability densities. J. Am. Stat. Assoc. 99:1015–26 [Google Scholar]
  62. Hall P, Wolff RCL, Yao Q. 1999. Methods for estimating a conditional distribution function. J. Am. Stat. Assoc. 94:154–63 [Google Scholar]
  63. Hall SJ. 2011. Scientists on trial: at fault?. Nature 477:264–69 [Google Scholar]
  64. Hamill TM. 2001. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Weather Rev. 129:550–60 [Google Scholar]
  65. Hammond G. 2012. State of the art of inflation targeting Cent. Cent. Bank. Stud. Handb. No. 29, Bank Engl., London, UK. http://www.bankofengland.co.uk/education/Documents/ccbs/handbooks/pdf/ccbshb29.pdf
  66. Hendrickson AD, Buehler RJ. 1971. Proper scores for probability forecasters. Ann. Math. Stat. 42:1916–21 [Google Scholar]
  67. Hilden J, Gerds TA. 2013. A note on the evaluation of novel biomarkers: Do not rely on IDI and NRI. Stat. Med. In press. doi:10.1002/sim.5804
  68. Holzmann H, Eulert M. 2013. The role of the information set for forecasting—with applications to risk management Work. Pap., Dept. Math., Univ. Marburg, Marburg, Ger.
  69. Hood L, Heath JR, Phelps ME, Lin B. 2004. Systems biology and new technologies enable predictive and preventative medicine. Science 306:640–43 [Google Scholar]
  70. Hothorn T, Kneib T, Bühlmann P. 2013. Conditional transformation models. J. R. Stat. Soc. B. In press. doi:10.1111/rssb.12017
  71. Hyndman RJ, Bashtannyk DM, Grunwald GK. 1996. Estimating and visualizing conditional densities. J. Comp. Graph. Stat. 5:315–36 [Google Scholar]
  72. Hyvärinen A. 2005. Estimation of non-normalized statistical models by score matching. J. Mach. Learn. Res. 6:695–709 [Google Scholar]
  73. Jeon J, Taylor JW. 2012. Using conditional kernel density estimation for wind power density forecasting. J. Am. Stat. Assoc. 107:66–79 [Google Scholar]
  74. Jones HE, Spiegelhalter DJ. 2012. Improved probabilistic prediction of healthcare performance indicators using bidirectional smoothing models. J. R. Stat. Soc. A 175:729–47 [Google Scholar]
  75. Jordan TH. 2013. The value, protocols, and scientific ethics of earthquake forecasting. Geophys. Res. Abstr. 15:EGU2013–12789 [Google Scholar]
  76. Jordan TH, Chen YT, Gasparini P, Madariaga R, Main I. et al. 2011. Operational earthquake forecasting: state of knowledge and guidelines for utilization. Ann. Geophys. 54:315–91 [Google Scholar]
  77. Kleiber W, Raftery AE, Baars J, Gneiting T, Mass CF, Grimit EP. 2011a. Locally calibrated probabilistic temperature forecasting using geostatistical model averaging and local Bayesian model averaging. Mon. Weather Rev. 139:2630–49 [Google Scholar]
  78. Kleiber W, Raftery AE, Gneiting T. 2011b. Geostatistical model averaging for locally calibrated probabilistic quantitative precipitation forecasting. J. Am. Stat. Assoc. 106:1291–303 [Google Scholar]
  79. Kneib T. 2013. Beyond mean regression. Stat. Model. 13:275–303 [Google Scholar]
  80. Knüppel M. 2011. Evaluating the calibration of multi-step ahead density forecasts using raw moments. Deutsche Bundesbank Discuss. Pap. Ser. 1: Econ. Stud., Frankfurt, Ger. http://econstor.eu/bitstream/10419/54982/1/684344750.pdf
  81. Koenker R. 2005. Quantile Regression Cambridge, UK: Cambridge Univ. Press
  82. Koenker R, Bassett G. 1978. Regression quantiles. Econometrica 46:33–50 [Google Scholar]
  83. Krüger F. 2013. Jensen's inequality and the success of linear prediction pools Work. Pap., Dep. Econ., Univ. Konstanz, Konstanz, Ger.
