1932

Abstract

In this review, we present an overview of joint models for longitudinal and time-to-event data. We introduce a generalized formulation for the joint model that incorporates multiple longitudinal outcomes of varying types. We focus on extensions for the parametrization of the association structure that links the longitudinal and time-to-event outcomes, estimation techniques, and dynamic predictions. We also outline the software available for the application of these models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-statistics-030718-105048
2019-03-07
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/statistics/6/1/annurev-statistics-030718-105048.html?itemId=/content/journals/10.1146/annurev-statistics-030718-105048&mimeType=html&fmt=ahah

Literature Cited

  1. Andrinopoulou ER, Eilers PH, Takkenberg JJ, Rizopoulos D. 2017a. Improved dynamic predictions from joint models of longitudinal and survival data with time-varying effects using P-splines. Biometrics 74:685–93
    [Google Scholar]
  2. Andrinopoulou ER, Rizopoulos D. 2016. Bayesian shrinkage approach for a joint model of longitudinal and survival outcomes assuming different association structures. Stat. Med. 35:4813–23
    [Google Scholar]
  3. Andrinopoulou ER, Rizopoulos D, Takkenberg JJ, Lesaffre E. 2014. Joint modeling of two longitudinal outcomes and competing risk data. Stat. Med. 33:3167–78
    [Google Scholar]
  4. Andrinopoulou ER, Rizopoulos D, Takkenberg JJ, Lesaffre E. 2017b. Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data. Stat. Methods Med. Res. 26:1787–801
    [Google Scholar]
  5. Baghfalaki T, Ganjali M, Berridge D. 2014. Joint modeling of multivariate longitudinal mixed measurements and time to event data using a Bayesian approach. J. Appl. Stat. 41:1934–55
    [Google Scholar]
  6. Blanche P, Proust-Lima C, Loubère L, Berr C, Dartigues JF, Jacqmin-Gadda H. 2015. Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks. Biometrics 71:102–13
    [Google Scholar]
  7. Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88:9–25
    [Google Scholar]
  8. Brown ER, Ibrahim JG. 2003. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 59:221–28
    [Google Scholar]
  9. Brown ER, Ibrahim JG, DeGruttola V. 2005. A flexible b-spline model for multiple longitudinal biomarkers and survival. Biometrics 61:64–73
    [Google Scholar]
  10. Chi YY, Ibrahim JG. 2006. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 62:432–45
    [Google Scholar]
  11. Choi J, Anderson SJ, Richards TJ, Thompson WK. 2014. Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data. J. Appl. Stat. 41:2192–205
    [Google Scholar]
  12. Commenges D, Liquet B, Proust-Lima C. 2012. Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback–Leibler risks. Biometrics 68:380–87
    [Google Scholar]
  13. Crowther MJ. 2012. STJM: Stata module to fit shared parameter joint models of longitudinal and survival data. Statistical software Stat. Softw. Compon. S457502, Boston Coll. Dep. Econ. https://ideas.repec.org/c/boc/bocode/s457502.html
    [Google Scholar]
  14. Crowther MJ. 2015. Extensions to the STJM package. Statistical software Univ. Leicester. https://ideas.repec.org/c/boc/bocode/s457502.html
    [Google Scholar]
  15. Crowther MJ, Abrams KR, Lambert PC. 2013. Joint modeling of longitudinal and survival data. Stata J. 13:165–84
    [Google Scholar]
  16. De Gruttola V, Tu XM. 1994. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50:1003–14
    [Google Scholar]
  17. Ding J, Wang JL. 2008. Modeling longitudinal data with nonparametric multiplicative random effects jointly with survival data. Biometrics 64:546–56
    [Google Scholar]
  18. Elashoff RM, Li G, Li N. 2008. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 64:762–71
    [Google Scholar]
  19. Faucett CL, Thomas DC. 1996. Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Stat. Med. 15:1663–85
    [Google Scholar]
  20. Ferrer L, Putter H, Proust-Lima C. 2017. Individual dynamic predictions using landmarking and joint modelling: validation of estimators and robustness assessment. arXiv:1707.03706 [stat.AP]
    [Google Scholar]
  21. Garre FG, Zwinderman AH, Geskus RB, Sijpkens YW. 2008. A joint latent class changepoint model to improve the prediction of time to graft failure. J. R. Stat. Soc. A 171:299–308
    [Google Scholar]
