1932

Abstract

As an emerging field of applied research, quantitative risk management (QRM) poses a lot of challenges for probabilistic and statistical modeling. This review provides a discussion on selected past, current, and possible future areas of research at the intersection of statistics and QRM. Topics treated include the use of risk measures in regulation, including their statistical estimation and aggregation properties. An extensive literature provides the statistically interested reader with an entrance to this exciting field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-022513-115631
2014-01-03
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/statistics/1/1/annurev-statistics-022513-115631.html?itemId=/content/journals/10.1146/annurev-statistics-022513-115631&mimeType=html&fmt=ahah

Literature Cited

  1. Albanese C. 1997. Credit exposure, diversification risk and coherent VaR Work. Pap., Dep. Math., Univ. Toronto [Google Scholar]
  2. Andersen TG, Bollerslev T, Christoffersen PF, Diebold FX. 2013. Financial risk measurement for financial risk management. Handbook of the Economics of Finance 2 G Constantinides, M Harris, R Stulz 1127–220 Amsterdam: Elsevier Sci. [Google Scholar]
  3. Artzner P, Delbaen F, Eber JM, Heath D. 1999. Coherent measures of risk. Math. Finance 9:203–28 [Google Scholar]
  4. Balo Y, Lee TH, Saltoğlu B. 2006. Evaluating predictive performance of value-at-risk models in emerging markets: a reality check. J. Forecast. 25:101–28 [Google Scholar]
  5. Ben-Tal A, El Ghaoui L, Nemirovski A. 2009. Robust Optimization Princeton, NJ: Princeton Univ. Press [Google Scholar]
  6. Berkowitz J, O'Brien J. 2002. How accurate are value-at-risk models at commercial banks?. J. Finance 57:1093–111 [Google Scholar]
  7. BIS 2012. Fundamental Review of the Trading Book Basel, Switz.: Bank Int. Settl http://www.bis.org/publ/bcbs219.pdf [Google Scholar]
  8. Boyd S, Vandenberghe L. 2004. Convex Optimization Princeton, NJ: Princeton Univ. Press [Google Scholar]
  9. Chavez-Demoulin V, Davison AC, McNeil AJ. 2005. Estimating value-at-risk: a point process approach. Quant. Finance 5:2227–34 [Google Scholar]
  10. Chavez-Demoulin V, Embrechts P, Hofert M. 2013a. An extreme value approach for modeling operational risk losses depending on covariates Work. Pap., Dep. Math., ETH Zurich [Google Scholar]
  11. Chavez-Demoulin V, Embrechts P, Sardy S. 2013b. Extreme-quantile tracking for financial time series. J. Econom. In press [Google Scholar]
  12. Chavez-Demoulin V, McGill JA. 2012. High-frequency financial data modeling using Hawkes processes. J. Bank. Finance 36:123415–26 [Google Scholar]
  13. Cherubini U, Luciano E, Vecchiato W. 2004. Copula Methods in Finance Hoboken, NJ: Wiley [Google Scholar]
  14. Chun SY, Shipiro A, Uryasev S. 2012. Conditional value-at-risk and average value-at-risk: estimation and asymptotics. Oper. Res. 60:4739–56 [Google Scholar]
  15. Cont R, Deguest R, Scandolo G. 2010. Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10:6593–606 [Google Scholar]
  16. Dacorogna MM, Gençay R, Müller U, Olsen RB, Pictet OV. 2001. An Introduction to High-Frequency Finance Salt Lake City, UT: Academic [Google Scholar]
  17. Daníelsson J. 2011. Financial Risk Forecasting Chichester, UK: Wiley [Google Scholar]
  18. Das B, Embrechts P, Fasen V. 2013. Four theorems and a financial crisis. Int. J. Approx. Reason. 54:701–16 [Google Scholar]
  19. Delbaen F. 2012. Monetary Utility Functions Osaka, Jpn.: Osaka Univ. Press [Google Scholar]
  20. Dell'Aquila R, Embrechts P. 2006. Extremes and robustness: a contradiction?. Financ. Mark. Portf. Manag. 20:103–18 [Google Scholar]
  21. Demarta S, McNeil AJ. 2005. The t copula and related copulas. Int. Stat. Rev. 73:1111–29 [Google Scholar]
  22. Diebold FX, Doherty NA, Herring RJ. 2010. The Known, the Unknown, and the Unknowable in Financial Risk Management: Measurement and Theory Advancing Practice Princeton, NJ: Princeton Univ. Press [Google Scholar]
  23. Donnelly C, Embrechts P. 2010. The devil is in the tails: actuarial mathematics and the subprime mortgage crisis. ASTIN Bull. 40:11–33 [Google Scholar]
  24. Embrechts P. 2009. Copulas: a personal view. J. Risk Insur. 76:639–50 [Google Scholar]
  25. Embrechts P, Hofert M. 2013a. A note on generalized inverses. Math. Methods Oper. Res. 44:423–32 [Google Scholar]