  84. Krzysztofowicz R. 2001. The case for probabilistic forecasting in hydrology. J. Hydrol. 249:2–9 [Google Scholar]
  85. Lambert NS, Pennock DM, Shoham Y. 2008. Eliciting properties of probability distributions. Proc. 9th ACM Conf. Electron. Commer., Chicago July 8–12 129–38 New York: ACM [Google Scholar]
  86. Lawless JF. 1987. Negative binomial and mixed Poisson regression. Can. J. Stat. 15:209–25 [Google Scholar]
  87. Leutbecher M, Palmer TN. 2008. Ensemble forecasting. J. Comp. Phys. 227:3515–39 [Google Scholar]
  88. Lozano P, Wang H, Foreman KJ, Rajaratnam JK, Naghavi M. et al. 2011. Progress towards Millennium Development Goals 4 and 5 on maternal and child mortality: an updated systematic analysis. Lancet 378:1139–65 [Google Scholar]
  89. Masarotto G, Varin C. 2012. Gaussian copula marginal regression. Electron. J. Stat. 6:1517–49 [Google Scholar]
  90. Matheson JE, Winkler RL. 1976. Scoring rules for continuous probability distributions. Manag. Sci. 22:1087–96 [Google Scholar]
  91. McCullagh P, Nelder J. 1989. Generalized Linear Models Boca Raton, FL: Chapman and Hall/CRC, 2nd. edition
  92. Möller A, Lenkoski A, Thorarinsdottir TL. 2013. Multivariate probabilistic forecasting using ensemble Bayesian model averaging and copulas. Q. J. R. Meteorol. Soc. 193:982–91 [Google Scholar]
  93. Molteni F, Buizza R, Palmer TN, Petroliagis T. 1996. The ECMWF ensemble prediction system: methodology and validation. Q. J. R. Meteorol. Soc. 122:73–119 [Google Scholar]
  94. Montgomery JM, Hollenbach FM, Ward MD. 2012. Ensemble predictions of the 2012 US presidential election. PS: Polit. Sci. Polit. 45:651–54 [Google Scholar]
  95. Murphy AH, Winkler RL. 1987. A general framework for forecast verification. Mon. Weather Rev. 115:1330–38A seminal paper arguing for the consideration of the joint distribution of the forecast and the observation in evaluating predictive performance. [Google Scholar]
  96. Murphy AH, Winkler RL. 1992. Diagnostic verification of probability forecasts. Int. J. Forecast. 7:435–55 [Google Scholar]
  97. Nat. Publ. Group 2012. Shock and law. Nature 490:446 [Google Scholar]
  98. Natl. Cent. Atmos. Res. Res. Appl. Program 2010. verification: Forecast Verification Utilities. R package version 1.31. http://CRAN.R-project.org/package=verification
  99. Newey WK, Powell JL. 1987. Asymmetric least squares estimation and testing. Econometrica 55:819–47 [Google Scholar]
  100. Osband KH. 1985. Providing incentives for better cost forecasting PhD Thesis. Univ. Calif., Berkeley Well ahead of its time, this pioneering PhD thesis studied the notions of consistency and elicitability.
  101. Ovcharov E. 2013. Multivariate local proper scoring rules Work. Pap., Inst. Appl. Math., Univ. Heidelberg, Heidelberg, Ger.
  102. Palmer TN. 2002. The economic value of ensemble forecasts as a tool for risk assessment: from days to decades. Q. J. R. Meteorol. Soc. 128:747–74 [Google Scholar]
  103. Palmer TN. 2012. Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138:841–61A well-argued plea for fully probabilistic weather and climate forecasts. [Google Scholar]
  104. Parry M, Dawid AP, Lauritzen S. 2012. Proper local scoring rules. Ann. Stat. 40:561–92 [Google Scholar]
  105. Pers TH, Albrechtsen A, Holst C, Sørensen TIA, Gerds TA. 2009. The validation and assessment of machine learning: a game of prediction from high-dimensional data. PLoS ONE 4:e6287 [Google Scholar]
  106. Pfanzagl J. 1969. On the measurability and consistency of minimum contrast estimates. Metrika 14:249–72 [Google Scholar]
  107. Pinson P. 2012a. Adaptive calibration of (u, v)-wind ensemble forecasts. Q. J. R. Meteorol. Soc. 138:1273–84 [Google Scholar]
  108. Pinson P. 2012b. Very-short-term probabilistic forecasting of wind power with generalized logit–normal distributions. J. R. Stat. Soc. C 61:555–76 [Google Scholar]
  109. Pinson P. 2013. Wind energy: forecasting challenges for its operational management. Stat. Sci. In press
  110. Pinson P, Girard R. 2012. Evaluating the quality of scenarios of short-term wind power generation. Appl. Energy 96:12–20 [Google Scholar]
  111. Pinson P, Madsen H, Nielsen HA, Papaefthymiou G, Klöckl B. 2009. From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12:51–62 [Google Scholar]
  112. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. 2005. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133:1155–74 [Google Scholar]
  113. Raftery AE, Li N, Sevcíková H, Gerland P, Heilig GK. 2012. Bayesian probabilistic population projections for all countries. Proc. Natl. Acad. Sci. USA 109:13915–21 [Google Scholar]