  22. Gould AL, Boye ME, Crowther MJ, Ibrahim JG, Quartey G et al. 2015. Joint modeling of survival and longitudinal non-survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group. Stat. Med. 34:2181–95
    [Google Scholar]
  23. Guedj J, Thiébaut R, Commenges D. 2011. Joint modeling of the clinical progression and of the biomarkers’ dynamics using a mechanistic model. Biometrics 67:59–66
    [Google Scholar]
  24. Hauptmann M, Wellmann J, Lubin JH, Rosenberg PS, Kreienbrock L. 2000. Analysis of exposure-time-response relationships using a spline weight function. Biometrics 56:1105–8
    [Google Scholar]
  25. Henderson R, Diggle P, Dobson A. 2002. Identification and efficacy of longitudinal markers for survival. Biostatistics 3:33–50
    [Google Scholar]
  26. Hickey GL, Philipson P, Jorgensen A, Kolamunnage-Dona R. 2018. joineRML: joint modelling of multivariate longitudinal data and time-to-event outcomes. R package version 0.4.1
    [Google Scholar]
  27. Hogan JW, Laird NM. 1997. Mixture models for the joint distribution of repeated measures and event times. Stat. Med. 16:239–57
    [Google Scholar]
  28. Hsieh F, Tseng YK, Wang JL. 2006. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62:1037–43
    [Google Scholar]
  29. Hu W, Li G, Li N. 2009. A Bayesian approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat. Med. 28:1601–19
    [Google Scholar]
  30. Huang X, Li G, Elashoff RM, Pan J. 2011. A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Anal. 17:80–100
    [Google Scholar]
  31. Huang X, Stefanski LA, Davidian M. 2009. Latent-model robustness in joint models for a primary endpoint and a longitudinal process. Biometrics 65:719–27
    [Google Scholar]
  32. Ibrahim JG, Chen MH, Sinha D. 2004. Bayesian methods for joint modeling of longitudinal and survival data with applications to cancer vaccine trials. Stat. Sin. 14:863–83
    [Google Scholar]
  33. Köhler M, Umlauf N, Beyerlein A, Winkler C, Ziegler AG, Greven S. 2017. Flexible Bayesian additive joint models with an application to type 1 diabetes research. Biometrical J. 59:1144–65
    [Google Scholar]
  34. Król A, Mauguen A, Mazroui Y, Laurent A, Michiels S, Rondeau V. 2017. Tutorial in joint modeling and prediction: a statistical software for correlated longitudinal outcomes, recurrent events and a terminal event. J. Stat. Softw. 81:1–52
    [Google Scholar]
  35. Laird NM, Ware JH. 1982. Random-effects models for longitudinal data. Biometrics 38:963–74
    [Google Scholar]
  36. Li N, Elashoff RM, Li G, Tseng CH. 2012. Joint analysis of bivariate longitudinal ordinal outcomes and competing risks survival times with nonparametric distributions for random effects. Stat. Med. 31:1707–21
    [Google Scholar]
  37. Lin H, McCulloch CE, Mayne ST. 2002. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat. Med. 21:2369–82
    [Google Scholar]
  38. Liu F, Li Q. 2016. A Bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials. Stat. Methods Med. Res. 25:2180–92
    [Google Scholar]
  39. Liu L, Huang X. 2009. Joint analysis of correlated repeated measures and recurrent events processes in the presence of death, with application to a study on acquired immune deficiency syndrome. J. R. Stat. Soc. C 58:65–81
    [Google Scholar]
  40. Liu L, Huang X, O'Quigley J. 2008. Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data. Biometrics 64:950–58
    [Google Scholar]
  41. Mauff K, Steyerberg EW, Nijpels G, Heijden AA, Rizopoulos D. 2017. Extension of the association structure in joint models to include weighted cumulative effects. Stat. Med. 36:3746–59
    [Google Scholar]
  42. Murtaugh P, Dickson E, Dam GV, Malincho M, Grambsch P et al. 1994. Primary biliary cirrhosis: prediction of short-term survival based on repeated patient visits. Hepatology 20:126–34
    [Google Scholar]
  43. Musoro JZ, Geskus RB, Zwinderman AH. 2015. A joint model for repeated events of different types and multiple longitudinal outcomes with application to a follow-up study of patients after kidney transplant. Biometrical J. 57:185–200
    [Google Scholar]
  44. Pantazis N, Touloumi G, Walker A, Babiker A. 2005. Bivariate modelling of longitudinal measurements of two human immunodeficiency type 1 disease progression markers in the presence of informative drop-outs. J. R. Stat. Soc. C 54:405–23
    [Google Scholar]
  45. Papageorgiou G, Mokhles MM, Takkenberg JJM, Rizopoulos D. 2018. Individualized dynamic prediction of survival under time-varying treatment strategies. arXiv:1804.02334 [stat.AP]