  26. Embrechts P, Hofert M. 2013b. Statistical inference for copulas in high dimensions: a simulation study. ASTIN Bull. 43:281–95 [Google Scholar]
  27. Embrechts P, Kaufmann R, Patie P. 2005. Strategic long-term financial risks: single risk factors. Comput. Optim. Appl. 32:1–261–90 [Google Scholar]
  28. Embrechts P, McNeil AJ, Straumann D. 1999. Correlation: pitfalls and alternatives. Risk Mag. May:69–71 [Google Scholar]
  29. Embrechts P, McNeil AJ, Straumann D. 2002. Correlation and dependency in risk management: properties and pitfalls. Risk Management: Value at Risk and Beyond M Dempster 176–223 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  30. Embrechts P, Puccetti G, Rüschendorf L. 2013. Model uncertainty and VaR aggregation. J. Bank. Finance 37:82750–64 [Google Scholar]
  31. Engle R. 2009. Anticipating Correlations: A New Paradigm for Risk Management Princeton, NJ: Princeton Univ. Press [Google Scholar]
  32. Fishburn PC. 1984. Foundations of risk measurement. I. Risk as probable loss. Manag. Sci. 30:396–406 [Google Scholar]
  33. Föllmer H, Schied A. 2011. Stochastic Finance: An Introduction in Discrete Time C Kenig, A Ranicki, M Röckner Berlin: de Gruyter, 3rd. ed. [Google Scholar]
  34. Fréchet M. 1935. Généralisations du théorème des probabilités totales. Fundam. Math. 25:379–87 [Google Scholar]
  35. Gale D, Shapley LS. 1962. College admissions and stability of marriage. Am. Math. Mon. 69:19–15 [Google Scholar]
  36. Genest C, Nešlehová J. 2007. A primer on copulas for count data. ASTIN Bull. 37:475–515 [Google Scholar]
  37. Genest C, Gendron M, Bourdeau-Brien M. 2009. The advent of copulas in finance. Eur. J. Finance 15:609–18 [Google Scholar]
  38. Genton MG. 2004. Skew-Elliptic Distributions and Their Applications: A Journey Beyond Normality Boca Raton, FL: Chapman & Hall/CRC [Google Scholar]
  39. Genz A, Bretz F. 2009. Computation of Multivariate Normal and t Probabilities New York: Springer [Google Scholar]
  40. Giacomini R, Komunjer I. 2005. Evaluation and combination of conditional quantile forecasts. J. Bus. Econ. Stat. 23:416–31 [Google Scholar]
  41. Gilboa I, Schmeidler D. 1989. Maximum expected utility with a non-unique prior. J. Math. Econ. 18:141–53 [Google Scholar]
  42. Gneiting T. 2011. Making and evaluating point forecasts. J. Am. Stat. Assoc. 106:746–62 [Google Scholar]
  43. Gourieroux C, Jasiak J. 2001. Financial Econometrics: Problems, Models and Methods Princeton, NJ: Princeton Univ. Press [Google Scholar]
  44. Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA. 2005. Robust Statistics: The Approach Based on Influence Functions Hoboken, NJ: Wiley-InterScience [Google Scholar]
  45. Hoeffding W. 1940. Massstabinvariante Korrelationstheorie. Schr. Math. Semin. Inst. Angew. Math. Univ. Berlin 5:181–233 [Google Scholar]
  46. Hofert M. 2012. A stochastic representation and sampling algorithm for nested Archimedean copulas. J. Stat. Comput. Simul. 82:91239–55 [Google Scholar]
  47. Hofert M, Scherer M. 2011. CDO pricing with nested Archimedean copulas. Quant. Finance 11:5775–87 [Google Scholar]
  48. Hofert M, Mächler M, McNeil AJ. 2012. Likelihood inference for Archimedean copulas in high dimensions under known margins. J. Multivar. Anal. 110:133–50 [Google Scholar]
  49. Hofert M, Mächler M, McNeil AJ. 2013. Archimedean copulas in high dimensions: estimators and numerical challenges motivated by financial applications. J. Soc. Fr. Stat. 154:25–63 [Google Scholar]
  50. Huber PJ. 1981. Robust Statistics Hoboken, NJ: Wiley [Google Scholar]
  51. Huber PJ, Ronchetti EM. 2009. Robust Statistics Hoboken, NJ: Wiley, 2nd ed.. [Google Scholar]
  52. Jaworski P, Durante F, Härdle WK, Rychlik T. 2010. Copula Theory and Its Applications 198, Lect. Notes Stat. Ser New York: Springer [Google Scholar]
  53. Joe H. 1997. Multivariate Models and Dependence Concepts Boca Raton, FL: Chapman & Hall/CRC [Google Scholar]
  54. Jorion P. 2007. Value at Risk: The New Benchmark for Managing Financial Risk New York: McGraw-Hill, 3rd ed.. [Google Scholar]
  55. Kaufmann R. 2004. Long-term risk management PhD thesis, Dep. Math., ETH Zurich [Google Scholar]
  56. Knight FH. 1921. Risk, Uncertainty and Profit Boston, MA: Houghton Mifflin [Google Scholar]
  57. Li DX. 2000. On default correlation: a copula function approach. J. Fixed Income 9:443–54 [Google Scholar]