  114. Ranjan R, Gneiting T. 2010. Combining probability forecasts. J. R. Stat. Soc. B 72:71–91 [Google Scholar]
  115. Richardson DS. 2000. Skill and economic value of the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 126:649–68 [Google Scholar]
  116. Rockafellar RT. 1970. Convex Analysis Princeton, NJ: Princeton Univ. Press
  117. Rockafellar RT, Uryasev S. 2002. Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26:1443–71 [Google Scholar]
  118. Roulin E, Vannitsem S. 2012. Postprocessing of ensemble precipitation predictions with extended logistic regression based on hindcasts. Mon. Weather Rev. 140:874–88 [Google Scholar]
  119. Rüschendorf L. 2009. On the distributional transform, Sklar's theorem, and the empirical copula process. J. Stat. Plan. Inference 139:3921–27 [Google Scholar]
  120. Savage LJ. 1971. Elicitation of personal probabilities and expectations. J. Am. Stat. Assoc. 66:783–801Derived the Bregman representation for scoring functions that are consistent for the expectation functional. [Google Scholar]
  121. Schefzik R, Thorarinsdottir TL, Gneiting T. 2013. Uncertainty quantification in complex simulation models using ensemble copula coupling. Stat. Sci. In press
  122. Schervish MJ. 1989. A general method for comparing probability assessors. Ann. Stat. 17:1856–79 [Google Scholar]
  123. Scheuerer M. 2013. Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Q. J. R. Meteorol. Soc. In press. doi:10.1002/qj.2183
  124. Schuhen N, Thorarinsdottir TL, Gneiting T. 2012. Ensemble model output statistics for wind vectors. Mon. Weather Rev. 140:3204–19 [Google Scholar]
  125. Sklar A. 1959. Fonctions de répartition à n dimensions et leur marges. Publ. Inst. Stat. Univ. Paris 8:229–31 [Google Scholar]
  126. Sloughter JM, Gneiting T, Raftery AE. 2010. Probabilistic wind forecasting using ensembles and Bayesian model averaging. J. Am. Stat. Assoc. 105:25–35 [Google Scholar]
  127. Sloughter JM, Raftery AE, Gneiting T, Fraley C. 2007. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Weather Rev. 135:3209–20 [Google Scholar]
  128. Sobotka F, Kneib T. 2012. Geoadditive expectile regression. Comput. Stat. Data Anal. 56:755–67 [Google Scholar]
  129. Spiegelhalter DJ, Pearson M, Short I. 2011. Visualizing uncertainty about the future. Science 333:1393–400 [Google Scholar]
  130. Stigler SM. 1975. The transition from point to distribution estimation. Bull. Int. Stat. Inst. 46:332–40 [Google Scholar]
  131. Stone CJ. 1977. Consistent nonparametric regression. Ann. Math. Stat. 32:1339–42 [Google Scholar]
  132. Stone M. 1961. The linear pool. Ann. Math. Stat. 32:1339–42 [Google Scholar]
  133. Thomson W. 1979. Eliciting production possibilities from a well-informed manager. J. Econ. Theory 20:360–80 [Google Scholar]
  134. Thorarinsdottir TL, Gneiting T. 2010. Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression. J. R. Stat. Soc. A 173:371–88 [Google Scholar]
  135. Timmermann A. 2000. Density forecasting in economics and finance. J. Forecast. 19:231–34 [Google Scholar]
  136. Traiteur JJ, Callicutt DJ, Smith M, Roy SB. 2012. A short-term ensemble wind speed forecasting system for wind power applications. J. Appl. Meteorol. Climatol. 51:1763–74 [Google Scholar]
  137. van Stiphout T, Wiemer S, Marzocchi W. 2010. Are short-term evacuations warranted? Case of the 2009 L'Aquila earthquake. Geophys. Res. Lett. 37:L06306 [Google Scholar]
  138. Wald A. 1949. Note on the consistency of the maximum likelihood estimate. Ann. Math. Stat. 20:595–601 [Google Scholar]
  139. Wallis KF. 2003. Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts. Int. J. Forecast. 19:165–75 [Google Scholar]
  140. Wilks DS. 2009. Extending logistic regression to provide full-probability-distribution MOS forecasts. Meteorol. Appl. 16:361–68 [Google Scholar]
  141. Wilks DS, Hamill TM. 2007. Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Weather Rev. 135:2379–90 [Google Scholar]
  142. Zhu X, Genton MG. 2012. Short-term wind speed forecasting for power system operations. Int. Stat. Rev. 80:2–23 [Google Scholar]
  143. Ziegel JF. 2013. Coherence and elicitability Work. Pap., Dep. Math. Stat. Actuar. Sci., Univ. Bern, Bern, Switzerland. http://arxiv.org/pdf/1303.1690v2.pdf
/content/journals/10.1146/annurev-statistics-062713-085831
Loading
/content/journals/10.1146/annurev-statistics-062713-085831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error