    [Google Scholar]
  46. Philipson P, Sousa I, Diggle P, Williamson P, Kolamunnage-Dona R et al. 2018. joineR: joint modelling of repeated measurements and time-to-event data. R package version 1.2.3
    [Google Scholar]
  47. Prentice R. 1982. Covariate measurement errors and parameter estimates in a failure time regression model. Biometrika 69:331–42
    [Google Scholar]
  48. Proust-Lima C, Dartigues JF, Jacqmin-Gadda H. 2016. Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach. Stat. Med. 35:382–98
    [Google Scholar]
  49. Proust-Lima C, Joly P, Dartigues JF, Jacqmin-Gadda H. 2009. Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach. Comput. Stat. Data Anal. 53:1142–54
    [Google Scholar]
  50. Proust-Lima C, Philipps V, Diakite A, Liquet B. 2017a. lcmm: extended mixed models using latent classes and latent processes. R package version 1.7.8
    [Google Scholar]
  51. Proust-Lima C, Philipps V, Liquet B. 2017b. Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. J. Stat. Softw. 78:1–56
    [Google Scholar]
  52. Proust-Lima C, Séne M, Taylor JM, Jacqmin-Gadda H. 2014. Joint latent class models for longitudinal and time-to-event data: a review. Stat. Methods Med. Res. 23:74–90
    [Google Scholar]
  53. Proust-Lima C, Taylor J. 2009. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of post treatment PSA: a joint modeling approach. Biostatistics 10:535–49
    [Google Scholar]
  54. R Core Team 2018. R: A language and environment for statistical computing Vienna: R Found. Stat. Comput.
    [Google Scholar]
  55. Rizopoulos D. 2010. JM: An R package for the joint modelling of longitudinal and time-to-event data. J. Stat. Softw. 35:1–33
    [Google Scholar]
  56. Rizopoulos D. 2011. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics 67:819–29
    [Google Scholar]
  57. Rizopoulos D. 2012a. Fast fitting of joint models for longitudinal and event time data using a pseudo-adaptive Gaussian quadrature rule. Comput. Stat. Data Anal. 56:491–501
    [Google Scholar]
  58. Rizopoulos D 2012b. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R Boca Raton, FL: Chapman & Hall/CRC
    [Google Scholar]
  59. Rizopoulos D. 2016. The R package JMbayes for fitting joint models for longitudinal and time-to-event data using MCMC. J. Stat. Softw. 72:1–45
    [Google Scholar]
  60. Rizopoulos D, Ghosh P. 2011. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat. Med. 30:1366–80
    [Google Scholar]
  61. Rizopoulos D, Hatfield L, Carlin B, Takkenberg J. 2014. Combining dynamic predictions from joint models for longitudinal and time-to-event data using Bayesian model averaging. J. Am. Stat. Assoc. 109:1385–97
    [Google Scholar]
  62. Rizopoulos D, Molenberghs G, Lesaffre E. 2017. Dynamic predictions with time-dependent covariates in survival analysis using joint modeling and landmarking. Biometrical J. 59:1261–76
    [Google Scholar]
  63. Rizopoulos D, Taylor J, Rosmalen JV, Steyerberg E, Takkenberg J. 2015. Personalized screening intervals for biomarkers using joint models for longitudinal and survival data. Biostatistics 17:149–64
    [Google Scholar]
  64. Rizopoulos D, Verbeke G, Lesaffre E. 2008. A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics 64:611–19
    [Google Scholar]
  65. Rizopoulos D, Verbeke G, Lesaffre E. 2009. Fully exponential Laplace approximations for the joint modelling of survival and longitudinal data. J. R. Stat. Soc. B 71:637–54
    [Google Scholar]
  66. Rondeau V, Gonzalez J. 2005. frailtypack: A computer program for the analysis of correlated failure time data using penalized likelihood estimation. Comput. Methods Programs Biomed. 80:154–64
    [Google Scholar]
  67. Rondeau V, Mazroui Y, Gonzalez J. 2012. frailtypack: An R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation or parametrical estimation. J. Stat. Softw. 47:1–28
    [Google Scholar]
  68. Schoop R, Graf E, Schumacher M. 2008. Quantifying the predictive performance of prognostic models for censored survival data with time-dependent covariates. Biometrics 64:603–10
    [Google Scholar]
  69. Schoop R, Schumacher M, Graf E. 2011. Measures of prediction error for survival data with longitudinal covariates. Biometrical J. 53:275–93
    [Google Scholar]
  70. Self S, Patiwan Y. 1992. Modeling a marker of disease progression and onset of disease. AIDS Epidemiology: Methodological Issues NP Jewell, K Dietz, VT Farewell231–55 Boston: Birkhäuser