  58. Lipton A, Rennie A. 2007. Credit Correlation: Life After Copulas Hackensack, NJ: World Sci. Publ. [Google Scholar]
  59. Mancini L, Trojani F. 2011. Robust value-at-risk prediction. J. Financ. Econom. 9:281–313 [Google Scholar]
  60. Marshall AW, Olkin I. 1988. Families of multivariate distributions. J. Am. Stat. Assoc. 83:403834–41 [Google Scholar]
  61. McNeil AJ. 2008. Sampling nested Archimedean copulas. J. Stat. Comput. Simul. 78:6567–81 [Google Scholar]
  62. McNeil AJ, Frey R. 2000. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. J. Empir. Finance 7:271–300 [Google Scholar]
  63. McNeil AJ, Nešlehová J. 2009. Multivariate Archimedean copulas, monotone functions and l1-norm symmetric distributions. Ann. Stat. 37:5b3059–97 [Google Scholar]
  64. McNeil AJ, Frey R, Embrechts P. 2005. Quantitative Risk Management: Concepts, Techniques, Tools Princeton, NJ: Princeton Univ. Press [Google Scholar]
  65. Mikosch T. 2006. Copulas: tales and facts. Extremes 9:13–20 [Google Scholar]
  66. Nelsen RB. 1999. An Introduction to Copulas New York: Springer [Google Scholar]
  67. Rémillard B. 2013. Statistical Methods For Financial Engineering Boca Raton, FL: Chapman & Hall/CRC [Google Scholar]
  68. Roth A, Shapley L. 2012. Game, set and match. Economist Oct. 20. http://www.economist.com/news/finance-and-economics/21564836-alvin-roth-and-lloyd-shapley-have-won-year's-nobel-economics [Google Scholar]
  69. Rüschendorf L. 2009. On the distributional transform, Sklar's Theorem, and the empirical copula process. J. Stat. Plan. Inference 139:113921–27 [Google Scholar]
  70. Rüschendorf L. 2013. Mathematical Risk Analysis: Dependence, Risk Bounds, Optimal Allocations and Portfolios New York: Springer [Google Scholar]
  71. Salmon F. 2009. Recipe for disaster: the formula that killed Wall Street. Wired Feb. 23, 17.03. http://www.wired.com/techbiz/it/magazine/17-03/wp_quant [Google Scholar]
  72. Salmon F. 2012. The formula that killed Wall Street. Significance 9:116–20 [Google Scholar]
  73. Sandström A. 2006. Solvency: Models, Assessment and Regulation Boca Raton, FL: Chapman & Hall/CRC [Google Scholar]
  74. Schönbucher PJ, Schubert D. 2001. Copula-dependent default risk in intensity models Work. Pap., SSRN; http://ssrn.com/abstract=301968 [Google Scholar]
  75. Schweizer B. 1991. Thirty years of copulas. Advances in Probability Distributions with Given Marginals G Dall'Aglio, S Kotz, G Salinetti 13–50 Dordrecht, Neth.: Kluwer Acad. [Google Scholar]
  76. Schweizer B, Sklar A. 1983. Probabilistic Metric Spaces New York: North-Holland [Google Scholar]
  77. SCOR 2008. From Principle-Based Risk Management to Solvency Requirements: Analytic Framework for the Swiss Solvency Test Toulouse, Fr.: SCOR Glob. Risk Cent http://www.scor.com/images/stories/pdf/scorpapers/sstbook_second_edition_final.pdf [Google Scholar]
  78. Sibuya M. 1959. Bivariate extreme statistics, I. Ann. Inst. Stat. Math. 11:2195–210 [Google Scholar]
  79. Sklar A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8:229–31 [Google Scholar]
  80. Sklar A. 1996. Random variables, distribution functions, and copulas: a personal look backward and forward. Distrib. Fixed Marg. Relat. Top. 28:1–14 [Google Scholar]
  81. Tarullo DK. 2008. Banking on Basel: The Future of International Financial Regulation Washington, DC: Peterson Inst. Int. Econ. [Google Scholar]
  82. Torrent-Gironella G, Fortiana J. 2011. Simulation of high-dimensional t-student copulas with a given block correlation matrix Presented at ASTIN Colloq., Madrid [Google Scholar]
  83. Uryasev S, Rockafellar RT. 2013. The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci. 18:33–53 [Google Scholar]
  84. Viens FG, Mariani MC, Florescu I. 2012. Handbook of Modeling High-Frequency Data in Finance Hoboken, NJ: Wiley [Google Scholar]
  85. Wiener N. 1923. On the nature of mathematical thinking. Aust. J. Psychol. Philos. 1:4268–72 [Google Scholar]
  86. Wong MCY. 2013. Bubble Value at Risk: A Countercyclical Risk Management Approach Hoboken, NJ: Wiley. Rev. ed. [Google Scholar]
  87. Ziegel J. 2013. Coherence and elicitability Work. Pap., Inst. Math. Stat. Actuar. Sci., Univ. Bern [Google Scholar]
/content/journals/10.1146/annurev-statistics-022513-115631
Loading
/content/journals/10.1146/annurev-statistics-022513-115631
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error