    [Google Scholar]
  71. Sène M, Taylor JM, Dignam JJ, Jacqmin-Gadda H, Proust-Lima C. 2016. Individualized dynamic prediction of prostate cancer recurrence with and without the initiation of a second treatment: development and validation. Stat. Methods Med. Res. 25:2972–91
    [Google Scholar]
  72. Song X, Davidian M, Tsiatis AA. 2002. A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58:742–53
    [Google Scholar]
  73. Stan Development Team 2016. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.13.1
    [Google Scholar]
  74. Suresh K, Taylor JMG, Spratt DE, Daignault S, Tsodikov A. 2017. Comparison of joint modeling and landmarking for dynamic prediction under an illness-death model. Biometrical J. 59:1277–300
    [Google Scholar]
  75. Sylvestre MP, Abrahamowicz M. 2009. Flexible modeling of the cumulative effects of time-dependent exposures on the hazard. Stat. Med. 28:3437–53
    [Google Scholar]
  76. Tang AM, Tang NS. 2015. Semiparametric Bayesian inference on skew–normal joint modeling of multivariate longitudinal and survival data. Stat. Med. 34:824–43
    [Google Scholar]
  77. Tang NS, Tang AM, Pan DD. 2014. Semiparametric Bayesian joint models of multivariate longitudinal and survival data. Comput. Stat. Data Anal. 77:113–29
    [Google Scholar]
  78. Taylor JM, Park Y, Ankerst DP, Proust-Lima C, Williams S et al. 2013. Realtime individual predictions of prostate cancer recurrence using joint models. Biometrics 69:206–13
    [Google Scholar]
  79. Thiébaut R, Jacqmin-Gadda H, Babiker A, Commenges D. 2005. Joint modelling of bivariate longitudinal data with informative dropout and left-censoring, with application to the evolution of CD4+ cell count and HIV RNA viral load in response to treatment of HIV infection. Stat. Med. 24:65–82
    [Google Scholar]
  80. Tomer A, Nieboer D, Roobol MJ, Steyerberg EW, Rizopoulos D. 2017. Personalized schedules for surveillance of low risk prostate cancer patients. arXiv:1711.00285 [stat.AP]
    [Google Scholar]
  81. Tsiatis AA, Davidian M. 2001. A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88:447–58
    [Google Scholar]
  82. Tsiatis AA, Davidian M. 2004. Joint modeling of longitudinal and time-to-event data: an overview. Stat. Sin. 14:809–34
    [Google Scholar]
  83. Umlauf N, Klein N, Zeileis A 2017. BAMLSS: Bayesian additive models for location, scale and shape (and beyond). J. Comput. Graph. Stat https://doi.org/10.1080/10618600.2017.1407325
    [Crossref] [Google Scholar]
  84. Vacek PM. 1997. Assessing the effect of intensity when exposure varies over time. Stat. Med. 16:505–13
    [Google Scholar]
  85. Van der Vaart AW 1998. Asymptotic Statistics Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  86. Wang Y, Taylor JMG. 2001. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J. Am. Stat. Assoc. 96:895–905
    [Google Scholar]
  87. Williamson P, Kolamunnage-Dona R, Philipson P, Marson A. 2008. Joint modelling of longitudinal and competing risks data. Stat. Med. 27:6426–38
    [Google Scholar]
  88. Wulfsohn MS, Tsiatis AA. 1997. A joint model for survival and longitudinal data measured with error. Biometrics 53:330–39
    [Google Scholar]
  89. Xu J, Zeger SL. 2001. Joint analysis of longitudinal data comprising repeated measures and times to events. J. R. Stat. Soc. C 50:375–87
    [Google Scholar]
  90. Yu M, Taylor JM, Sandler HM. 2008. Individualized prediction in prostate cancer studies using a joint longitudinal-survival-cure model. J. Am. Stat. Assoc. 103:178–87
    [Google Scholar]
  91. Zeng D, Cai J. 2005. Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. 33:2132–63
    [Google Scholar]
  92. Zhang D, Chen MH, Ibrahim JG, Boye ME, Wang P, Shen W. 2014. Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials. Stat. Med. 33:4715–33
    [Google Scholar]
  93. Zhang D, Chen MH, Ibrahim JG, Boye ME, Wang P, Shen W. 2016. JMFit: A SAS macro for joint models of longitudinal and survival data. J. Stat. Softw. 71:1–24
    [Google Scholar]
  94. Zhu H, Ibrahim JG, Chi YY, Tang N. 2012. Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 68:954–64
    [Google Scholar]
/content/journals/10.1146/annurev-statistics-030718-105048
Loading
/content/journals/10.1146/annurev-statistics-030718-105048
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error